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Abstract

Time series of individual subjects have become a common data type in psychological

research. The Vector Autoregressive (VAR) model, which predicts each variable by all vari-

ables including itself at previous time points, has become a popular modeling choice for

these data. However, the number of observations in typical psychological applications is

often small, which puts the reliability of VAR coefficients into question. In such situations it is

possible that the simpler AR model, which only predicts each variable by itself at previous

time points, is more appropriate. Bulteel et al. (2018) used empirical data to investigate in

which situations the AR or VAR models are more appropriate and suggest a rule to choose

between the two models in practice. We provide an extended analysis of these issues using

a simulation study. This allows us to (1) directly investigate the relative performance of AR

and VAR models in typical psychological applications, (2) show how the relative perfor-

mance depends both on n and characteristics of the true model, (3) quantify the uncertainty

in selecting between the two models, and (4) assess the relative performance of different

model selection strategies. We thereby provide a more complete picture for applied

researchers about when the VAR model is appropriate in typical psychological applications,

and how to select between AR and VAR models in practice.

Introduction

Time series of individual subjects have become a common data type in psychological research

since collecting them has become feasible due to the ubiquity of mobile devices. First-order

Vector Autoregressive (VAR) models, which predict each variable by all variables including

itself at the previous time point, are a natural starting point for the analysis of dependencies

across time in such data and are already used extensively in applied research [1–5].

A key question that arises when using these models is: how reliable are the estimates of the

single-subject VAR model, given the typically short time series in psychological research (i.e.,

n 2 [30, 200])? To be more precise, we would like to know how large the estimation error is in

this setting. Estimation error is defined as the distance between the estimated parameters and

the parameters in the true model, assuming that the true model has the same parametric form
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as the estimated model. If estimation error is large, it might be possible to obtain a smaller esti-

mation error by choosing a simpler model, even though it is less plausible than the more com-

plex model [6]. A possible simpler model in this setting is the first-order Autoregressive (AR)

model, in which each variable is predicted only by itself at the previous time point. While the

AR model introduces a strong bias by setting all interactions between variables to zero, it can

have a lower estimation error when the number of available observations is small. When ana-

lyzing time series in psychological research it is therefore important to know (a) in which set-

tings the AR or the VAR model has a lower estimation error, and (b) how to choose between

the two models in practice.

Bulteel et al. [7] identified these important and timely questions, and offered answers to

both. They investigated question (a) regarding the relative performance of AR and VAR mod-

els by selecting three empirical time series data sets, each consisting of a number of individual

time series with the same data structure. For each of these data sets, they approximate the out-

of-sample prediction error with out-of-bag cross-validation error for both the AR and the

VAR model and their mixed model versions. The authors make a valuable contribution by

assessing which of the many cross-validation schemes available for time series approximates

prediction error best in this context. Using the approximated prediction error obtained via

cross-validation, they find that the prediction error for AR is smaller than for VAR, and that

the prediction error of mixed AR and mixed VAR is similar. In a last step, they link prediction

and estimation error by stating that “[. . .] the number of observations T [here n] that is needed

for the VAR to become better than the AR is the same for the prediction MSE [mean squared

error] as well as for the parameter accuracy [estimation error]” [7, p. 10]. Although the latter

statement implies that the estimation error of mixed AR and mixed VAR models are similar,

Bulteel et al. [7] conclude that “[. . .] it is not meaningful to analyze the presented typical appli-

cations with a VAR model” (p. 14) when discussing both mixed effects (i.e., multilevel models

with random effects) and single-subject models.

Using their statement about the link between prediction error and estimation error together

with a preference towards parsimony, Bulteel et al. [7] also offer an answer to question (b) on

how to choose between the AR and VAR models in practice: they suggest using the “1 Stan-

dard Error Rule”, according to which one should select the AR model if its prediction error is

not more than one standard error above the prediction error of the VAR model, and select the

model with lowest prediction error otherwise [8, p. 244].

In this paper, we provide an extended analysis of the problems studied by Bulteel et al. [7].

First, regarding question (a) on the relative performance of the AR and VAR models: when the

goal is to determine the estimation error in a given setting, one can obtain it directly with a

simulation study. A simulation study allows for a more extensive analysis of this problem for

three reasons. First, we do not need to make any claim about the relation between prediction

error and estimation error, which—as we will show—turns out to be non-trivial. Second, in a

simulation study we can average over sampling variance which allows us to compute the

expected value of estimation (and prediction) error. While the approach of Bulteel et al. [7] in

using three empirical datasets has the benefit of ensuring the models considered mirror data

from psychological applications, these empirical datasets are naturally subject to sampling vari-

ation. And third, a simulation study allows us to map out the space of plausible VAR models

and base our conclusions on this large set of VAR models instead of the VAR models estimated

from the three data sets used by Bulteel et al. [7]. We perform such a simulation study, which

allows us to give a direct answer to the question of how large the estimation errors of AR and

VAR models are in typical psychological applications.

