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ABSTRACT A draft genome of a new Thermofilum sp. strain was obtained from an
enrichment culture metagenome. Like its relatives, Thermofilum sp. strain NZ13 is
adapted to organic-rich thermal environments and has to depend on other organ-
isms and the environment for some key amino acids, purines, and cofactors.

Members of the crenarchaeal family Thermofilaceae (1) are widespread in terrestrial
and marine hot springs (2, 3), with only two valid described species, Thermofilum

pendens from Iceland (2) and T. uzonense from Kamchatka, Russia (3). Both have
sequenced genomes (3, 4). Additional genomes are available for Thermofilum spp. from
Kamchatka, “T. adornatus” 1910b (5) and “T. carboxyditrophus” 1505 (GenBank assembly
accession number GCA_000813245). With the exception of “T. librum” (6), all Thermo-
filum spp. require Thermoproteales cell extracts or spent culture broth for growth. The
extreme reduction in biosynthetic pathways for purines, amino acids, and cofactors
in all Thermofilum genomes analyzed thus far suggests that these organotrophic
thermophiles rely on other organisms and the environment for these small molecules.
Here, we report the nearly complete draft genome of a new Thermofilum sp. strain,
NZ13, obtained from a hot spring at Hell’s Gate (Tikitere) (38°03=47�S, 176°21=39�E; pH
6.0 and 74°C) in New Zealand.

Enrichments were maintained stably for 4 days at 80°C in a modified DSMZ medium
(number 88) containing yeast extract (0.5 g/liter), tryptone (0.5 g/liter), and a headspace
of hydrogen (100% vol/vol). DNA was extracted from the enrichment using the Qiagen
DNAeasy blood and tissue DNA kit. Nextera DNA libraries were sequenced using an
Illumina MiSeq instrument. Adaptors and low-quality reads were removed using
Trimmomatic (7) and assembled using IDBA-UD (8). Contigs of less than 1 kb were
removed. The contigs were binned using MaxBin (9), resulting in the nearly complete
genome of Thermofilum sp. strain NZ13. Three additional bins for a Fervidicoccus sp., a
Desulfurococcaceae sp., and a Pyrobaculum sp. were also generated. Optimization of the
Thermofilum sp. NZ13 assembly was achieved by mapping the reads back using Bowtie
2 (10) and SAMtools (11, 12), reassembled using IDBA-UD, and further validated with
Emergent Self-Organizing Maps (ESOM) (13). The draft genome (33 contigs) is 1.88 Mb
and has 56.7% G�C content, which is higher than that of some Thermofilum genomes
but similar to that of T. pendens. The genome completeness is about 99.3%, with very
low (0.7%) contamination (CheckM [14]). The genome was annotated using Prodigal
(15) and the arCOG database (16, 17). A total of 1,930 coding sequences, 47 tRNAs, and
5 clustered regularly interspaced short palindromic repeat (CRISPR) arrays were iden-
tified. Based on a RAxML concatenated phylogenetic tree of 16 ribosomal proteins and
a 16S rRNA gene comparison using EzBioCloud (18) (98.4% 16S rRNA gene similarity to
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T. uzonense), Thermofilum sp. NZ13 probably represents a new species in the genus
Thermofilum.

Like its relatives, the Thermofilum sp. NZ13 genome encodes numerous peptidases,
glucosidases, and an alpha amylase, suggesting that the organism can grow on a range
of peptides, polysaccharides, and starches. Additionally, Thermofilum sp. NZ13 shows a
large reduction in biosynthetic genes, indicating that, similar to T. pendens and T.
uzonense, it likely relies on the environment for most amino acids, purines, and
cofactors. The genome encodes a large number of ABC transporter genes, with a high
proportion being membrane transport proteins. This draft genome from a Thermofilum
sp. from New Zealand illustrates that globally, species in this genus share very similar
ecological niches.

Accession number(s). The Thermofilum sp. strain NZ13 draft genome data have
been deposited in NCBI GenBank under accession number NDWX00000000. The ver-
sion described in this paper is the first version, NDWX01000000.
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