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Is evolution always gradual or can it make leaps? We examine a
mathematical model of an evolutionary process on a fitness land-
scape and obtain analytic solutions for the probability ofmultimutation
leaps, that is, several mutations occurring simultaneously, within a
single generation in 1 genome, and being fixed all together in the
evolving population. The results indicate that, for typical, empir-
ically observed combinations of the parameters of the evolution-
ary process, namely, effective population size, mutation rate, and
distribution of selection coefficients of mutations, the probabil-
ity of a multimutation leap is low, and accordingly the contribu-
tion of such leaps is minor at best. However, we show that,
taking sign epistasis into account, leaps could become an
important factor of evolution in cases of substantially elevated
mutation rates, such as stress-induced mutagenesis in microbes.
We hypothesize that stress-induced mutagenesis is an evolvable
adaptive strategy.

fitness landscape | stress-induced mutagenesis | epistasis |
purifying selection | positive selection

Avenerable principle of natural philosophy, most consistently
propounded by Leibnitz (1) and later embraced by prom-

inent biologists, in particular Linnaeus (2), is “natura non facit
saltus” (“nature does not make leaps”). This principle then be-
came one of the key tenets of Darwin’s theory that was inherited
by the modern synthesis of evolutionary biology. In evolutionary
biology, the rejection of saltation takes the form of gradualism,
that is, the notion that evolution proceeds gradually, via accu-
mulation of “infinitesimally small” heritable changes (3, 4).
However, some of the most consequential evolutionary changes,
such as, for example, the emergence of major taxa, seem to
occur abruptly rather than gradually, prompting hypotheses
on the importance of saltational evolution, for example by
Goldschmidt (“hopeful monsters”) and Simpson (“quantum
evolution”). Subsequently, these ideas have received a more
systematic, even if qualitative, treatment in the concepts of
punctuated equilibrium (5, 6) and evolutionary transitions
(7, 8).
Within the framework of modern evolutionary biology,

gradualism corresponds to the weak-mutation limit, that is,
an evolutionary regime in which mutations occur one by one,
consecutively, such that the first mutation is assessed by se-
lection and either fixed or purged from the population, be-
fore the second mutation occurs (9). A radically different,
saltational mode of evolution (10, 11) is conceivable under
the strong-mutation limit (9) whereby multiple mutations
occurring within a single generation and in the same genome
potentially could be fixed all together. Under the fitness
landscape concept (12, 13), gradual or more abrupt evolu-
tionary processes can be depicted as distinct types of trajec-
tories on fitness landscapes (Fig. 1). The typical evolutionary
paths on such landscapes are thought to be 1 step at a time,
uphill mutational walks (12). In small populations, where
genetic drift becomes an important evolutionary factor, the
likelihood of downhill movements becomes nonnegligible
(14). In principle, however, a different type of moves on
fitness landscapes could occur, namely, leaps (or “flights”)
across valleys when a population can move to a different area

in the landscape, for example to the slope of a different,
higher peak, via simultaneous fixation of multiple mutations
(Fig. 1).
We sought to obtain analytically, within the population

genetics framework, the conditions under which multimuta-
tional leaps might be feasible. The results suggest that, under
most typical parameters of the evolutionary process, leaps
cannot be fixed. However, taking sign epistasis into account, we
show that saltational evolution could become relevant under
conditions of elevated mutation rate under stress so that stress-
induced mutagenesis could be considered an evolvable adaptation
strategy.

Results
Multimutation Leaps in the Equilibrium Regime. Let us assume
(binary) genomes of length L (in the context of this analysis, L
should be construed as the number of evolutionarily relevant
sites, such as codons in protein-coding genes, rather than the
total number of sites), the probability of single mutation μ <<
1 per site per round of replication (generation), and constant
effective population size Ne >> 1. Then, the transition
probability from sequence i to sequence j is (equation 3.11 in
ref. 15)

qij = μhijð1− μÞL−hij , [1]

where hij is the Hamming distance (number of different sites
between the 2 sequences). The number of sequences separated
by the distance h is equal to the number of ways h sites can be
selected from L, that is,
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Nh =
L!

ðL− hÞ!h!≈
Lh

h!
, [2]

where the last, approximate expression is valid under the assump-
tion that L >> 1 and L >> h (h can be of the order of 1).
Assuming also μ << 1, we obtain a typical combinatorial prob-

ability of leaps over the distance h:

QðhÞ∼NhqðhÞ=PhðLμÞ≡ ðLμÞhe−Lμ
h!