Regarding question (b) on choosing between AR and VAR models in practice, Bulteel et al.

[7] base their “1 Standard Error Rule” (1SER) on the idea that the n at which the estimation
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errors of the AR and VAR models are equal is (approximately) the same n at which the predic-

tion errors of those models are equal, combined with a preference towards the more parsimo-

nious model. While the 1SER is used as a heuristic in the statistical learning literature [8], it is

not clear whether this heuristic would perform better in the present problem than simply

selecting the model with the lowest prediction error. We show that when choosing between

AR and VAR models, the n at which the prediction errors become equal is not necessarily the

same as the n at which estimation errors become equal: in fact, there is a substantial degree of

variation in how the prediction and estimation errors of both models cross. Using the relation-

ship between estimation and prediction error we are able to show via simulation when the

1SER is expected to perform better than selecting the model with lowest prediction error. This

extended analysis of the problem studied by Bulteel et al. [7] provides a more complete picture

for applied researchers about when the VAR model is appropriate in typical psychological

applications, and how to select between AR and VAR models in practice.

When does VAR outperform AR?

In this section we report a simulation study which directly answers the question of how large

the estimation errors of AR and VAR models are in typical psychological applications. This

allows the reader to get an idea of how many observations ne one needs, on average, for the

VAR model to outperform the AR model. In addition, we will decompose the variance around

those averages in sampling variation and variation due to differences in the VAR parameter

matrix F. Finally, explaining the latter type of variation allows us to obtain ne conditioned on

characteristics of F. The analysis code for the simulation study is available from https://github.

com/jmbh/ARVAR.

Simulation setup

Since the AR model is nested under the more complex VAR model, we focus solely on the

VAR as the true data-generating model. To obtain realistic VAR models, we use the following

approach: first, we estimate a mixed VAR model to the “MindMaastricht” data [9], which con-

sists of 52 individual time series with on average n = 41 measurements on p = 6 variables, and

is the only publicly available data set used by Bulteel et al. [7]. In a second step, we sample sta-

tionary VAR models with a diagonal error covariance matrix from this mixed model.

We expect that the estimation (and prediction) errors of the AR and VAR model depend

not only on the number of observations n, but also on the characteristics of the underlying p ×
p VAR model matrix F. We therefore stratify the sampling process from the mixed model by

two characteristics of F. This procedure allows us to obtain a better picture of how the perfor-

mance of AR and VAR may differ depending on the characteristics of the data generating

model.

The first characteristic is based on the size of the auto-regressive effects, that is, the absolute

values of the diagonal elements of the lagged parameter matrix (Fii) which encode the relation-

ship between a variable and itself at the next time point. We summarize the information con-

tained in these diagonal elements by taking the mean of their absolute values D, given as

D ¼
1

p

Xp

i¼1

jΦiij :

Note here that taking the sum of auto-regressive parameters is equivalent to taking the sum

of the eigenvalues of F, denoted λ. To ensure stationarity, only F matrices with |λ|< 1 are

included in our analysis [10]. The second characteristic is based on the size of the cross-lagged
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parameters (Fij, i 6¼ j), encoding the relationships between different processes. We again sum-

marize this information by taking the mean absolute of these parameters, denoted O and given

as

O ¼
1

pðp � 1Þ

Xp

i¼1

Xp

j6¼i

jΦijj :

We expect that true VAR models with a high D value and small O value (i.e., large auto-regres-

sive effects and small cross-lagged effects) result in a low estimation error for AR models, since

these VAR models are very similar to an AR model. In contrast, if O is high, we expect that the

estimation error of the AR model is large, because it sets the large cross-lagged effects in the

true VAR model to zero.

Ideally, we would stratify by sampling a fully crossed grid of D and O values. However, this

is not possible since some combinations have an extremely small probability: For example, if a

matrix has auto-regressive parameters close to one, it is unlikely to describe a stationary pro-

cess if it also contains high positively-valued cross-lagged parameters. We therefore adopt the

following approach: we divided the D-O-space in a grid by dividing each dimension into 15

equally spaced intervals (see S1 Fig). We then include only those cells in the design in which at
least one VAR model has been sampled. This procedure returned 74 non-empty cells. We then

sample those 74 cells until each of them contains 100 VAR models. We keep the cell size con-

stant to render the results comparable across cells (see Supporting Information for a detailed

description of this procedure).

This procedure returns a set of 74 × 100 = 7400 VAR models that includes essentially any

stationary VAR model with p = 6 variables, and allows us to describe each model in the dimen-

sions O and D. For each of these VAR models, we generate 100 independent time series, each

with n = 500 observations and with a burn-in period of nburn = 100. We then estimate both the

AR and the VAR model on the first n = {8, 9, . . ., 499, 500} observations of those time series.

