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Abstract: The mechanical and thermal conductivity properties of two composite elastomers were
studied. Styrene–butadiene rubber (SBR) filled with functionalized graphene oxide (GO) and silica
nanofibers, and styrene–butadiene–styrene (SBS) block copolymers filled with graphene oxide.
For the SBR composites, GO fillers with two different surface functionalities were synthesized
(cysteamine and dodecylamine) and dispersed in the SBR using mechanical and liquid mixing
techniques. The hydrophilic cysteamine-based GO fillers were dispersed in the SBR by mechanical
mixing, whereas the hydrophobic dodecylamine-based GO fillers were dispersed in the SBR by liquid
mixing. Silica nanofibers (SnFs) were fabricated by electrospinning a sol–gel precursor solution.
The surface chemistry of the functionalized fillers was studied in detail. The properties of the
composites and the synergistic improvements between the GO and SnFs are presented. For the SBS
composites, GO fillers were dispersed in the SBS elastomer at several weight percent loadings using
liquid mixing. Characterization of the filler material and the composite elastomers was performed
using x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, scanning
electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, tensile testing,
nanoindentation, thermal conductivity and abrasion testing.

Keywords: SBR composites; SBS composites; graphene oxide; silica nanofibers; mechanical properties;
thermal conductivity

1. Introduction

Composite elastomers are a very significant category of polymeric materials with numerous
applications such as tire manufacturing, high-performance elastomers, gas barrier materials and
advanced binders for energy storage devices [1–7]. The incorporation of filler material in the elastomer
matrix can provide significant reinforcement [8,9] and impart new properties to the elastomer such as
thermal and electrical conductivity [10–13]. Tailoring the filler-elastomer interactions and optimizing
the dispersion of the filler material is imperative for the fabrication of high-performance elastomers.
Graphene oxide (GO) is one of the most promising filler materials that can potentially replace the
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carbon black and silica nanoparticles that are commonly been used in the fabrication of rubber
composites [14,15]. Their planar structure, high surface area when exfoliated, and the possibility to
tailor the surface functionality makes them unique fillers. Moreover, the strong interaction between
styrene groups and two-dimensional carbon nanomaterials [16,17] makes GO an excellent filler for
styrene-based elastomers [18,19].

Herein, we report our studies on non-crosslinked styrene–butadiene rubber (SBR) and styrene–
butadiene–styrene (SBS) composites. The focus of this work is to investigate the effect of the different
functionalities and mixing conditions on the mechanical and thermal conductivity properties of the
composites. Tailoring the surface functionality and wettability of the GO fillers is very important
as it can result in better interfacial interactions between the GO and the elastomer and therefore in
better dispersion of the GO. Sulfur groups are commonly being used to functionalize GO in order to
form covalent bonds with the butadiene groups of the SBR. The intrinsic hydrophilicity of the GO
due to the high oxygen content and the hydrophilic nature of the sulfur groups make the exfoliation
and dispersion of the GO in the hydrophobic SBR matrix more difficult. Strongly reduced GO has
significantly lower oxygen content that is typically less than 10 at.%. Such low oxygen content can
limit the amount of functionality that can be grafted on the GO surface and can also hinder the
exfoliation of the GO layers due to the stronger van der Waals forces between GO layers. The oxygen
content of the GO or reduced GO must be optimized depending on the application [20]. In this study,
we used GO with low oxygen content. Functionalization with cysteamine groups and the simultaneous
reduction [21–23] of the GO was performed to incorporate sulfur groups and partially reduce the
oxygen content of the GO fillers. The hydrophilic cysteamine-modified GO fillers were dispersed in
the hydrophobic SBR using mechanical mixing. A different surface functionality was also studied.
The hydrophilic GO fillers were functionalized with dodecylamine to covalently bond hydrophobic
alkyl groups on the GO surface and improve their dispersion in nonpolar solvents. A liquid mixing
technique was used to disperse the dodecylamine-modified GO fillers in SBR.

A hybrid composite was also fabricated based on the GO with the surface functionality that
resulted in better reinforcement and a high aspect ratio hydrophobic silica nanofibers (SnFs). The high
surface area of the GO fillers limits the amount of GO that can be effectively dispersed in the elastomer.
The addition of a filler with complementary properties, such as SnFs, can synergistically improve the
properties of the composite. SBS–GO composites at several GO weight loadings were also studied.
SBS is a block copolymer that does not require crosslinking and can be processed like a thermoplastic
resin. Although it is less robust than the crosslinked SBR, the addition of GO can provide additional
benefits that are associated with the significant increase in the thermal conductivity.

