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Abstract

Background: Grading schemes for breast cancer diagnosis are predominantly based on pathologists’ qualitative assessment
of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with
features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear
structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear
grading criteria.

Methodology: We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to
quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or
malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells
with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic
resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and
nuclear structure.

Principal Findings: We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell
and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume
ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density
and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger
textural variations than metastatic cell nuclei. At p,0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed
descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically
differentiated the fibrocystic from the metastatic cell populations.

Conclusions: Our results provide a new perspective on nuclear structure variations associated with malignancy and point to
the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and
specific nuclear grade classification in breast cancer diagnosis.
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Introduction

Breast cancer is a highly heterogeneous disease characterized by

several clinical and molecular variations [1–3]. It presents a major

health concern worldwide and remains the most common cancer

among women [4] despite decades of extensive research. In the

United States alone, about 232,000 newly diagnosed cases and

39,500 deaths are estimated for the year 2011 [5]. Accurate

diagnosis of suspicious masses is critical to early detection and

management of breast cancer.

Histopathological assessment of nuclear structure by brightfield

microscopy following the staining of tissue sections with hema-

toxylin and eosin (H&E staining) remains the definitive clinical

diagnostic approach to determine malignancy. Image contrast

arises, in part, due to hematoxylin binding to acidic functional

groups in the cell, causing preferential absorption by chromatin

and the nuclear envelope. Along with tissue architecture,

pathologists qualitatively assess features such as nuclear size,

shape, nucleus-to-cytoplasm ratio, and chromatin texture. Factors

such as focal plane selection, sample orientation, and the
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bisectioning of cells during sample preparation may bias the

outcome of the diagnosis due to obscuration or incomplete feature

detail.

Computerized 2D image analysis enables quantification of

nuclear morphology from digital microscopy images. Computer-

ized nuclear morphometry and its relevance as a biomarker for

breast cancer detection and progression have been evaluated in a

number of studies [6–18], but limitations inherent to 2D analyses

of histological specimens often produced equivocal mappings

between cancer grade and its associated morphometrics. Intui-

tively, it would seem that cell classification accuracy and, thus,

clinical diagnostic power would be increased by analyzing 3D

instead of 2D imagery. 3D cell imaging modalities such as confocal

microscopy have been applied for nuclear morphometry [19–21].

However, the major drawback of such techniques is the generation

of pseudo-3D images by stacking parallel 2D image slices (z stacks).

With pseudo-3D imagery, computational precision is compro-

mised by technical limitations inherent to the imaging technology,

including inferior spatial resolution in the z-axis. Consequently,

the accuracy of measurements becomes orientation dependent.

Accurate quantitative characterization of nuclear structure by

applying 3D analyses of high contrast, high resolution 3D imagery

with isometric resolution would facilitate better assessment of

morphological changes associated with malignancy. The Cell-CTH
imaging platform is based on absorption-mode micro-optical

projection computed tomography [22], uses a 24-bit color camera,

and enables 3D imaging of biological cells with an isometric

resolution of 350 nm. Its merit for precise and sensitive cytometry

has been demonstrated previously [23].

We used the Cell-CTH platform (VisionGate, Inc., Phoenix, AZ)

followed by automated 3D image analysis to investigate the

variations in 3D nuclear structure and coarse chromatin architec-

ture in human breast cancer using three well-characterized cell lines

derived from normal, fibrocystic or metastatic carcinoma human

breast epithelium. We computed forty-two 3D metrics that describe

the morphology and texture of the nuclei, and determined the

discriminatory power of features to distinguish among cell types.

Nuclear shape analysis revealed four shape categories present in all

three cell types, and statistical analysis of nuclear morphometrics

revealed several statistically significant variations between the

normal and abnormal cells that may provide new perspectives for

diagnosis. The inherent intra- and inter-population heterogeneity

among cells and cell types is reflected in our results. This study is the

first comparative quantitative analysis of 3D nuclear architecture in

a mammary epithelial cell model.

Materials and Methods

Cell culture
The normal human mammary epithelial cell line HME1-

hTERT (referred to as HME1, herein) was procured from

American Type Culture Collection (ATCC, Manassas, VA). It

was originally derived by reduction mastectomy from a patient

without evidence of cancer [24]. The non-tumorigenic MCF-10A

and metastatic MDA-MB-231 cell lines were provided by Dr.