, [3]

which is a Poisson distribution with the expectation Lμ.
In steady state, the probability of fixation of the state i is

proportional to expð−νxiÞ where

ν=Ne − 1 ðMoran processÞ [4]

ν= 2ðNe − 1Þ  ðhaploid Wright-Fisher processÞ

ν= 2Ne − 1  ðdiploid Wright-Fisher processÞ
and xi =−ln fi where fi is the fitness of the genotype i [xi is
analogous to energy in the Boltzmann distribution within the
analogy between population genetics and statistical physics (16)].
For other demographic structures and assumptions on the mu-
tation process, the relationship between fixation probability can
quantitatively differ while retaining the same form. In particular,
for a population that produces offspring by binary division (fis-
sion), ν≈ 4Ne (17, 18).
Then, the rate of the occurrence and fixation of the transition

i→ j is (15)

Wij = qij
ν
�
xi − xj

�
exp
�
ν
�
xi − xj

��
− 1

. [5]

The distribution function of the fitness differential Δij = xi − xj
has to be specified (hereafter, we refer to x as fitness, omit-
ting logarithm for brevity). We analyze first the case without

epistasis, that is, with additive fitness effects of individual
mutations:

ΔðhÞ= y1 + y2 + . . . + yh, [6]

where yi are independent random variables with the distribution func-
tionsGjðyjÞ. Then, the distribution function of the fitness difference is

ρhðΔÞ=
Y
j

Z
dyjGj

�
yj
�
δ

 X
j

yj −Δ

!

=
Z∞
−∞

dk
2π

e−ikΔ
Y
j

Z
dyjeikyjGj

�
yj
�
,

[7]

which is obtained by using the standard Fourier transformation
of the delta function.
Now, let us specify the distribution of the fitness effects of

mutations GiðyiÞ, assuming an exponential dependency of the
probability of a mutation on its fitness effect, separately for
beneficial and deleterious mutations:

PiðyiÞ=
�
Die−eiyi , yi > 0
Dirieeiyi , yi < 0 , [8]

where Di is the normalization factor, ri is the ratio of the probabil-
ities of beneficial and deleterious mutations, and ei is the inverse of
the characteristic fitness difference for a single mutation (discussed
below). For simplicity, we assume here the same decay rates for the
probability density of the fitness effects of beneficial and deleterious
mutations. Empirical data on the distributions of fitness effects of
mutations (19, 20) clearly indicate that ri � 1. From the normali-
zation condition,

Di =
ei

1+ ri
≈ ei. [9]

Note that the mean of the fitness difference (selection co-
efficient) when the distribution of the fitness effects is given
by 8 is

A B

C D

Fig. 1. Walks and leaps on different types of fitness landscapes. Dots show genome states; blue (shirt straight) arrows indicate consecutive moves via
fixation of single mutations; red (long curved) arrows indicate multimutation leaps. (A) Nearly neutral landscape. (B) Landscape dominated by slightly
deleterious mutations. (C ) Kimura’s model landscape (a fraction of mutations is neutral; the rest are lethal). (D) Landscape combining beneficial and
deleterious mutations.
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jsij=
Z

dyiGiðyiÞyi ≈ 1
ei
. [10]

For simplicity, we start with an assumption that the values of Di
and ri are independent of i. For the model 8

Z∞
−∞

dyGðyÞeiky = iD
	

1
k+ ie

−
r

k− ie



. [11]

Then, from Eq. 5, the fixation rate of an h-mutation leap is equal to

φðhÞ=
Z∞
−∞

dΔ
νΔ

eνΔ − 1
ρhðΔÞ. [12]

Substituting 11 into 7, we obtain

ρhðΔÞ=−
ih+1eh

ðh− 1Þ!ð1+ rÞh
dh−1

dkh−1

"	
1− r

k+ ie
k− ie


h

e−ikΔ
#
k=−ie

,  Δ >  0

ρhðΔÞ=
ih+1eh

ðh− 1Þ!ð1+ rÞh
dh−1

dkh−1

"	
k− ie
k+ ie

− r

h

e−ikΔ
#
k=ie

,  Δ  <   0.