2. Experimental

Commercially available graphene oxide (GO) was functionalized with cysteamine and
simultaneously reduced by adding KOH in the solution. GO was dispersed in water (20 mL
solution of 1 mg mL−1 GO) and the pH of the solution was adjusted to 8 using KOH. The GO dispersion
was mixed with cysteamine (0.25 mmol) and the mixture was then subject to ultrasonication for
30 min. The homogeneous dispersion was then vigorously stirred overnight at 80 ◦C. The resulting
thiol-modified reduced GO (rGO–SH) powder was centrifuged and washed with distilled water and
ethanol and dried.

GO fillers functionalized with dodecylamine (DA) were prepared by adding DA (0.25 mmol) in
a suspension of GO in ethanol (20 mL solution with of 1 mg mL−1 GO). The mixture was refluxed
overnight at 90 ◦C while stirring. To remove the physically adsorbed DA, the DA modified powder
(GO–DA) was centrifuged, washed with ethanol and dried.

Silica nanofibers were fabricated by electrospinning a sol–gel precursor solution. Tetraethyl
orthosilicate (TEOS, 1.6 mL) was dissolved in a solution of polyvinylpyrrolidone (0.675 g of PVP,
Mw = 1,300,000 g/mol,) in ethanol (15 mL) and hydrochloric acid (0.1 mL of 2 M HCl). The solution was
electrospun at flow rate of 30 µL/min and at a voltage of 16 kV. The PVP/silica nanofibers were collected
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on the collector that were kept at 15 cm from the needle tip. The resulting nanofibers were dried at
80 ◦C for 12 h. Silica nanofibers were obtained after calcination at 650 ◦C for 12 h. The prepared silica
nanofibers were ground with a mortar and pestle and then were modified with triethoxy(octyl)silane.

Composites of SBR (Mw ~100,000 g/mol) filled with GO (4 wt.%) and SBR filled with rGO–SH
(4 wt.%) were prepared by mechanical mixing. A Brabender mixer was used for the mixing of the SBR
composites. The temperature of the mixer was 110 ◦C and the rotor speed was 90 rpm. SBR composites
filled with GO–DA (4 wt.%) and octylsilane modified SnFs (15 wt.%) were prepared by solution
mixing. The octylsilane modified SnFs and the GO–DA fillers were dispersed and exfoliated in
toluene by ultrasonic agitation for 0.5 h. The resulting suspension was mixed with SBR that was
dissolved in toluene. The SBR composite mixture was homogenized using a shear mixer at 9000 rpm
at ambient temperature for 0.5 h and thereafter it was purred into vigorously stirred methanol to
coagulate. The precipitate was retrieved by filtration and was dried in a vacuum oven at 80 ◦C for
3 days. SBR composites were compression-molded at 210 ◦C under 4 tons for 20 min. The mechanical
properties of the GO and SnF composites were compared to an SBR composite that was filled with
9 wt.% non-functionalized silica nanoparticles (SBR/SnP). The silica nanoparticles were prepared using
a sol–gel method and their size was 30–50 nm [24]. Silica nanoparticles are common reinforcement
filler for the SBR and they were used for comparison against the GO and SnF fillers. The SBR/SnP
composite was prepared using the same procedure that was used for the preparation of the other
mechanically mixed composites. All SBR composites studied herein were not crosslinked. SBS–GO
composites (SBS; Mw ~140,000 g/mol, styrene content ~30 wt.%) were prepared by solution mixing
according to the procedure used for the liquid mixing of the SBR composites. The SBR composites
were compression-molded in a cast (80 × 80 × 1 mm) at 150 ◦C with 4 tons for 20 min. Composites
were prepared at 1, 3, 5 and 10 wt.% GO.