Thea Tlsty at the University of California, San Francisco, USA.

MCF-10A cells were derived from a patient with extensive

fibrocystic disease [25]. The MDA-MB-231 cell line was derived

from pleural effusion of a patient with metastatic adenocarcinoma

[26]. HME1 and MCF-10A cell lines are near diploid but the

MDA-MB-231 line is near triploid. Genomic profiles of the

abnormal cell lines include a homozygously deleted p16 locus and

wild-type p53 in MCF-10A, and deleted p16 and mutant p53 in

MDA-MB-231 [27].

We cultured HME1, MCF-10A, and MDA-MB-231 cells

according to supplier protocols. Cells were cultured in T75 tissue

culture flasks (Corning, Corning, NY) to approximately 80%

confluence, at which time they were trypsinized, centrifuged at

113 g for 3 minutes, and resuspended in 2 mL of appropriate

medium. The cell viability was determined to be at least 95%

using the CountessH cell counter (Invitrogen, Carlsbad, CA).

Henceforth, we refer to the HME1 cell line as ‘normal’ and to

the MCF-10A and MDA-MB-231 cell lines as ‘abnormal’.

3D imaging using Cell-CT
A detailed description of this procedure is available elsewhere

[28]. Briefly, we fixed the cells for one hour at room temperature

with CytoLyt (Cytyc, Marlborough, MA) and smeared them onto a

clean microscope glass slide as a preparatory substrate (VWR, West

Chester, PA) coated with 0.01% Poly-L-Lysine (PLL; Sigma Aldrich,

St. Louis, MO). Hematoxylin and eosin solutions were prepared with

filtered tap water. We stained the cells for 1–2 minutes (cell line

dependent) in aqueous 6.25% weight/weight (w/w) Gill’s hematox-

ylin (Electron Microscopy Sciences, Hatfield, PA) solution, then

counter-stained in bluing reagent (Fisher Scientific, Fair Lawn, NJ)

for 30 seconds after washing three times with filtered tap water. After

three additional washes with filtered tap water, we stained the cells

with 1% w/w eosin (Electron Microscopy Sciences, Hatfield, PA).

We then dehydrated the cells through an ethanol series (50%, 95%,

and 100%) and two washes with 100% xylene. Lastly, we embedded

the stained cells into a carrier gel (SmartGel, Nye Lubricants,

Fairhaven, MA) and loaded the resulting cell-gel suspension scraped

from the glass slide into a 100-mL glass syringe (Hamilton, Reno,

NV). To ensure that images reflect cell structure and not staining

artifact, it is critical that cells are optimally stained.

We imaged cells serially with the Cell-CTH instrument by

flowing the cells suspended in carrier gel through a rotating glass

capillary housed in a specialized imaging cartridge. For each cell,

we generated a volumetric image by acquiring 500 projection

images taken at angular intervals of 0.72 degrees around the cell

and subjecting these projection images to mathematical recon-

struction algorithms [29]. Prior to reconstruction, we de-noised

and aligned the projection images to remove pattern noise artifacts

and to compensate for mechanical displacement and run-out of

the capillary. We imaged 150 interphase cells from each cell line

and used the generated volumetric images for 3D feature

extraction and morphometric analyses.

3D nuclear morphometry
For 3D morphometry, we quantified cell and nuclear structure

with automated 3D image processing algorithms applied to

reconstructed monochrome cell images [28]. We de-noised the

image, segmented the volumes of interest (VOIs) including the cell,

the nucleus, nuclear compartments and the nuclear DNA, and

computed a total of forty-two 3D morphological and textural

descriptors (features) from the segmented VOIs (see Table 1). To

ensure accurate feature computation, a trained operator visually

cross-validated the automatically segmented VOIs using VolView

software (version 3.2, Kitware, Clifton Park, NY). Computation of

these features was adapted from Doudkine et al. [30], wherein the

feature definitions are provided.