[13]

Consider first the case r = 0 (all mutations are deleterious). Then,
ρhðΔ< 0Þ= 0. For Δ > 0, that is, decrease of the fitness, we have

ρhðΔÞ=
Δh−1eh

ðh− 1Þ!e
−eΔ. [14]

Then, the fixation rate 12 of an h-mutation leap is equal to

φðhÞ= zh

ðh− 1Þ!
Z∞
0

dt
the−zt

et − 1
= hzhζðh+ 1, z+ 1Þ, [15]

where z= e=ν and ζðx, yÞ is the Hurwitz zeta function
ζðx, yÞ= P∞

k= 0

1
ðk+ yÞx. Therefore, the rate of fixation for leaps of

the length h is equal to W ðhÞ=PhðLμÞφðhÞ.
In one extreme, if z � 1 (νjsj � 1, neutral landscape), φðhÞ≈ 1

and mutations are fixed at the rate they occur. In the opposite
extreme case of strong negative selection ðz � 1, νjsj � 1Þ,
φðhÞ≈ hzhζðh+ 1Þ where ζðxÞ is the Riemann zeta function. For
a rough estimate, ζðh+ 1Þ can be replaced by 1, and then,
W ðhÞ≈Lμe−LμPh−1ðLμzÞ. In this case, the maximum of W(h) is
reached at h=Lμz≅Lμ=νjsj, which gives a nonnegligible fraction
of multimutation leaps ðh> 1Þ among the fixed mutations only for
Lμ≥ νjsj. However, in this case, the value ofW ðhÞ at this maximum
is exponentially small because e−Lμ < e−νjsj. Therefore, in the regime
of strong selection against deleterious mutations and at highmutations
rates ðLμ≥ νjsjÞ, multiple mutations actually dominate the mutational
landscape, but their fixation rate is extremely low. Qualitatively,
this conclusion seems obvious, but we now obtain the quantitative
criteria for what constitutes “strong selection.” We find that, even
for νjsj∼ 10, the rate of multimutation leaps ðh= 4Þ can be non-
negligible (>10−4 per generation; Fig. 2A) at the optimal Lμ values,
whereas for νjsj∼ 100, any leaps with h>1 are unfeasible (Fig. 2B).
Under a more realistic model, all values of ei (the inverse of

the fitness effect of a mutation) are different. For Δ> 0 and r= 0
(no beneficial mutations), using Eq. 13, we get

ρhðΔÞ=
Z∞
−∞

dk
2π

e−ikΔ
Y
j

iej
iej + k

. [16]

For example, in Kimura’s neutral evolution model (21), ei is a
binary random variable that takes a value of ∞ (jsij= 0, neutral
mutation), with the probability f , and a value of 0 (jsij=∞, lethal
mutation), with the probability 1− f . Then, ρhðΔÞ= f hδðΔÞ,
φðhÞ= f h and Lμ is replaced with Lfμ in Eq. 3, a trivial replace-
ment of the total genome length L with the length of the part of
the genome where mutations are allowed, Lf. Accordingly,
W ðhÞ=PhðLμf Þ, and multimutation leaps become relevant for
Lμf ≥ 1.
Let us now estimate the probability of leaps with beneficial

mutations ðΔ< 0Þ. Assuming r � 1 (rare beneficial mutations),
Eq. 13 takes the form

ρhðΔÞ≈
hre
2h−1

e−ejΔj [17]

and the fixation rate of a leap including beneficial mutations is

φðhÞ= hr
2h−1

zζð2, zÞ. [18]

If z � 1 (weak positive selection), zζð2, zÞ≈ 1, so that the role
of beneficial mutations is negligible. If z � 1 (strong positive
selection),

φðhÞ= hr
2h−1

1
z
. [19]

Comparing Eq. 19 with the result for Δ> 0 (Eq. 18), one can see
that, in this case, beneficial mutations are predominant among
the fixed mutations if

r> ð2e=νÞh+1. [20]