X-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) techniques were used to
characterize the surface chemistry of the functionalized filler material. Transmission electron microscopy
(TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), dynamic mechanical
analysis (DMA), tensile, nanoindentation, thermal conductivity and Taber abrasion testing were used
to study the properties of the composites. Samples were prepared for SEM and TEM measurements.
For the SEM measurements, samples were sputtered with gold using a Cressington sputter coater.
The sputtered samples were mounted on carbon tape. Measurements were carried out on a Zeiss
Merlin microscope. For the TEM measurements, thin samples were incorporated into epoxy resin.
A Leica microtome was used to slice thin sections that were mounted on lacey carbon copper TEM
grids. Measurements were carried out on a Hitachi HF3300 operated at 300 kV. Details on the
experimental setups are provided elsewhere [25–28]. The TGA measurements were performed in a
nitrogen environment. The heating rate was 10 ◦C/min. The heating rate for the DMA measurements
was 5 ◦C/min.

3. Results and Discussion

3.1. SBR Composites

XPS was used to analyze the surface composition of the cysteamine-functionalized GO fillers.
The samples were mounted onto double-sided tape and introduced into the XPS instrument through
a vacuum-pumped load-lock. Survey scans were acquired to determine the elements present on
the surface of the fillers. In order to access the reproducibility of the functionalization process,
two functionalized rGO–SH samples were measured. These samples are encoded as rGO–SH-1 and
rGO–SH-2. The survey scans and the overall surface composition according to the survey data are
shown in Figure 1. The predominant elements on the surface of the samples are C, O, N, and S.
The samples also showed trace amounts of F and Si. A significant amount of S and N was incorporated
on the surface of the cysteamine-functionalized samples as compared to the pristine GO. The rGO–SH-1
and rGO–SH-2 samples have very similar surface composition. The functionalized samples were
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partially reduced. The O content was reduced to 16–18 at. % as compared to approximately 26 at. % in
the pristine GO sample.
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Figure 1. XPS survey scans and the overall surface composition of the graphene oxide (GO) and reduced
graphene oxide functionalized with cysteamine (rGO–SH). Two functionalized rGO–SH samples were
measured. They are designated on the plot as rGO–SH-1 and rGO–SH-2. The peaks at approximately
980 and 1200 eV are the oxygen and carbon O–KLL and C–KLL Auger peaks, respectively.

Core level spectra were acquired for the elements identified in the survey scans. The C 1s, O 1s,
S 2p, and N 1s data along with the peak fit results for the GO and rGO–SH-2 samples are shown in
Figure 2. The spectra of the rGO–SH-1 and rGO–SH-2 samples are similar and therefore only the
rGO–SH-2 sample is presented herein. Four or five peaks were used to fit the C 1s spectra. One for each
C (sp2) and C (sp3); one peak for the overlapping C–O/C–N/C–S bonds (only C–O was observed in
GO); one peak for the C=O (only observed in rGO–SH-1 and rGO–SH-2); and another for the O=C–OH.
Two peaks were used to fit the O 1s. One for the O–C and another for the O=C. When N was present,
two peaks were used for fitting. One at ~399 eV assigned to the aniline–nitrogen and another smaller
feature shifted to higher binding energy was assigned to a protonated form of aniline. S (trace amount
from the oxidation process) was present in GO in the oxidized form of SOx (binding energy ~ 167 eV).
In the rGO–SH-1 and rGO–SH-2 samples, the S was primarily found to be bonded to carbon (C–S–H,
binding energy ~ 163 eV). The percent of each component is shown in Table 1.

According to the H–S–C values in Table 1, the cysteamine functionality on the rGO surface is
approximately 3.4–3.7 at. %. The incorporated thiol (–SH) groups can promote the dispersion of the
fillers by forming covalent bonds with the elastomer matrix. The increase in the interlayer spacing
between the GO layers due to the intercalated cysteamine groups can also reduce the electrostatic
interactions between the GO planes and assist the dispersion of the filler material in the SBR matrix.
The XRD patterns of the GO and rGO–SH are shown in Figure 3. The basal plane d-spacing according to
Bragg’s law is 6.7 and 8.0 Å for the GO and rGO–SH, respectively. The d-spacing slightly increased due
to the intercalated functional groups [29,30] despite the O reduction in the rGO–SH, which is expected
to result in stronger π–π stacking interactions and a decrease in the d-spacing [31]. The 2θ value of
the peak that corresponds to the intercalated cysteamine is comparable to the 2θ value reported in
the literature for partially reduced graphene oxide modified with cysteamine [32]. The broad peak
at 22◦ for the rGO–SH sample in Figure 3 can be attributed to the thiolation and reduction of the
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GO surface [26,33]. The high intensity of the peak indicates a high thiolation degree which is in
good agreement with the surface composition according to the XPS analysis. The peak at 28.6◦ in the
rGO–SH spectra is due to the reduction of the GO. The position and shape of this peak depends on the
reduction process [34,35].Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 18 
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Table 1. Surface composition of the GO, rGO–SH-1 (SH-1), and rGO–SH-2 (SH-2) samples according to
the core level spectra analysis.