Textural descriptors provide a means to characterize density

variations within the nuclei. We computed descriptive, discrete

and Markovian texture descriptors (Table 1). Descriptive texture

features statistically characterize the nuclear content based on the

nuclear voxel density histogram. Discrete texture features reflect

differences within and between nuclear regions of specific optical

density range. To compute these features, we divided the nuclear

Isotropic 3D Nuclear Morphometry in Breast Cancer

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e29230



volume into three distinct regions representing low, medium and

high optical density. The thresholds separating low- and high-

density regions from medium-density regions were set at a single

standard deviation around the mean nuclear density. To quantify

the distribution (margination) of connected coarse chromatin

regions within the nucleus we determined the center (location in

3D space) of low-, medium-, and high-density chromatin clumps

by computing their density-weighted center of gravity. Nucleoli

are included in the high density region. Markovian features

characterize the directional organization of nuclear content in 3D

space and can be used to investigate optical density variations at

different granularities within the nuclear volume. We used the co-

occurrence matrix-based method developed by Haralick, et al.

[31] to compute the Markovian features. We examined nuclear

density variations over all twenty-six possible orientations

(corresponding to the 26-voxel neighborhood) in discrete 3D

space at three length scales: 0.44, 0.74, and 1.5 microns. The 0.74-

micron length scale corresponded to the smallest average nucleolar

width (occurred in MDA-MB-231 nuclei). 1.5 microns was the

largest average nucleolar width (occurred in HME1 nuclei). The

0.44 micron length scale was chosen to quantify textural variations

at the finest possible length scale.

We used VolView software to produce 3D renderings of the

reconstructed cell imagery. These renderings, shown in the figures

and supplemental movies, are useful when visually checking the

segmentation results, and for providing an interactive means for

data exploration and shape or texture evaluation. All segmentation

and computations were performed on the reconstructed grayscale

data. We performed 3D shape classification on the segmented

nuclei to investigate shape heterogeneity within a cell type and

variations among the cell types.

Statistical analysis
We used Origin software (version 8.0, OriginLab, North-

ampton, MA) to produce histograms that convey the differences in

morphometric feature distributions among the three cell types. For

ease of visualization, we connected the centers of each histogram

bin with cubic splines. We used Origin and Matlab (version 2010a,

Mathworks, Natick, MA) for our statistical analyses. We applied

the Shapiro-Wilk test to test the normality of the feature data.

Based on the outcome of the normality test, we appropriately

applied ANOVA (for normally distributed feature data) and

Kruskal-Wallis tests (for non-normal feature distributions) to

investigate the ability of our computed 3D features to distinguish

among the three cell populations. We computed p-values and

tested for significance after correcting for multiple comparisons

using Scheffe’s method.

Results

Mammary epithelial cell nuclei exhibited four distinct 3D
nuclear morphologies

The nuclei from all three cell types could be classified into four

distinct nuclear shape categories. These are illustrated as surface-

shaded 3D renderings in Figure 1 (see Figure S1 for more

detailed illustrations). In contrast to results of prior studies on

these cell lines based on 2D or pseudo-3D imagery, we observed

four distinct nuclear shape categories. Nuclei in category 1 had a

marked concavity and were slender. Nuclei in category 2 had a

slight concavity and were bulky. We call shape categories 1 and 2

the mushroom cap morphology. Category 3 nuclei were overall

convex. Category 4 included nuclei that had an irregular,

distorted shape. All 450 segmented nuclei from the three cell lines

Table 1. List of features.

Feature type (number) Features

Morphological (9) cell volume, nuclear volume, nucleus to cytoplasm volume ratio, number of nucleoli, total nucleolar volume, mean
nucleolar volume, mean nucleolar margination (from nucleus center), variance in nucleolar margination, nuclear
sphericity

Texture (33) Descriptive texture (5) integrated optical density, mean optical density, variance in optical density, skew in optical density, kurtosis in optical
density

Discrete texture (24) number of objects in low, medium and high condensation states (3), volume fraction of each condensation state (3),
content (optical density) fraction of each condensation state (3), smoothness of transition between condensation
states (3), compactness of each condensation state (4), average distance of voxels in each condensation state from
nucleus center (4), average distance of center of each condensation state from the nucleus center (4)