In this regime, multimutation leaps ðh> 4Þ occur at nonnegligible
rates under sufficiently high (but not excessive) mutation rates
(Fig. 3).
The model considered above assumes independent effects of

different mutations (no epistasis, “ideal gas of mutations” model).
Now, let us take into account epistasis. In the case of strong epis-
tasis, effects of combinations of different mutations are increasingly
strong, diverse, and, effectively, unpredictable, resulting in a rugged
fitness landscape (22). In the limit of epistasis strength and
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Fig. 2. Rates of leaps on a landscape dominated by deleterious mutations.
Rates of transitions are plotted against the per-genome mutation rate (Lμ)
and the leap length for different strengths of selection (A: νjsj = 10 and
B: νjsj = 100). Contour lines indicate orders of magnitude and start from the
rate of 10−5 leaps per generation.
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unpredictability, epistasis creates numerous highly beneficial
combinations that, once they occur, are highly likely to be fixed,
and a far greater number of highly deleterious combinations that
are immediately lethal. Due to the effective randomness of ge-
netic interactions, we consider the resulting landscape as essentially
random for h> 1, with the frequency of the beneficial combinations
r independent of h. In this case, the effective number of fixed leaps
with h> 1 is simply

W ðhÞ=QðhÞf ∼PhðLμÞr. [21]

If all single mutations ðh= 1Þ are deleterious ðνjsj � 1Þ, their rate
of fixation (Eq. 15) can be approximated by W ð1Þ=P1ðLμÞ 1

νjsj,
whereas for all leaps of the length h> 1, effective number of fixed
leaps is W ðh> 1Þ= ð1−P0ðLμÞ−P1ðLμÞÞf . Therefore, the condi-
tion for W ðh> 1Þ>W ð1Þ is

r>
Lμe−Lμ

ð1− ðLμ+ 1Þe−LμÞ
1
νjsj. [22]

In the high-mutation regime ðLμ � 1Þ, multiple mutations occur
orders of magnitude more frequently than single mutations, over-
whelming the difference of scale between r and 1=νjsj, and making
multimutation leaps much more likely. In the low-mutation regime
ðLμ � 1Þ, the balance between single and multiple mutations

tends to 2
	

1
Lμ− 1



≈ 2

Lμ and the condition for the dominance of

multimutation leaps becomes r> 2
Lμ

1
νjsj. Around the Eigen threshold

ðLμ≈ jsjÞ (23), the condition corresponds to r> 2
νjsj2, that is, the

frequency of beneficial multimutation combinations should be
unrealistically high to sustain evolution by multimutation leaps.

A Nonequilibrium Model of Stress-Induced Mutagenesis. The analysis
presented above suggests that the necessary condition for fixation
of multimutational leaps is the high-mutation regime. At low
mutation rates ðLμ � 1Þ, multimutation ðh> 1Þ events occur too
rarely to be fixed in realistic settings even if the frequency of
beneficial combinations among them is reasonably high. However,
in the high-mutation regime ðLμ � 1Þ, the above analysis is
problematic for 2 reasons. First, the expression for the fixation
rate (Eq. 5) is technically valid only for the case when the new
mutation is either fixed or lost before the emergence of the next
one, which implies Lμ< 1=ν � 1. Second, under any realistic
model of the fitness landscape, most mutations should be dele-
terious. Thus, Lμ> 1 implies that most of the progeny carries 1 or
more mutations, and therefore suffers from these deleterious ef-
fects. Under these conditions, the assumption of constant Ne is
unrealistic, because the size of such a population will decrease
under the mutational load, down to an eventual crash.
The complete analysis of the behavior of a variable-size pop-

ulation under the high-mutation regime and strong mutational
effects is currently beyond the state of the art. Therefore, here
we analyze a simplified model of the short-term behavior of a
(microbial) population after the onset of stress-induced muta-
genesis ðLμ � 1Þ.
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Fig. 3. Rates of leaps on a landscape combining beneficial and deleterious mutations. Rates of leaps are plotted against the per-genome mutation rate (Lμ)
and the leap length for different strengths of selection (A and C: νjsj = 10; B and D: νjsj = 100) and for different frequencies of beneficial mutations (A and B:
r = 10−4; C and D: r = 10−3). Contour lines indicate orders of magnitude and start from the rate of 10−5 leaps per generation.
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Consider a microbial population consisting of N0 individuals.
Under typical conditions, the population is in an equilibrium, so
that approximately N0=2 individuals survive the average gener-
ation span and produce N1 ≈N0 progeny by division (here we
consider simple asexual division as the progeny-generating pro-
cess whereby each surviving individual produces 2 offspring; other
demographic models can be accommodated without loss of gen-
erality). The typical mutation rate is low (Lμ0 ≈ 1=Ne ≈ 1=N0,
according to refs. 24 and 25), so the population can be con-
sidered homogeneous. Upon the onset of unfavorable condi-
tions, the survival rate of the wild-type individuals drops to
fw � 1=2 and the mutation rate in the stressed individuals in-
creases such that Lμ> 1.
If fw is not too small ðfwN0 � 1Þ, the immediate wild-type