This yields a simulation study with 7400 × 493 (parameters × sample size) conditions, and for

each of those conditions we have 100 replications. For each model, and each n, we compute

the expected estimation error for both the AR model (EEAR) and the VAR model (EEVAR)

model by averaging over the 100 replications. This means that while EEAR and EEVAR have dif-

ferent values depending on n and the underlying model, we have averaged over the sampling

variation.

Simulation results

The simulation described above allows us to investigate the relative performance of AR and

VAR models across different samples, sample sizes, and data-generating models. We define

the estimation error as the mean squared error of the estimated parameters to the true parame-

ters, and quantify the relative performance with two measures: the difference between the esti-

mation errors of the AR and VAR models at a particular sample size, EEDiff = EEAR − EEVAR;

and, ne, the sample size at which the VAR model outperforms the AR model (EEAR > EEVAR).

In the following we examine the mean and variance of EEDiff and subsequently study ne and its

dependence on the characteristics of the true VAR model.

Fig 1(a) shows the mean and standard deviation of EEDiff as a function of n, across all 7400

VAR models and 100 replications. The dashed line at EEDiff = 0 indicates the point at which

the estimation errors of the two models are equal. Below that line, the AR model performs bet-

ter, that is, its parameter estimates are closer to the parameters of the true VAR model than the

parameter estimates of the VAR model. We see that, across all models, we obtain a median ne

= 89. Note that, out of all 740,000 simulated data sets, in only 23 cases the estimation error
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curves did not yet cross with an n of 500. Notably, the variance around the difference in esti-

mation error is substantial for all n. In the following we decompose this variance in variance

due to sampling error, and variance due to differences in VAR matrices.

Panel (b) of Fig 1 displays the mean EEDiff for each of the 7400 VAR models, averaged

across 100 replications. We see that the lines differ considerably and that ne substantially

depends on the characteristics of the true VAR model. This shows that one cannot expect reli-

able recommendations with respect to ne that ignore the characteristics of the generating

model. To illustrate the extent of the sampling variation of the models, we have chosen three

particular VAR models (see coloured lines). Fig 1(c) shows that they exhibit considerable sam-

pling variation. Note that, as the variance in (b) is due to differences in mean performance

across VAR models, it does not decrease with n. In contrast, the variance in (c) depends on n
as it pertains to the sampling variance of a single VAR model, which decreases with the square

root of the number of observations. While the mean EEDiff (shown in Fig 1(a)) gives a clear

answer to the question of which n is required for the VAR model to outperform the AR model

Fig 1. Difference in estimation error of AR and VAR models (EEDiff) across n on three different levels of

aggregation. Panel (a) shows EEDiff averaged over replications and models, and the band shows the standard deviation

over replications and models; panel (b) shows EEDiff for each model averaged across replications; and panel (c) shows

the EEDiff averaged over replications for three specific models, and the bands show the standard deviation across 100

replications (sampling variation).

https://doi.org/10.1371/journal.pone.0240730.g001
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on average, both types of variation (see Fig 1(b) and 1(c)) show that for any particular VAR

model it is difficult to determine which model performs better with the sample sizes typically

available in psychological applications. However, we see that the sampling variation across rep-

lications is smaller than the variation across VAR models for most n. This means that if one

has information about the parameters of the data-generating model, one can make much more

precise statements about the sample size necessary for the VAR model to outperform the AR

model.

The large degree of variation around EEDiff also highlights the potential pitfalls of generaliz-

ing the findings of Bulteel et al. [7] beyond the empirical data sets, which consist of 28, 52, and

95 individual time-series with an average number of 41, 70 and 70 time points, analyzed by the

original authors. This is because (i) it is unlikely that their (in total) 175 time series appropri-

ately represent the population of all plausible VAR matrices, (ii) their sample is subject to a

substantial amount of sampling variation, and (iii) the absence of systematic variations of n
does not allow a comprehensive answer to how relative performance relates to sample sizes.

Above we suggested that the relative performance of AR and VAR models (quantified by

EEDiff) depends on the characteristics D and O of the true VAR parameter matrix. In Fig 2(a)

we show the median (across models in cells) n at which the estimation error of VAR becomes

smaller than the estimation of AR (i.e., EEDiff > 0), depending on the characteristics D and O.