Markovian texture (4) energy, contrast, correlation, homogeneity

doi:10.1371/journal.pone.0029230.t001

Figure 1. Surface shaded renderings illustrating four nuclear shape categories of human mammary epithelial cells (scale
bar = 5 microns).
doi:10.1371/journal.pone.0029230.g001
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were categorized according to the above four shape categories as

shown in Figure 2. The nuclear shape classification results in

Figure 2 indicated that category 2 (fat mushroom cap with slight

concavity and large minor axis) was the most common nuclear

shape in all three cell lines. MDA-MB-231 nuclei exhibited the

largest fractions of category 4 (irregular) and category 2, and the

smallest fraction of convex shape (category 3). Shape heteroge-

neity within category 4 was greatest in the MDA-MB-231 cell

line. MCF-10A nuclei showed the largest fraction of category 3

and the fewest of category 1. HME1 nuclei showed the largest

overall shape heterogeneity with respect to the four shape

categories (least variation in percentages between the four

categories).

Cell-CT imaging enabled precise structural
characterization of micronuclei and multilobular nuclei in
metastatic adenocarcinoma cells

Figure 3A shows a representative instance of our occasional

observation of distorted, lobulated nuclei in the MDA-MB-231

cells. Observations of similar nuclear shapes have alternately been

described as polylobulated in the literature [32]. Figure 3B shows

typical micronuclei, again an occasional phenomenon observed

only in the MDA-MB-231 cell line. The images (and Movies S1,

S2) reflected the uniquely powerful capability of micro-optical

projection computed tomography to provide useful and effective

visualization and precise quantification of 3D nuclear structure.

2D sectioning of multilobular nuclei or micronuclei could easily

lead to one being mistaken for the other. It is almost impossible to

reliably count nucleoli and quantify their margination from 2D

imagery.

3D nuclear architecture varied from normal to metastatic
but did not consistently correlate with existing nuclear
grades

We observed that the means of morphological parameters such

as cell volume (Figure 4A) and nuclear volume (Figure 4B) increase

in the order: HME1 (normal) , MCF-10A (fibrocystic disease) ,

MDA-MB-231 (metastatic adenocarcinoma). MCF-10A cells,

however, had, on average, the largest nucleus-to-cytoplasm

volume (N/C) ratio (Figure 4C). HME1 nuclei deviated the least

from spherical shape (Figure 4D). The number (Figure 4E) and

average margination of nucleoli – their tendency to be located

proximal to the nuclear membrane - (Figure 4F) was higher in

abnormal cells compared to the control. Most of the few nucleoli

Figure 2. Shape classification of nuclei.
doi:10.1371/journal.pone.0029230.g002

Figure 3. Instances of irregular MDA-MB-231 nuclear morphologies (scale bar = 5 microns). Panel (A) depicts a multilobular nucleus and
panel (B) illustrates a cell with micronuclei. Left images show nuclear surface in blue and cytoplasm in gray, middle images show surface-shaded
renderings of the nuclear volume, and right images depict volume renderings through the nuclear volume. Increasing nuclear density is color coded
from green to red.
doi:10.1371/journal.pone.0029230.g003
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in normal cells were located close to the center of the nucleus.

There was little difference in the total nucleolar volume between

the three cell types (Figure 4G).

The variations in texture features among the cell lines captured

noteworthy differences in patterns of coarse chromatin organiza-

tion. Figure 5 shows a representative rendering of the distribution

of different density regions within the nucleus to illustrate these

textural variations (also see Movies S3, S4, S5). Figures S2, S3, S4

provide quantitative results relating to the texture features. MCF-

10A and MDA-MB-231 cells had significantly higher total nuclear

content than (Figure S2A) but similar mean voxel intensities

(Figure S2B) to HME1 cells. The density variance among nuclear

voxels in abnormal cells was lower than that for normal cells

(Figure S2C). A chromatin clump is defined as a connected region,

or contiguous cluster, of voxels falling within a density range.

Abnormal cell nuclei contained a larger number of clumps (Figure

S2D–F). The difference was more pronounced for the low and

high density than for medium density clumps. Amorphous,

connected medium-density regions often formed the surround

for low- and high-density clumps (islands) of chromatin, especially

in the abnormal cells. This was reflected in the histogram of Figure

S2E. Most cells had one connected, medium density region. As

shown in Figure S2G–I, abnormal cells had slightly lower volume

fraction of low and high density regions compensated by a larger

volume fraction of medium density regions. However, the

differences in volume fractions of the three densities were much

less pronounced than the differences in the numbers of clumps.