survivors produce 2fwN0 first-generation progeny. With the
expected number of mutations per descendant being Lμ, the
distribution of the number of mutations in the progeny is given
by the Poisson distribution with the expected number of mutants
with h mutations of 2fwPhðLμÞN0.
Let us consider a mutation landscape that is dominated by

deleterious mutations with strong sign epistasis. All single mu-
tations are deleterious, so the survival of their carriers over the
generation time is f1 � fw. An overwhelming majority of multi-
mutation combinations have even stronger negative effects, so
for h> 1, fh � f1. Some small fraction rh of these combinations,
however, is strongly beneficial in the new conditions, conferring
to their carriers the survival rate of ∼ 1=2.
What would the rhðhÞ function look like? Intuitively, rhðhÞ

should decay to 0 at large h, or at least not grow, as it is over-
whelmingly likely that a sufficiently large set of mutations would
contain a subset that it unconditionally lethal. Here, for sim-
plicity, we consider a general form of rhðhÞ that equals 0 for h= 1
and monotonically decays with h from r2 at an arbitrary rate.
If the deleterious effect of mutations is strong enough

ð0≈ fh ≈ f1 � fwÞ, then the only plausible source of beneficial
mutants is the population of wild-type individuals (neither
single mutants nor multiple mutants that do not carry the
beneficial combinations survive to the next generation). The
population of the wild-type individuals decays exponentially
through both the diminished survival and through mutations,
reaching fwð2fwP0ðLμÞÞk−1N0 at the k-th generation after the onset
of the unfavorable conditions. Ignoring stochastic fluctuations, the
total number of wild-type individuals that survive until the pop-
ulation collapse can be estimated as

N∞
w ≈ fwN0

�ð1− 2fwP0ðLμÞÞ, [23]

which is approximately equal to fwN0 if fwP0ðLμÞ � 1=2.
Over the combined lifetimes of the surviving wild-type indi-

viduals, the expected number of beneficial mutants is

E
�
N∞

B

�
≈ 2N∞

w

X∞
h=2

ðrhPhðLμÞÞ= 2N∞
w

X∞
h=2

 
rh
e−LμðLμÞh

h!

!
, [24]

which depends on the genome-wide mutation rate Lμ and the
shape of the rhðhÞ function.
Let us first consider the 2 extreme cases of rhðhÞ. In the limit of

a completely flat function (rh = r2 for all h> 2), Eq. 23 gives
EðN∞

B Þ≈ 2N∞
w r2ð1−P0ðLμÞ−P1ðLμÞÞ. This function asymptoti-

cally reaches the value of 2N∞
w r2 with Lμ→∞. In the other ex-

treme of a rapidly decaying rhðhÞ, that is, rh = 0 for h> 2, Eq. 23
gives EðN∞

B Þ≈ 2N∞
w r2P2ðLμÞ. This function reaches its maximum

at Lμ= 2 with EðN∞
B Þ≈ 4N∞

w r2e−2.
It can be shown that the estimates for all other monotoni-

cally decaying rhðhÞ functions reach their maxima at finite values
of Lμ with

4N∞
w r2e−2 ≤ E

�
N∞

B

�
≤ 2N∞

w r2. [25]

Indeed, let us consider first the simplest model rhðhÞ= r2ξh−2

ð0< ξ< 1Þ. Then, Eq. 24 takes the form

E
�
N∞

B

�
≈ 2N∞

w r2ξ−2e−Lμ
�
eLμξ −Lμξ− 1

�
. [26]

As a function of Lμ, the quantity

φðLμÞ= e−Lμ
�
eLμξ −Lμξ− 1

�
[27]

reaches the maximum at Lμp = x=ξ, where x is the solution of the
equation

ex − 1
x

=
1

1− ξ
[28]

with the value at the maximum

φðLμpÞ= ð1− ξÞ1−ξξ xξð1− ξ+ xÞ−1=ξ. [29]

For ξ � 1 (rapid decay of rhÞ, Lμp = 2 and EðN∞
B Þ≈ 4N∞

w r2e−2. In
the opposite limit of slowly decaying rh, ξ→ 1, Lμp ≈ ln 1

1− ξ and
φðLμpÞ≈ 1.
For a general slowly decaying function rhðhÞ, one can find that

Lμp ≈ ln

����� rh
jdrhdh jh≈Lμp

�����. [30]

Importantly, even in this case, the optimal mutation rate Lμp
increases only logarithmically with the decay rate; furthermore,
the optimum value is notably robust to changes in rhðhÞ (Fig. 4).
The approximate condition for population survival,

EðN∞
B Þ> 2, can be derived from Eqs. 23 and 25 and is bounded

from below by

r2 >
e2

2N0fw
[31]

at the optimal value of Lμ.