Name GO
at.%

SH-1
at.%

SH-2
at.%

C (sp2) 7.9 43.3 39.6

C (sp3) 34.7 4.5 8.7

C-O/C-S/C-N 24.2 18.0 19.0

O=C-OH 6.0 1.3 1.8

C=O 0.0 57.7 6.6

O-C 22.3 8.6 11.4

O=C 3.5 9.5 5.0

S-O 0.2 0.5 0.5

H-S-C 0.0 3.4 3.7

N-Aniline 0.0 2.5 2.5

N-Aniline+ 0.0 0.7 0.6

Si-O 1.2 2.1 0.8
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indicated on the plot.

The electrospun silica nanofibers are shown in Figure 4. The concentration of the polymer and
precursor solution as well as the electrospinning parameters were optimized to obtain continuous and
uniform fibers without the formation of particles and bead-like and structures [36]. The diameter of the
calcined fibers is less than 400 nm. XRD measurements (not shown here) were performed to confirm
the amorphous phase of the silica fibers. The fibers were ground (Figure 4e,f) and functionalized with
triethoxy(octyl)silane to better disperse in the SBR matrix. Their high aspect ratio is anticipated to
result in stronger interfacial adhesion between the fibers and the elastomer and therefore to better
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improve the mechanical properties of the composite elastomers compared to the elastomers filled
with spherical silica particles [37,38]. To predict the tensile properties of fiber reinforced composites,
several models have been proposed [39–42]. According to the equation developed by Cox [31] and
later modified to include randomly oriented fibers [32,34,43], the correlation between the fiber aspect
ratio and the tensile modulus of the composite, Yc, is given by

Yc =
(
nonlY f −Ym

)
V f + Ym (1)
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Figure 4. SEM images of the electrospun silica nanofibers. (a,b) polyvinylpyrrolidone (PVP)/silica
nanofibers, (c,d) silica nanofibers after calcination at 650 ◦C for 12 h, and (e,f) ground silica nanofibers.

In the above equation, Ym is the modulus of the matrix, V f is the volume fraction of the fibers,
no is the orientation factor of the fibers (with values ranging between 1 for aligned and 1/5 for the
randomly oriented fibers) and nl is the length efficiency factor which is given by

nl = 1−
Tanh

(
αl
D

)
αl/D

(2)

where:

α =

√
−3Ym

2Y f lnV f
(3)

In Equation (2), l and D represent the length and diameter of the fiber, respectively. Based on the
Equations (1)–(3), Coleman et al. [34] pointed out that fibers with a high aspect ratio are required to
reinforce the modulus of the composite matrix. The length efficiency factor must be approximately
1 and the ratio l/D > 10. Similar equations can also be used to model the tensile strength of fiber
composites [34]. The high aspect ratio of the synthesized SnFs is associated with the l and D values
which are several micrometers (after they were ground) and less than 400 nm, respectively. However,
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the ground process that was performed to prevent the formation of large aggregates of entangled fibers
during the mixing makes difficult the precise control of their length.

In addition to the expected improvements due to the high aspect ratio, the nanometer size
diameter of the silica fibers is also very important in order to reinforce the mechanical properties of the
composites. The tensile strength and modulus are not intrinsic material properties. They depend on
the size and geometry of defects that are formed during the material fabrication. In order to explain
the discrepancy between the theoretically predicted and the significantly lower experimental values,
Griffith introduced the effective stress which is the applied stress on the defect points [44,45]. It was
shown that the fracture strength, σ f , can be expressed as

σ f =
Kc

(πλ)1/2
(4)

where Kc is the fracture toughness and λ is the defect size. The above relation indicates that the
strength of the fibers is inversely proportional to the square root of the defect size. Since the size of
the defects decreases when the fiber diameter is decreased, it is apparent that the tensile properties
of the silica nanofibers will be superior compared to the properties of fibers with a micrometer-size
diameter. Silica nanowires, 100 nm in diameter, have been reported to demonstrate Young’s modulus
value approximately 50 GPa [46].