The key point which can be deduced from the second and third

rows of Figure S2 is that larger numbers of small low- and high-

density clumps were present in abnormal compared to normal

cells, which had smaller numbers of large clumps. The

margination distributions of the different density clumps (Figure

S3A–C) from the nuclear center of mass indicated that low density

clumps were located peripherally in all cell types. High density

clumps were predominantly close to the nucleus center in normal

cell nuclei, whereas they were distributed somewhat more

peripherally in abnormal cells. Comparison of Markovian texture

feature distributions at the three selected granularity scales showed

that MCF-10A nuclei exhibited the largest variations in density,

MDA-MB-231 nuclei had density variations that are pronounced

at finer scales, and HME1 nuclei also exhibited marked density

variations (see Figure S4A–B). These results are in contrast to the

popular notion that normal cells have a predominantly homoge-

neous nuclear interior. The variations in texture may be attributed

to the transitions between the low-, medium-, and high- density

regions in these nuclei. In contrast to the results from Figure S2D–

Figure 4. Histograms of morphological descriptors. Cubic splines (smooth curves) connect the dots (histogram bin centers).
doi:10.1371/journal.pone.0029230.g004
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F, Markovian feature distributions in Figure S4B suggest that

density variations in nuclear content of metastatic cell nuclei are

less prominent than in the normal cell nuclei. Both these

inferences—that the nuclear interiors of normal cells are not

homogeneous, and that metastatic cell nuclei are seemingly

smoother than normal—can be accounted for by considering the

small size of low- and high-density clumps in abnormal cell types.

Definitive detection or classification based on texture may be

confounded in abnormal cells exhibiting high Markovian similar-

ity (see Figure S4B).

Statistical analyses enabled quantitative cross-validation of these

descriptive assessments of the histogram distributions. The

normality tests confirmed our visual assessment of the non-

normality of a subset of feature data distributions (see Table S1).

Table 2 shows the discriminatory power of the morphometric

features. Using the ANOVA and Kruskal-Wallis tests and

correcting for multiple comparisons, 90% (38/42) features were

discriminatory between HME1 and both MCF10A and MDA-

MB-231. This was reduced to 69% (29/42) of the features when

discriminating between MCF10A and MDA-MB-231.

Discussion

Nuclear morphology and coarse chromatin organization are

altered in cancer cells [32–34]. Computerized technologies that

grade nuclei based on their morphometry have proven a powerful

and objective tool to assess neoplastic progression [15,35–38].

However, the anisotropic resolution inherent to traditional

microscopy techniques precludes precise 3D structural character-

ization. Cell-CT provides the capability to visualize, study and

accurately quantify 3D nuclear structure in individual cells.

We quantified variations in 3D nuclear structure in cell lines

derived from three mammary epithelial cell types: normal, benign

fibrocystic, and metastatic carcinoma. The use of standardized

H&E staining protocols facilitates comparison of metrics comput-

ed in our study with conventional cytopathological assessments.

The results of our analysis provide new perspectives on the

morphological changes that may be associated with malignancy in

breast cancer.

Our study is the first to report the predominant concave

(mushroom cap) nuclear shape in mammary epithelial cells. The

shape heterogeneity that we found in metastatic cell nuclei

reflects the known large nuclear pleomorphism in invasive breast

carcinoma [8]. The observed pleomorphism in normal cell nuclei

is noteworthy and contradicts the conventional wisdom that

normal cell nuclei exhibit little variability in shape. 2D sections

through mushroom cap-shaped nuclei arrayed at random

orientations on a slide would seriously under-represent the

appearance of this distinctive shape, which may be a heretofore

unrecognized characteristic of breast epithelial cell morphology.

The marked shape distortions in metastatic cell nuclei appear to

be indicative of increased ‘malleability’ as suggested by Zink et al.

in [32] and may be linked to their metastatic capabilities. The

shape distortions could also stem from the aneuploidy of the cell

line, but more specific correlations are needed to establish this

association.