We see that the larger the average off-diagonal elements O, the lower the n at which VAR out-

performs AR. This is what one would expect: when O is small (as indicated by the lowest rows

of cells in Fig 2(a)), the true VAR model is actually very close to an AR model. In such a situa-

tion, the bias introduced by the AR model by setting the off-diagonal elements to zero leads to

a relatively small estimation error. This trade-off between a simple model with high bias but

low variance and a more complex model with low bias but high variance is well-known in the

statistical literature as the bias-variance trade-off [8]. It therefore takes a considerable amount

of observations until the variance of the VAR estimates becomes small enough for it to outper-

form the AR model. When O is large (indicated by the upper rows of cells), the bias of the AR

model leads to a comparatively larger estimation error. Finally, we can also see that the size of

the diagonal elements D is not as critical in determining ne as the size of the off-diagonal ele-

ments: Picking any row of cells in Fig 2(a), we can see that there is only a very small variation

across columns, with larger D values appearing to lead to very slight decreases in ne in general.

Note that the O characteristic also largely explains the vertical variation of the estimation error

Fig 2. Left: ne, the n at which estimation error becomes lower for the VAR than for the AR model, as a function of D
and O. Right: Sampling distribution of ne, the n at which the expected estimation error of the VAR model becomes

lower than the expected estimation error of the AR model. The dashed line indicates the median of 89.

https://doi.org/10.1371/journal.pone.0240730.g002
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curves shown in Fig 1(b): the curves on top (small ne) have high O, while the curves at the bot-

tom (large ne) have low O. Fig 2(b) collapses across these values and illustrates the sampling

distribution of ne, taking into account the likelihood of any particular VAR matrix (as specified

by the mixed model estimated from the “MindMaastricht” data).

In summary, we used a simulation study to investigate the relative performance of AR and

VAR models in a much larger space of plausible data-generating VAR models in psychological

applications than considered by Bulteel et al. [7]. Next to investigating the average relative per-

formance as a function of n, we also looked into the variation around averages. We showed

that there is substantial variation both due to sampling error and differences in VAR matrices,

which means that for a particular time series at hand it is difficult to select between AR and

VAR with the n available in typical psychological applications. Finally, we found that the size

of the off-diagonal elements influences the relative performance of the VAR model more

strongly than the size of the diagonal elements.

Choosing between VAR and AR based on prediction error

In the previous section, we directly investigated the estimation errors of the AR and the VAR

model in typical psychological applications and showed that the n at which VAR becomes bet-

ter than AR depends substantially on the characteristics of the true model. In practice, the true

model is unknown, so we can neither look up the n at which VAR outperforms AR in the

above simulation study, nor can we compute the estimation error on the data at hand. Thus, to

select between these models in practice, we may choose to use the prediction error which we

can approximate using the data at hand, for instance by using a cross-validation scheme as sug-

gested by Bulteel et al. [7]. However, since we are interested in estimation error, we require a

link between prediction error and estimation error. In the remainder of this section we investi-

gate this link and discuss the implications of this link for the model selection strategy suggested

by Bulteel et al. [7], who use the “1 Standard Error Rule” (1SER) to select the model with lowest

estimation error. Finally, we use our simulation study from above to directly compare the per-

formance of the 1SER with model selection based only on the minimum prediction error.

The relation between prediction error and estimation error

Bulteel et al. [7] suggest that the link between prediction error and estimation error is relatively

straightforward: “[. . .] the number of observations T [here n] that is needed for the VAR to

become better than the AR is the same for the prediction MSE [mean squared error] as well as

for the parameter accuracy [estimation error]” [7, p. 10]. More formally, this claim states that

if ne is the number of observations at which the estimation errors of the AR and VAR model

are equal, and if np is the number of observation at which the prediction errors of the AR and

VAR model are equal, and ngap = ne − np, then ngap = 0. Bulteel et al. [7] do not specify the

exact conditions under which this statement should hold, and elsewhere in the text suggest

that this should be considered an approximate rather than an exact relationship. If this rela-

tionship were indeed approximate, it would still be interesting to study in which settings ngap

> 0 or ngap < 0, as this bears on model selection, and so we will focus our investigation on

quantifying ngap and investigating any potential systematic deviations from zero through simu-

lation. Clearly, it would be unreasonable to expect that ngap = 0 for any data set, since the

observations in a given data set are subject to sampling error. We therefore interpret the state-

ment of Bulteel et al. [7] as a statement about the expectation over errors of any given VAR

model.
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Assessing ngap through simulation

We now use the results of the simulation study from the previous section to check whether

indeed ngap = 0 on average for all VAR models. To compute prediction error, we generate a

test-set time series consisting of ntest = 2000 observations (using a burn-in period of nburn =

100) for each of the 7400 VAR models described in the previous section. For each of the 100

replications of model and sample size condition, we average over the prediction errors which

are obtained when estimated model parameters are evaluated on the test set. This is the out-of-

sample prediction error (i.e., the expected generalization error) that Bulteel et al. [7] approxi-

mate with out-of-bag cross-validation error. We define prediction error as the mean squared

error (MSE) of the predicted values relative to the true values in the test data set.