SBR composites were fabricated using two mixing techniques. The SBR/GO and SBR/rGO–SH
samples were prepared using mechanical mixing. The SBR/GO–DA and SBR/SnF/GO–DA samples
were prepared using solution mixing followed by coagulation (rapid precipitation of the SBR composite)
to prevent the agglomeration of the fillers. Modification of the SnF and GO fillers with hydrophobic
alkyl groups assisted the dispersion and liquid mixing of the fillers with the SBR. The TGA weight
loss curves of the composite samples are shown in Figure 5. The plateau values at a temperature
higher than 500 ◦C indicate the filler content. According to the TGA, the GO and functionalized GO
content is approximately 3.5 wt.% and the overall SnF and GO–DA content is approximately 19.1 wt.%.
Both plateau values are in good agreement with the filler loadings, which were 4 wt.% for the GO
fillers ad 15 wt.% for the silica nanofibers. The TGA thermograms at temperatures lower than 250 ◦C
clearly show that all samples are thermally stable. Thermal degradation is not expected during the
mechanical mixing of the composites at 110 ◦C.

Representative TEM and SEM images of the composites are shown in Figures 6 and 7, respectively.
The mechanical mixing was not adequate to exfoliate the GO and rGO–SH platelets in the SBR matrix.
Aggregates of the assembled GO and GO–SH layers are shown in Figure 6. Similar results were
obtained from the SEM images of the SBR/GO cross-section (not shown here) that indicated large GO
aggregates. TGA showed a consistent weight percent content for all composites that can be attributed
to an even filler distribution through the entire bulk phase of the elastomer. However, a uniform
dispersion of the fillers in the nanoscale is imperative to achieve robust polymer–filler interfaces and
improve the such as mechanical, electrical, and thermodynamic properties [19,47–50]. Liquid mixing
has shown significant advantages in the exfoliation of the GO layers [51,52]. The SEM images of
the SBR/SnF/GO–DA cross-section in Figure 7 show a good dispersion for both fillers. This hybrid
filler configuration combines the synergistic improvements of fillers with different geometries and
complementary properties. The GO fillers have good interfacial adhesion with the styrene elastomer
and can provide mechanical reinforcement as well as increase the thermal conductivity of the composite.
However, the high surface area of the GO and the strong interaction between the GO layers limit the
amount of filler material that can be exfoliated and effectively dispersed into the elastomer without
forming large aggregates. In Figure 7, it is clearly shown that the GO nanoplatelets are uniformly
dispersed through the entire cross-section even though the GO content is only 4 wt%. The addition of
SnFs (15 wt.%) allowed the further reinforcement of the composite while maintaining a good dispersion
for both filler materials.
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The storage modulus values in the temperature range of −80–80 ◦C according to the DMA
measurements are shown in Figure 8a. The heating rate was 5 ◦C/min. For comparison, the values of the
SBR/SnP composite are also included. The mechanically mixed SBR/GO and SBR/rGO–SH composites
show very similar modulus values over the entire temperature range (Figure 8a). At temperatures
lower than −40 ◦C, their storage modulus values increased by approximately 44% compared to that of
the SBR/SnP composite. Despite the significantly lower GO content (4 wt.%) compared to the silica
nanoparticle content (9 wt.%), the better reinforcement of the GO fillers can be attributed to their higher
surface area and their better interfacial adhesion with the SBR. The SBR/GO–DA which was prepared
using a liquid mixing technique showed significant improvements compared to the mechanically
mixed composites. The storage modulus improved by approximately 60% for temperatures lower than
−40 ◦C. The high temperature plateau values (higher than 20 ◦C) were also increased by nearly 200%.Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 18 
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The hybrid composite SBR/SnF/GO–DA showed the best reinforcement results. The synergistic
improvements between the two different fillers GO–DA and SnF resulted in an approximately 97
and 80% additional increase in the storage modulus for temperatures lower than −40 ◦C and higher
than 20 ◦C, respectively, compared to the SBR/GO–DA composite. Such high storage modulus values
are comparable to those of crosslinked SBR–silica composites (not presented herein). The chemical
crosslinking of the composites and the optimization of the crosslinking density requires further
investigation and was not studied in this work.