Discussion
Here, we obtained analytic expressions for the probability of the
fixation of multimutation leaps for deleterious and beneficial
mutations depending on the parameters of the evolutionary pro-
cess, namely, effective genome size (L), mutation rate (μ), effec-
tive population size ðνÞ, and distribution of selection coefficients of
mutations (s). Leaps in random fitness landscapes in the context of
punctuated equilibrium have been previously considered for
infinite (26, 27) or finite (28) populations. However, unlike the
present work, these studies have focused on the analysis of the
dynamics of the leaps rather than on the equilibrium distribution
of their lengths. We further address the plausibility of beneficial
multimutation leaps under epistasis and outside of equilibrium, for
example in a microbial population under stress.
The principal outcomes of the present analysis are the conditions

under which multimutation leaps are fixed at a nonnegligible rate
in different evolutionary regimes (Fig. 5A). If the landscape is
completely flat (strict neutrality, s= 0), the leap length is distributed
around Lμ that is , simply, the expected number of mutations per
genome per generation. If Lμ � 1, leaps are effectively impossible,
and evolution can proceed only step by step (12). A considerable
body of data exists on the values of each of the relevant parameters
that define the probability of leaps. Generally, in the long term, the
total expected number of mutations per genome per generation has
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to be of the order of 1 or lower (Eigen threshold) because, if
Lμ � 1, the population ultimately spirals into error catastrophe (it
should be emphasized that error catastrophe, i.e., the loss of high-
fitness genotypes through accumulation of deleterious mutations, is
distinct from extinction catastrophe, i.e., loss of the entire population
caused by deleterious mutation) (15, 23, 29–32). The selection for
lower mutation rates is thought to be limited by the drift barrier and,
accordingly, the genomic mutation rate appears to be inversely pro-
portional to the effective population size, that is, Lμ∼ 1=ν (24, 25).
Thus, Lμν= const, which appears to be an important universal in
evolution.
To estimate the leap probability, we can use Eq. 15 and the

characteristic values of the relevant parameters, for example
those for human populations. As a crude approximation, Lμ = 1,
v = 104, jsj = 10−2 which, in the absence of beneficial mutations,
translates into the probability of a multimutation leap of about
4 × 10−5. Thus, such a leap would, on average, require over
23,000 generations, which is not a relevant value for the evolu-
tion of mammals (given that ∼140 single mutations are expected
to be fixed during that time as calculated using the same for-
mula). However, short leaps including beneficial mutations can
occur with reasonable rates, such as 5 × 10−4 for h = 3, and the
frequency of beneficial mutations r = 10−4, so such leaps are only
8 times less frequent than single-mutation fixations. Conceiv-
ably, such leaps of beneficial mutations could be a minor but

nonnegligible evolutionary factor. For organisms with Lμ < 1
and larger v, the probability of leaps is substantially lower than
the above estimates, so that under “normal” evolutionary re-
gimes (at equilibrium) the contribution of leaps is negligible.
However, in some biologically relevant and common situations,