Fig 3 shows the estimation (solid lines) and prediction (dashed lines) errors for both the AR

(black lines) and VAR (red lines) models as a function of n, averaged across the replications,

for model A with D = 0.068 and O = 0.092 (left panel) and model B with D = 0.337 and

O = 0.051 (right panel). For model A, we see that ngap < 0, which shows that ngap = 0 for all

VAR models is incorrect. What consequences does this gap have for model selection? The neg-

ative gap implies that if the prediction errors for the AR and VAR model are the same, the

VAR model should be selected, because its estimation error is smaller. In contrast, for model B

we observe ngap > 0. In this situation, if the prediction errors are equal, one should select the

AR model because it incurs smaller estimation error. Clearly, ngap differs between the two

models, and this difference matters for model selection.

So far we only investigated ngap for two individual VAR models. Fig 4(a) shows the distribu-

tion of the expected ngap across all VAR models, computed by averaging over 100 replications.

Note that for 31 out of 7400 models the curves of prediction errors and estimation errors did

not cross within n 2 {8, 9, . . ., 499, 500}. The results in Fig 4 are therefore computed on 7369

models.

Each of the data points in the histogram in Fig 4(a) corresponds to the expected ngap of one

of the 7369 models. We see that the expected ngap has a right skewed distribution with a mode

at zero. This allows us to make a precise statement regarding the crossing of estimation and

prediction errors described above: while the most common value of ngap is zero, most expected

ngap are not zero. In fact, ngap shows substantial variation across different VAR models.

Explaining the variance of ngap is interesting, because ngap has direct consequences for model

Fig 3. Scaled Mean Squared Error (MSE) of estimation (solid lines) and prediction errors (dashed lines) for both the

AR (black lines) and VAR (red lines) models as a function of n, separately for model A with D = 0.068 and O = 0.092

(left panel) and model B with D = 0.337 and O = 0.051 (right panel). The red and green shaded area indicates the

median ngap, and the grey shaded area shows the 20% and 80% quantiles across the 100 replications per model.

https://doi.org/10.1371/journal.pone.0240730.g003
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selection. If we can relate the ngap to characteristics of the F matrix, it is possible to make more

specific statements with respect to when to apply a bias towards the AR or VAR model, when

the prediction errors are the same or very similar. Note that such a function from F to ngap

must exist, because the only way the 7400 models differ is in their entries of the VAR parame-

ter matrix F. However, this function may be very complicated. For example, the Pearson cor-

relation of ngap with D and O are 0.21 and −0.02, respectively. Predicting ngap by D and O
including the interaction term with linear regression achieves R2 = 0.048. This shows that a

simple linear model including D and O is not sufficient to describe the relationship between

ngap and F. Future research could look into better approximations of this relationship. If suc-

cessful, one could build new model selection strategies on reliable predictions of ngap from

empirical data.

Performance of the “1 Standard Error Rule”

Bulteel et al. [7] propose, in the words of Hastie et al., to “[. . .] choose the most parsimonious

model whose error is no more than one standard error above the error of the best model.” [8],

p. 244]. This model selection criteria is known as the “1 Standard Error Rule” (1SER) and is

suggested by Hastie and colleagues as a method of choosing a model with the minimal out-of-

sample prediction error (which is typically unknown), on the basis of out-of-bag prediction

error (acquired with cross-validation techniques).

Making inferences from prediction error to estimation error requires a link between the

two. Bulteel et al. [7] provide this link by suggesting that ngap = 0 (or ngap� 0). However, they

do not provide justification for why the 1SER should outperform simply selecting the model

with the lowest prediction error. Above we showed that ngap = 0 does not hold for all VAR

models. In fact, it is this result that explains why the 1SER can perform better than selecting

the model with the lowest prediction error. Specifically, this is the case when ngap > 0, which

characterizes the situation that the prediction error for VAR is lower than for AR while at the

same time the estimation error of VAR is higher than for AR. In such a situation, a bias

Fig 4. Panel (a) displays the distribution of the expected ngap across all 7369 VAR models, computed by averaging over

100 replications, and weighted by the probability defined by the original mixed model. Panel (b) shows the distribution

of non-zero EEcomp across all n, 7369 VAR models, averaged across replications and weighted by the probability

defined by the original mixed model.

https://doi.org/10.1371/journal.pone.0240730.g004
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towards the AR model can be favorable. In contrast, if ngap < 0 and the prediction error of AR

is lower than for VAR, even though the estimation error of VAR is lower than for AR, such a

bias would be unfavorable. In the following, we assess the relative performance of the 1SER

and simply selecting the model with lowest prediction error, both on average and as a function

of n.