Similar dependencies are also shown in the tanδ values of the composites in Figure 8b. The position
of the peak maximum, tanδmax, is associated with the glass transition temperature (Tg). Two relaxation
mechanisms contribute to the tanδ of the composites. The main peak which is around −32 ◦C for all
composites, except for the hybrid composite where the tanδmax is shifted to approximately −27 ◦C,
is associated with the Tg of the bulk SBR phase. The second contribution appears as a shoulder
at higher temperatures. It can be attributed to a slower relaxation mechanism that is associated
with the glass transition of an interfacial SBR layer that is attached to the surface of the fillers and
therefore is characterized by slower dynamics [53,54]. This interfacial relaxation process is typical for
composite polymeric systems and can be a measure of the polymer–filler interfacial strength. A strong
polymer–filler interaction will result in a polymer interfacial layer that is adsorbed (less mobile) on
the filler surface and therefore to a robust polymer–filler interface. The composite with the highest
interfacial Tg is the SBR/SnF/GO–DA followed by the SBR/GO–DA and SBR/rGO–SH. This interfacial
relaxation is also evident in the storage modulus as the slope change in the modulus values in the
temperature range from −30 to 0 ◦C, that is following the abrupt decrease in the modulus values due
to the glass transition mechanism (in the temperature range from −40 to −30 ◦C). The shift of the
Tg towards higher temperatures indicate an improved interfacial adhesion between the SBR and the
surface of the fillers due to their better dispersion. This is also shown in the intensity of the tanδ peak.
The tanδmax values are lower for the SBR/SnF/GO–DA and SBR/GO–DA composites due to the less
mobile SBR layer that is adsorbed on the surface of the fillers [55]. The maximum value as well as
the integrated area of the tanδ peak are associated with the volume fraction of the adsorbed SBR [54].
For elastomers that are designed for tire manufacturing, the tanδ value at 60 ◦C is typically used as
an indicator for the rolling resistance. The tanδ values for all composites at 60 ◦C are low and range
between 0.16 and 0.18.

3.2. SBS Composites

SBS composites were prepared at 1, 3, 5, and 10 wt.% GO using a liquid mixing for the GO
fillers and the SBS elastomer. The TGA curves are shown in Figure 9. The plateau values are in good
agreement with the GO loadings of the composites. The mechanical properties were evaluated using
tensile and nanoindentation measurements. The results are summarized in Figure 10. The modulus of
the unfilled SBS is approximately 27 MPa which is in good agreement with the results reported in the
literature for SBS with similar styrene content [56]. All composites showed notable improvements.
A 3.7-fold increase is shown for the maximum stress (before failure) of the 5 wt.% GO composite
compared to the unfilled SBS.

Further increase in the GO content did not result in additional improvement and the maximum
stress value of the 10 wt.% GO is similar to that of the 5 wt.% GO. This behavior can be associated with
the formation of defects due to the GO agglomeration. The 10 wt.% GO composite is characterized by
the highest Young’s modulus. A 12-fold increase is shown in the modulus values compared to the
unfilled SBS. The tensile modulus values are comparable (within the error bars) with the modulus
values that were obtained using nanoindentation measurements. The increase in the modulus values
of the composites is almost linear for loadings up to 5 wt.%. An abrupt increase is shown for the
10 wt.% composite which is more than double compared to the modulus value of the 5 wt.% composite.
This non-linear behavior can be associated with the increased rigidity (brittleness) of the 10 wt.%
composite. The high GO loading increased the amount of the elastomer that is being adsorbed on the



Nanomaterials 2020, 10, 1682 12 of 17

filler surface and is thus less mobile. The increased rigidity can improve the abrasion resistance of
the elastomer, however the GO loading must be tailored depending on the application in order not to
compromise the viscoelastic properties of the composite elastomer.
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Surface abrasion testing was performed on the unfilled SBS and the 10 wt.% GO composite
elastomer using a Taber abrasion tester equipped with two abrading wheels (CS-10) that were rotating
on the sample’s surface at 60 rpm. SEM images of the abraded surfaces after 100 abrading cycles
are shown in Figure 11. The surface of the unfilled SBS was abraded significantly. Fragments of the
elastomer were detached and were agglomerated on the surface. The composite elastomer did not
exhibit significant abrasion and only superficial streaks can be observed on the surface. The strong
interfacial adhesion between the elastomer and the GO fillers improved the abrasion resistance of the
composite elastomer.
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3.3. Thermal Conductivity