The results of our morphometric analyses suggest intriguing

conclusions. The increase in cell and nuclear volumes from normal

to metastatic stage resulted in not-so-prominent differences in N/

C ratio, a widely used metric in cancer detection. While the total

nucleolar volume was similar in all studied cell types, descriptors

such as the number of nucleoli and nucleolar margination toward

the nuclear periphery showed marked variations between the

normal and abnormal cells. Understanding the underlying reasons

behind these trends may reveal insights into the functionality of

nucleoli and its alteration in malignancy. While the increase in

total nuclear content from normal to metastatic cells aligns with

results from the literature about cancer cells having more DNA,

the similarity in mean voxel intensities between the cell lines

(Figure S2B) suggests that nuclear content increases proportionally

with the nuclear size. The increased chromatin clumpiness in

abnormal cells as illustrated in Figure 5, Figure S2D–F, and

Movies S3, S4, S5 supports existing evidence, and may explain, in

part, the observation by cytogeneticists that tumor chromatin has

different properties that result in the characteristic difficulties in

obtaining ‘‘good’’ G-banded chromosome preparations as com-

pared to normal tissues. The observed variations in organization

patterns of low-, medium-, and high-density regions between the

cell types may correlate with transcription activity in these cells.

Margination of high-density clumps in the abnormal and

especially in metastatic cell nuclei suggests likely functional

significance. It could indicate abnormally silenced chromatin.

Probing protein expression in these regions using appropriate

fluorescent markers may provide insights into epigenetic control

mechanisms specifically activated in cancer cells.

The morphological similarity between fibrocystic and metastatic

cells may not have been expected, since MCF10A cells have been

used as controls in several research studies [39,40]. Our statistical

analysis revealed that diagnostically relevant descriptors such as

number of nucleoli, nucleolar size or nucleolar margination

toward the periphery may not be reliable parameters to distinguish

malignant from fibrocystic cells. Larger Markovian texture

variations in MCF-10A nuclei relative to the metastatic nuclei

reflect a clumpier organization of nuclear content in the former,

further confounding the ability of conventional morphological

traits to distinguish these cell types. These findings point to new

perspectives on the morphological changes associated with

malignancy in breast cancer. It might be valuable to investigate

in a future study whether induced over-expression of mutant p53

in the MCF-10A cells has any correlation with these observed

morphological changes.

The variance observed in our morphometric feature distribu-

tions in Figure 4 and Figures S2, S3, S4 emphasizes the value of

single-cell studies that permit quantitative assessment of intercel-

lular heterogeneity. The cell-cell heterogeneity we observed could

Figure 5. Variations in the organization of nuclear content
between normal (left), fibrocystic (middle) and metastatic
(right) mammary epithelial cells (scale bar = 5 microns). Light
gray haze depicts cytoplasm. Nuclear membrane is blue, low density
regions of chromatin are green, moderate density regions are yellow,
high density regions are orange, and nucleoli are magenta. Increased
clumpiness is apparent in abnormal cells, and metastatic cell contains
large number of smaller high-density clumps. Opacity of nuclear
membrane (in blue) has been deliberately decreased to enable viewing
of nuclear interior. Corresponding videos of these renderings are
available in Movies S3, S4, S5.
doi:10.1371/journal.pone.0029230.g005
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be attributed to differences in cell cycle phase. An interesting

extension would be to repeat the studies using synchronized or

sorted cell populations. Working with synchronized or sorted cells

may also provide information about the effects of cell cycle on

nuclear architecture and the concomitant morphological changes

with malignancy. For data analysis, a useful next step would be to

develop classifiers based upon the set of features with the most

discriminatory power to distinguish among the different cell types,

and to assess their generalizability to other tissues types and

pathologies. The efficacy of commonly used classification

Table 2. Discriminatory power of features.