In order to quantify the relative performance of both model selection strategies, we take the

prediction and estimation errors of the 7400 VAR models estimated on n 2 {8, 9, . . ., 499, 500}

and for each model, and each n, select between the AR and VAR model in two different ways:

(1) by simply selecting the model with the lowest prediction error, and (2) by applying the

1SER (using the standard-deviation of the out-of-sample prediction error across 100 training

sets). For each of the two strategies, we then subtract the estimation error of the selected model

(EEsel) from the estimation error of the model with the lowest estimation error (EEbest). The

difference EEdiff = EEbest − EEsel equals zero if the model with lower estimation error has been

selected, and is negative if the model with higher estimation error has been selected. Subse-

quently, we compute

EEcomp ¼ EEð2Þdiff � EEð1Þdiff ;

where EEð2Þdiff is the difference obtained using (2), and EEð1Þdiff is the difference obtained using (1).

The resulting value of EEcomp allows us to compare the performance of the two model selection

strategies. That is, if EEcomp < 0, simply selecting the model with lowest prediction error per-

forms better, and if EEcomp > 0, the 1SER performs better.

Fig 4(b) shows the distribution of non-zero EEcomp across all 7400 VAR models, averaged

over replications, and weighted by the probability given by the original mixed model. The only

interesting cases when comparing model selection procedures are the cases in which they dis-

agree. Therefore, we analyze only those cases for which EEcomp 6¼ 0. Note that for all but 2 of

the 7400 models there is some n at which the two decision rules in question choose a different

model. We find that using the 1SER is better in 50.1% of cases (where each case is weighted by

the probability of the corresponding model). This would suggest that it makes essentially no

difference whether we use the 1SER or select the model with lowest prediction error. However,

these proportions average over the number of observations n and therefore cannot reveal dif-

ferences in relative performance for different sample sizes.

Fig 5(a) shows EEcomp as a function of n, averaged across all 7400 models. Because the VAR

prediction error is huge for very small n, both model selection strategies choose the same

model, resulting in EEcomp = 0 for those n. However, from around n = 10 on until around

n = 60, EEcomp is substantially positive, indicating that the 1SER outperforms simply selecting

the model with the lowest prediction error by a large margin. However, for n> 60 we see that

EEcomp approaches zero and then becomes slightly negative. The latter is also illustrated in

panel (b), which displays the weighted proportion of models in which the 1SER is better (i.e.,

EEcomp > 0). The explanation of this curve has three parts. First, ngap tends to be larger if the

gap is located at a small n (Pearson correlation r = −0.15). If ngap is large (and therefore posi-

tive), the AR model has lower estimation error than the VAR model, even though the predic-

tion errors are the same (compare Fig 5(b)). In such situations, biasing model selection

towards selecting the AR model is advantageous. Since the 1SER constitutes a bias towards the

AR model, it performs better for small n. Second, this also explains why the 1SER performs

worse than simply selecting the model with lowest prediction error for large n: here the gap is

small (negative), indicating that if the prediction errors are the same, the VAR model performs

better. Clearly, in such a situation, providing a bias towards AR is disadvantageous. Therefore,

the 1SER performs worse. Finally, why does the curve get closer and closer to zero? The reason
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is that the standard error converges to zero with (the square root of) the number of observa-

tions, and therefore the probability that both rules select the same model approaches 1 as n
goes to infinity.

To summarize, we found that the 1SER is better than simply selecting the model with the

lowest prediction error only in 50.1% of the cases in which the two rules do not select the same

model. However, when looking at the relative performance as a function of n, we found that

the 1SER is better than selecting the model with lowest prediction error until around n = 60,

and worse above. Finally, we were able to explain the dependence of the relative performance

on n with the fact that ngap is larger when it occurs at a smaller n. For applied researchers these

results suggest that, for VAR models with p = 6 variables, the 1SER should be applied for

n< 60.

Discussion

In this paper we provided an extended analysis of the problem studied by Bulteel et al. [7] by

using a simulation study to (a) map out the relative performance of AR and VAR models in

typical psychological applications as a function of the number of observations n, and (b) inves-

tigate how to choose between AR and VAR models in practice. We found that, averaged over

all models considered in our simulation, the VAR model outperforms the AR model for

n> 89 observations in terms of estimation error. In addition, we show that and explain why

the 1SE rule proposed by Bulteel et al. [7] performs better than selecting the model with the

lowest prediction error when n is small.