The thermal conductivity values of the SBR and SBS composites are summarized in Figure 12.
The unfilled SBR has the lowest value which is 0.17 W/m·K. Among all SBR composites, the highest
increase with respect to the unfilled SBR was for the SBR/GO–DA and was 56%. The hybrid composite
showed a slightly lower increase (50%) due to the incorporation of the thermal insulating SnFs.
The SBR/GO and SBR/rGO–SH composites that were prepared using mechanical mixing showed a
somewhat lower thermal conductivity which were 47 and 44%, respectively. Despite the marked
differences in the mechanical properties between the composites prepared by mechanical and liquid
mixing (Figure 8), the improvement in the thermal conductivity of the latter is not more than 10%.
The filler dispersion and the interfacial adhesion with the elastomer have a significant impact on
the reinforcement of the composites. However, the thermal conductivity is more dependent on the
formation of percolating paths. The latter can be reached at low weight percent loadings due to the
high surface area of the GO fillers even though they are not fully exfoliated. The thermal conductivity
of the unfilled SBS is 0.2 W/m·K (18% higher compared to the unfilled SBR). The SBS composites
exhibit a similar increase in the thermal conductivity compared to the respective SBR composites.
For example, the SBS filled with 3 wt.% GO is characterized by a 59% increase compared to the unfilled
SBS, whereas the respective increase for the SBR filled with 4 wt.% GO-DA is 56%. The composite
with the highest thermal conductivity is the SBS filled with 5 wt.% GO. Its thermal conductivity value
is 0.38 W/m·K and corresponds to a 86% increase compared to the unfilled SBS. The SBS filled with
10 wt.% GO was brittle due to the high GO content and was not studied further.
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4. Conclusions

Styrene-based elastomer composites with GO and SnF fillers were synthesized. The surface of
the GO fillers was modified using two functionalities: cysteamine functionality to introduce sulfur
groups and form covalent bonds with the SBR matrix; and dodecylamine functionality to introduce
hydrophobic groups and allow the liquid mixing of GO–DA and SBR in toluene. Oxygen reduction
took place simultaneously during the cysteamine functionalization. The oxygen content was reduced
from approximately 26 at.% in the pristine GO to 16–18 at.% in the cysteamine functionalized GO.
The intercalated cysteamine increased the basal plane d-spacing of the GO by 4.5 Å. The SBR composites
filled with rGO–SH and GO–DA were prepared using mechanical and liquid mixing techniques,
respectively. The storage modulus of the SBR/GO–DA composite increased by approximately 60%
for the temperatures lower than −40 ◦C and nearly 200% for the temperatures higher than 20 ◦C
compared to the SBR/rGO–SH. This improvement is associated with the better filler dispersion and
therefore the better interfacial adhesion between the GO and the SBR. The latter is also evident by
the shift towards higher temperatures of the relaxation mechanism that is associated with the glass
transition of the interfacial SBR layer. Synergistic improvements due to the complementary properties
of the GO–DA and SnF fillers were achieved in the hybrid SBR/SnF/GO–DA composite. The storage
modulus further increased by approximately 97% and 80% for the temperatures lower than −40 ◦C
and higher than 20 ◦C, respectively, compared to the SBR/GO–DA composite. SBS composites were
prepared at 1, 3, 5, and 10 wt.% GO. The maximum stress and modulus values increased almost
linearly for the weight loadings up to 5 wt.%. The SBS 5 wt.% GO showed a 3.7-fold increase in the
maximum stress and a 6-fold increase in the modulus compared to the unfilled SBS. Further increase
in the GO content to 10 wt.% resulted in the increased rigidity of the composite. The increase in the
thermal conductivity of the SBR and SBS composites with comparable GO weight percent was similar.
The thermal conductivities of the composites were significantly higher than the thermal conductivities
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of the respective unfilled elastomers. The highest value was 0.38 W/m·K for the SBS filled with 5 wt%
GO and corresponds to an 86% increase with respect to the unfilled SBS.
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