Feature name Significance (p,0.0025, corrected for multiple comparison)

Normal v/s Abnormal Fibrocystic v/s Metastatic

Cell volume Yes Yes

Nuclear volume Yes Yes

Nucleus to cytoplasm ratio Yes Yes

Nuclear sphericity Yes Yes

Number of nucleoli Yes No

Total nucleolar volume No No

Variance in nucleolar volume Yes No

Average nucleolar margination Yes No

Variance in nucleolar margination Yes Yes

Total nuclear content Yes Yes

Mean nuclear content Yes Yes

Variance in nuclear content Yes No

Skew in nuclear content Yes No

Kurtosis in nuclear content Yes Yes

Low density volume fraction Yes No

Medium density volume fraction Yes Yes

High density volume fraction Yes No

Low density content fraction Yes Yes

Medium density content fraction Yes Yes

High density content fraction Yes Yes

Number of low density clumps Yes Yes

Number of medium density clumps Yes Yes

Number of high density clumps Yes Yes

Low density compactness Yes Yes

Medium density compactness Yes No

High density compactness Yes Yes

Medium-high density compactness Yes Yes

Average extinction ratio (low-medium) Yes No

Average extinction ratio (low-high) Yes Yes

Average extinction ratio (low-mediumhigh) Yes Yes

Average distance from nucleus center to low density regions Yes Yes

Average distance from nucleus center to medium density regions No Yes

Average distance from nucleus center to high density regions Yes Yes

Average distance from nucleus center to medium-high density regions Yes Yes

Average centroidal distance from nucleus center to low density regions Yes Yes

Average centroidal distance from nucleus center to medium density regions No No

Average centroidal distance from nucleus center to high density regions Yes No

Average centroidal distance from nucleus center to medium-high density regions No No

Markovian contrast Yes Yes

Markovian correlation Yes Yes

Markovian energy Yes Yes

Markovian heterogeneity Yes Yes

doi:10.1371/journal.pone.0029230.t002
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techniques will require careful evaluation due to the non-normal

feature data distributions.

A frequently cited drawback of cancer research based on

immortalized cells from 2D culture is the absence of the

extracellular matrix (ECM). In epithelial tumors, mutant paren-

chymal cells are embedded in and supported by connective tissue

components and stromal cells. Bound and soluble proteins in the

ECM, together with the connective fibrils, basement membrane

and stromal cells, constitute the tumor microenvironment.

Immortalized cancer cell line model systems may fail to

recapitulate the natural signaling between ECM proteins and

the nucleus. Communication between cancer cells and their

microenvironment is now widely recognized to influence almost

every important mechanism underlying cancer progression –

including gene expression and tissue specificity – and several of the

features relied upon for its diagnosis – including nuclear structure

and chromatin architecture [41]. In spite of these drawbacks, cell

line models of cancer progression provide easily accessible and

readily reproducible means to develop tools, like high resolution

3D imaging, potentially useful for cancer diagnosis, and means to

investigate drugs, potentially efficacious for its cure. We are

pursuing additional research methodologies in efforts to circum-

vent some of the drawbacks of traditional immortalized cell culture

model systems. One is growing cells in 3D culture [42]. A second is

to disaggregate cells from animal or human biopsy specimens,

grow them in primary cultures, and enrich for parenchymal cells

before 3D imaging and analysis.

Genomic architecture drives nuclear structure and coarse

chromatin organization. A wealth of information is now available

about genomic alterations associated with neoplastic progression in

breast cancer [43,44]. Similar information is also available for a

large number of breast epithelial cell lines [45]. However, relatively

little is known about the genetic cues or mechanisms that govern

nuclear organization patterns. A few nuclear matrix proteins

(NMPs) have been shown to have different expression levels in

breast cancer progression [46], and image-based investigations on

the nuclear mitotic apparatus (NuMA) protein distribution in the

nucleus using confocal microscopy are promising [47]. Accurate

expression level quantification and 3D localization of the important

nuclear proteins and their correlations with the measurements made

in this study may reveal useful insights into nuclear organization and

the mechanisms underlying its aberrations in cancer.

This information can be derived by 3D morphometric analysis

of volumetric data generated from fluorescence-mode emission

tomography. Fluorescence-mode cell-CT has the potential to

provide precise spatial arrangement and expression level assess-

ments for nuclear domains such as Cajal bodies, nucleoli,

perinucleolar compartments, dense agglomerations of chromatin-

organizing proteins, and PML bodies. By precisely registered

complementary structural information obtained from absorption-

mode 3D imagery, this data could contribute to more detailed

descriptions of alterations in nuclear structure and understanding

of the mechanisms causing them. We envision that our three-

dimensional approach based on cell computed tomographic

imaging will become a research and diagnostic tool capable of

supplementing existing standard diagnostic procedures with

quantitative, standardized spatial and functional data.