Next to the average estimation errors of AR and VAR models, we also investigated the vari-
ance around those averages. We decomposed this variance in variance due to different true

VAR models, and variance due to sampling. The variance across different VAR models

showed that the relative performance, that is, the n at which VAR becomes better than AR (ne)

depends on the characteristics of the true VAR parameter matrix F. For example, if the true

VAR model is very close to an AR model, it takes more observations until the VAR model out-

performs the AR model. This shows that one cannot expect reliable recommendations with

respect to ne that ignore the characteristics of the generating model: ne critically depends on

the size of the off-diagonal elements present in the data-generating model. The size of the

Fig 5. Panel (a) displays EEcomp averaged across 7400 models as a function of n (black line) and the standard deviation

around the average (blue line). Panel (b) displays, for each n, the proportion of times that EEcomp > 0 across 7400

models (i.e., the proportion of 1SER performing better).

https://doi.org/10.1371/journal.pone.0240730.g005
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sampling variation also indicates that, for many of the considered sample sizes, whether the

VAR or AR model will have lower estimation error largely depends on the specific sample at

hand. This implies that it is difficult to select the model with lowest estimation error with the

sample sizes available in typical psychological applications.

The second question we investigated was: how should one choose between the AR and

VAR model for a given data set? Bulteel et al. [7] suggest that, for any VAR model, the n at

which the prediction errors of both models are equal is, in expectation, (approximately) the

same n at which their estimation errors are equal (i.e., ngap� 0). Combining this claim with a

preference towards the more parsimonious AR model, they proposed using the “1 Standard

Error Rule”, according to which one should select the AR model if its prediction error is not

more than one standard error above the prediction error of the VAR model, and choose the

model with lowest prediction error otherwise. We showed that the expected ngap varies as a

function of the parameter matrix of the true VAR model. Using the relationship between esti-

mation and prediction error we were able to explain when the 1SER is expected to perform

better than selecting the model with lowest prediction error. In addition, we showed via simu-

lation that the 1SER performs better than selecting the model with the lowest prediction error

for n< 60, in cases where those decision rules select conflicting models. Our simulations also

showed that as n!1, both decision rules converge to selecting the same model. This means

that there is a relatively small range of sample sizes in which these decision rules lead to contra-

dictory model selections for a given data-generating system. We recommend that researcher

wishing to use prediction error to choose between these models examine both the 1SER and

lowest prediction error rules, and in cases of conflict between the two, use the 1SER for low

(n< 60) sample sizes.

The relative performance of the AR and VAR model shown in our simulations can be

understood in terms of the bias-variance trade-off. Because the AR model sets all off-diagonal

elements to zero, it has a bias that is constant and independent of n. In contrast, the VAR

model has a bias of zero, since the true model is a VAR model. This is why a VAR model will

always perform better than (or at least as good as, if the all off-diagonal elements of the true

VAR model are zero) an AR model as n!1. However, for finite sample sizes the variance of

the estimates of the two models are different: while both variances converge to zero as n!1,

for finite samples the variance of VAR parameters is much larger than the variance of AR

parameters, especially for small n. This allows for the situation that the biased simpler model is

showing a smaller error, even though the true model is in the class of the more complex

model. This trade-off between bias and variance also explains the relative performance of AR

and VAR models: From Fig 3 we saw that for small n, the variance of the VAR estimates is so

large that the error is larger than the error of the AR model, despite the bias of the AR model.

However, with increasing n, the variance of the estimates of both models approaches zero.

This means that the larger n, the more the bias of the AR model contributes to its error. Thus,

at some n the error of the VAR model becomes smaller than the error of the AR model. We

agree with Bulteel et al. [7] that the fact that a simple (and possibly implausible) model can out-

perform a complex (and more plausible) model, even though the true model is in the class of

the more complex model, is underappreciated in the psychological literature.

An interesting question we did not discuss in our paper is: which model should we choose

if the AR and VAR models have equal estimation error? Since we defined the quality of a

model by its estimation error, we could simply pick one of the two models at random. How-

ever, their model parameters are likely to be very different. The estimation error of the AR

model comes mostly from setting off-diagonal elements incorrectly to zero, while the estima-

tion error of the VAR model comes mostly from incorrectly estimating off-diagonal elements.

In terms of the types of errors produced by the two models, the AR model will almost
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exclusively produce false negatives, while the VAR model will produce almost exclusively false

positives. A specification of the cost of false positives/negatives in a given analysis may allow to

choose between models when the estimation errors are the same or very similar. For example,

in an exploratory analysis one might accept more false positives in order to avoid false

negatives.

Throughout the paper we compared the AR model to the VAR model. However, we believe

that it is unnecessarily restrictive to choose only between those extremes (all off-diagonal ele-

ments zero vs. all off-diagonal elements nonzero). The AR model, by imposing independence

between processes, presents a theoretically implausible model for many psychological pro-

cesses. Applied researchers who estimate the VAR model may be primarily interested in the

recovery of cross-lagged effects rather than auto-regressive parameters, for example to deter-

mine which processes are dependent on one another (as evidenced by frequent discussions of

Granger causality [11] In such settings, one could estimate VAR models with a constraint that

limits the number of nonzero parameters or penalizes their size [12, 13]. This would allow the

recovery of large off-diagonal elements without the high variance of estimates in the standard

VAR model. Similarly, one could estimate a VAR model and, instead of comparing it to an AR

model and thus testing the nullity of the off-diagonal elements jointly, test the nullity of the

off-diagonal elements of the VAR matrix individually. Further investigation of these alterna-

tives in future studies would provide a more complete picture to applied researchers.