such as stress-induced mutagenesis, which occurs in microbes in
response to double-stranded DNA breaks, the effective mutation
rate can locally and temporarily increase by orders of magnitude
(33, 34) while the population is going through a severe bottleneck
(Fig. 5B). If the fraction of beneficial combinations of mutations
satisfies the condition (31), even in the extreme case when the rest
of the mutations are lethal, the population has a chance to survive
when its mutation rate (Lμ) assumes a value close to the optimum
value given by Eq. 30. This value depends on the rate of the decay
of the fraction of beneficial combinations of mutations with the
number of mutations. Specifically, the optimal value of Lμ equals
2 for the steepest decay of r(h) and increases logarithmically slowly
for more shallow functions. Under an extremely severe stress
(N0 = 109, fw = 10−3), the survival threshold [r(h)] corresponds to
the fraction of beneficial pairs of mutations of about 3 × 10−6. This
means that, in the case of a typical bacterial genome of 3 ×
106 base pairs, for each (deleterious) mutation, there is, on aver-
age, 1 other mutation that yields a beneficial combination. This
estimate pertains to the extreme case when all individual muta-
tions are highly deleterious. Under more realistic conditions, when
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many mutations are effectively neutral, and a small fraction is
beneficial, the threshold fraction of beneficial combinations will be
considerably lower. These estimates indicate that multimutation
leaps are likely to be an important factor of adaptive evolution under
stress. An implication of these findings is that stress-induced muta-
genesis could be a selectable adaptive mechanism, however contro-
versial an issue the evolution of evolvability might be (35–39). It
should be further noted that, in this situation, large populations will
have a higher innovation potential than small populations because
the former produce a greater diversity of multimutation combina-
tions. In other terms, large populations have a greater chance to
cross the entropy barrier to higher fitness genotypes (40). Thus, the
stress-induced innovation regime is an alternative to innovation by
drift that occurs, primarily, in small populations (during population
bottlenecks) (14, 25). This conclusion complements the previous
findings that large populations can readily cross fitness valleys
through a series of consecutive mutations when the intermediate
states are close to neutrality (41).
Remarkably, experiments on adaptive evolution of bacterial

populations revealed repeated emergence of hypermutators (i.e.,
mutations in repair genes that greatly increase the mutation rate in
the respective clones) (42–44) resulting, in some case, in simulta-
neous fixation of “cohorts” of beneficial mutations (45). Further-
more, subsequent analyses have shown that mutator genotypes
exist only transiently but exert long-lasting effects on the population
evolution (46). These findings seem to provide direct experimental
validation of the multimutational leaps predicted by our model.
A different context in which multimutation leaps potentially

might play a role is evolution of cancers. In most tumor types,
mutation rate is dramatically, orders of magnitude elevated
compared to normal tissues (47, 48). The effective population size
in tumors is difficult to estimate, and therefore there is not enough
information to use the condition (31) to assess the plausibility of
multimutation leaps. Nevertheless, given the extremely high values
of Lμ, it cannot be ruled out that the frequency of leaps is non-
negligible. Most of the mutations in tumors are passengers that
have no effect on cancer progression or exert a deleterious effect
(49, 50). Traditionally, tumorigenesis is thought to depend on
several driver mutations that occur consecutively (51, 52). This is
indeed likely to be the case in many tumors because the age of

onset strongly and positively correlates with the number of drivers
(53, 54). However, for a substantial fraction of tumors, no drivers
are readily identifiable suggestive of the possibility that, in these
cases, tumor progression is driven by “epistatic drivers” (53), that is,
combinations of mutations that might occur by leaps.
Another, completely different area where multimutation leaps

could be important could be evolution of primordial replicators,
in particular those in the hypothetical RNA world, that are
thought to have had an extremely low replication fidelity, barely
above the error catastrophe threshold (23, 55, 56). Furthermore,
because the primordial replicators are likely to have been in-
completely optimized, the fraction of beneficial mutational
combinations could be relatively high. Under these conditions,
multimutational leaps could have been an important route of
evolutionary acceleration and thus might have contributed sub-
stantially to the most challenging evolutionary transition of all,
that from precellular to cellular life forms.
An important caveat of the above conclusions on the bi-

ological relevance of multimutational leaps is that the present
analysis disregards clonal interference, that is, competition be-
tween clades in an evolving population, that plays a substantial
role in the evolution of large populations under the high-
mutation regime as indicated by both theory (17, 57, 58) and
experiment (45, 59). Clearly, clonal interference has the poten-
tial to dampen the effect of multiple mutations. Nevertheless, it
appears likely that a clone with multiple mutations would be a
strong competitor under strong selection pressure, for example
in the case of stress-induced mutagenesis.
Taken together, all these biological considerations suggest that

multimutation leaps with a beneficial effect, the probability of
which we show to be nonnegligible under conditions of elevated
mutagenesis, could be an important mechanism of evolution that
so far has been largely overlooked. Given that elevated mutation
rate caused by stress is pervasive in nature, saltational evolution,
after all, might substantially contribute to the history of life, in
direct defiance of “Natura non facit saltus.”
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