Supporting Information

Figure S1 Volume renderings of four shape categories
(scale bar = 5 microns).
(TIF)

Figure S2 Histograms of textural descriptors. Cubic

splines (smooth curves) connect the dots (histogram bin centers).

a.u refers to arbitrary units.

(TIF)

Figure S3 Histograms of textural descriptors. Cubic

splines (smooth curves) connect the dots (histogram bin centers).

(TIF)

Figure S4 Histograms of Markovian textural descrip-
tors at three granularities. Cubic splines (smooth curves)

connect the dots (histogram bin centers).

(TIF)

Table S1 Outcome of normality tests (Shapiro-Wilk
test).

(DOC)

Movie S1 Multilobulated nucleus of metastatic carcino-
ma (MDA-MB-231) cell type.

(WMV)

Movie S2 MDA-MB-231 nucleus exhibiting micronuclei.

(WMV)

Movie S3 Optical density regions in normal mammary
epithelial cell nucleus (scale bar = 5 microns). Light gray

haze depicts cytoplasm. Nuclear membrane is blue, low density

regions of chromatin are green, moderate density regions are

yellow, high density regions are orange, and nucleoli are magenta.

Opacity of nuclear membrane (in blue) has been deliberately

decreased to enable viewing of nuclear interior.

(WMV)

Movie S4 Optical density regions in fibrocystic
mammary epithelial cell nucleus (scale bar = 5 mi-
crons). Light gray haze depicts cytoplasm. Nuclear mem-

brane is blue, low density regions of chromatin are green,

moderate density regions are yellow, high density regions are

orange, and nucleoli are magenta. Opacity of nuclear

membrane (in blue) has been deliberately decreased to

enable viewing of nuclear interior.

(WMV)

Movie S5 Optical density regions in metastatic mam-
mary epithelial cell nucleus (scale bar = 5 microns). Light

gray haze depicts cytoplasm. Nuclear membrane is blue, low

density regions of chromatin are green, moderate density regions

are yellow, high density regions are orange, and nucleoli are

magenta. Opacity of nuclear membrane (in blue) has been

deliberately decreased to enable viewing of nuclear interior.

(WMV)
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4. Ferlay J, Héry C, Autier P, Sankaranarayanan R (2010) Global Burden of Breast

Cancer. Breast Cancer Epidemiology. pp 1–19.
5. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: The

impact of eliminating socioeconomic and racial disparities on premature cancer
deaths. CA: a cancer journal for clinicians: caac. 20121v20121.

6. Lim CN, Ho BCS, Bay BH, Yip G, Tan PH (2006) Nuclear morphometry in

columnar cell lesions of the breast: is it useful? Journal of clinical pathology 59:
1283–1286.

7. Tan PH, Goh BB, Chiang G, Bay BH (2001) Correlation of nuclear
morphometry with pathologic parameters in ductal carcinoma in situ of the

breast. Modern Pathology 14: 937–941.

8. Pienta KJ, Coffey DS (1991) Correlation of nuclear morphometry with
progression of breast cancer. Cancer 68: 2012–2016.

9. Mariuzzi G, Mariuzzi L, Mombello A, Santinelli A, Valli M, et al. (1996)
Quantitative study of ductal breast cancer progression. A progression index (PI)

for premalignant lesions and in situ carcinoma. Pathology, research and practice
192: 428–436.

10. Kronqvist P, Kuopio T, Collan Y (1998) Morphometric grading of invasive

ductal breast cancer. I. Thresholds for nuclear grade. British journal of cancer
78: 800–805.

11. Hoque A, Lippman SM, Boiko IV, Atkinson EN, Sneige N, et al. (2001)
Quantitative nuclear morphometry by image analysis for prediction of

recurrence of ductal carcinoma in situ of the breast. Cancer Epidemiology

Biomarkers & Prevention 10: 249–259.
12. Mariuzzi L, Mombello A, Granchelli G, Rucco V, Tarocco E, et al. (2002)

Quantitative study of breast cancer progression: different pathways for various in
situ cancers. Modern Pathology 15: 18–25.
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