It is important to keep the following limitations of our simulation study in mind. First, we

claimed that the 7400 models we sampled from the mixed model obtained from the “Mind-

Maastricht” data represent typical applications in psychology. One could argue that there are

sets of VAR models that are plausible in psychological applications that are not included in

our set of models. While this is a theoretical possibility, we consider this extremely unlikely,

since we heavily sampled the mixed model stratified by O and D. Any VAR model that is not

similar to a model in our set of considered VAR models is therefore most likely non-stationary.

When presenting our results we weighted all models by their frequency given the estimated

mixed model in order to avoid giving too much weight to unusual VAR models. This means

that it could be that the weighting obtained from the mixed model does not represent the fre-

quency of VAR models in psychological applications well. While we consider this unlikely, we

also used a uniform weighting across VAR models as a robustness check which left all main

conclusions unchanged. A second limitation is that we only considered VAR models with

p = 6 variables. While this is not a shortcoming compared to Bulteel et al. [7] who use VAR

models with 6, 6, and 8 variables, the results shown in the present paper would likely change

when considering more or less than six variables. Specifically, we expect that the n at which

VAR outperforms AR becomes larger when more variables are included in the model, and

smaller when less variables are included. This change may be nonlinear in nature: As we add

variables to the model, we would expect the variance of the VAR model to grow much quicker

than the variance of the AR model, since in the former case we need to estimate p2 parameters,

and in the latter only p. However, the bias of the AR model also grows with each new variable

added, with p2 − p elements set to zero in each case, and so again, this will largely depend on

the data-generating system at hand. Similarly, we would expect that for models with more vari-

ables the 1SER outperforms selecting the model with lowest prediction error for sample sizes

larger than 60. While the exact values will change for larger p, we expect that the general rela-

tionships between n, O, and D extend to any number of variables p.

Although Bulteel et al. [7] also consider mixed VAR and AR models, in the simulation stud-

ies presented above we focus exclusively on single-subject time-series for simplicity. Mixed

models can be seen as a form of regularization, in which individual parameter estimates are

shrunk towards the group-level mean if the number of observations n is small. One would
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expect that for small n, the use of mixed models would improve the estimation and prediction

errors of both models, which is also what Bulteel et al. [7] report in their results. Indeed, mixed

models are expected to improve the performance of VAR methods relative to AR, and thus

may be a solution to the relatively poor performance of the VAR model we observe in sample

sizes realistic for psychological applications. The reason is that the differential performance of

AR and VAR models can be understood in terms of a bias-variance trade-off, where AR mod-

els are biased but have lower variance than VAR methods. The use of mixed VAR models

should decrease this variance through shrinkage in small n settings [14, 15]. The precise effect

of using mixed models depends on the variance of parameters across individuals; however, we

do not expect the general pattern of results reported here to change when moving from single-

subject to mixed settings.

Future research could extend the analysis shown here to VAR models with less than or

greater than six variables, which would allow to generalize the simulation results to more situa-

tions encountered in psychological applications. Another interesting avenue for future

research would be to investigate the link between ngap and the VAR parameter matrix F. Since

ngap has direct implications for model selection, such a link could possibly be used to construct

improved model selection procedures. It would be useful to extend the simulation study in this

paper to constrained estimation such as the LASSO, especially since those methods are already

applied in practice [16]. Finally, it would be useful to study the performance of mixed VAR

models in a simulation setting, and perhaps compare this approach to alternative methods of

using group-level information in individual time-series analysis, such as GIMME, an approach

originally developed for the analysis of neuroimaging data [17]. Early simulation studies have

assessed the performance of mixed AR models in recovering fixed effects using Bayesian esti-

mation techniques [18], but these analyses have yet to be extended to mixed VAR models or

the recovery of individual-specific random effects.

To sum up, we used simulations to study the relative performance of AR and VAR models

in settings typical for psychological applications. We showed that, on average, we need sample

sizes approaching n = 89 for single-subject VAR models to outperform AR models. While this

may seem like a relatively large sample size requirement, such longer time series are becoming

more common in psychological research [19, 20] Decomposing this variance showed that (i)

one cannot expect reliable statements with respect to the relative performance of the AR and

VAR models that ignore the characteristics of the generating model, and (ii) that choosing reli-

ably between AR and VAR models is difficult for most sample sizes typically available in psy-

chological research. Finally, we provided a theoretical explanation for when the “1 Standard

Error Rule” outperforms simply selecting the model with lowest prediction error, and showed

that the 1SER performs better when n is small.
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