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Background: Acute kidney injury (AKI) remains a major global public health concern

due to its high morbidity and mortality. The progression from AKI to chronic kidney

disease (CKD) makes it a scientific problem to be solved. However, it is with lack of

effective treatments.

Summary: Both innate and adaptive immune systems participate in the inflammatory

process during AKI, and excessive or dysregulated immune responses play a pathogenic

role in renal fibrosis, which is an important hallmark of CKD. Studies on the pathogenesis

of AKI and CKD have clarified that renal injury induces the production of various

chemokines by renal parenchyma cells or resident immune cells, which recruits

multiple-subtype lymphocytes in circulation. Some infiltrated lymphocytes exacerbate

injury by proinflammatory cytokine production, cytotoxicity, and interaction with renal

resident cells, which constructs the inflammatory environment and induces further injury,

even death of renal parenchyma cells. Others promote tissue repair by producing

protective cytokines. In this review, we outline the diversity of these lymphocytes and

their mechanisms to regulate the whole pathogenic stages of AKI and CKD; discuss

the chronological responses and the plasticity of lymphocytes related to AKI and CKD

progression; and introduce the potential therapies targeting lymphocytes of AKI and

CKD, including the interventions of chemokines, cytokines, and lymphocyte frequency

regulation in vivo, adaptive transfer of ex-expanded lymphocytes, and the treatments of

gut microbiota or metabolite regulations based on gut-kidney axis.

KeyMessage: In the process of AKI and CKD, T helper (Th) cells, innate, and innate-like

lymphocytes exert mainly pathogenic roles, while double-negative T (DNT) cells and

regulatory T cells (Tregs) are confirmed to be protective. Understanding the mechanisms

by which lymphocytes mediate renal injury and renal fibrosis is necessary to promote

the development of specific therapeutic strategies to protect from AKI and prevent the

progression of CKD.

Keywords: lymphocytes, acute kidney injury, tubular cell damage, renal fibrosis, chronic kidney disease,

gut microbiota
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INTRODUCTION

Despite the identification of clinical diagnosis and application
of dialysis, acute kidney injury (AKI) remains a major global
public health concern due to high morbidity and mortality with
few systematic efforts to manage it including prevention,
diagnosis, and treatments (Mehta et al., 2015). Rodent
models of AKI have provided novel insights into the potential
pathophysiologic mechanisms, which include hypoxia, oxidative
stress, endoplasmic reticulum stress, mitochondrial dysfunction,
and inflammation. Hypoxia and oxidative stress induce
microvascular endothelium injury and endothelial cell activation
with expression change of new markers, which promote the
recruitment of inflammatory cells. Resident dendritic cells and
macrophages initiate inflammation in response to renal injury.
Subsequently, neutrophils and monocytes, which are recruited
by chemotactic signals, amplify the inflammation after acute
injury. Whereas, lymphocytes, especially T cells, are involved in
the whole evolution of injury (Zuk and Bonventre, 2016).

With acute injury, adaptive responses restore cell, and renal
tissue homeostasis. However, dysregulated or insufficient repairs
impair the regeneration and contribute to chronic kidney disease
(CKD) (Zuk and Bonventre, 2016; D’Alessio et al., 2019).
Immune cells with high plasticity and diversity participate in
almost all the events involved from renal injury to repair and the
subsequent fibrosis. For example, the phenotypes of macrophages
exert distinct functions in different phases of injury, including
M1 proinflammatory cells in the phase of injury and M2 anti-
inflammatory cells in the phase of recovery (Huen and Cantley,
2017; Tang et al., 2019). Similarly, lymphocytes possess polytropic
subtypes ensure to provide precise and comprehensive regulation
of immune response maintenance in injured kidney.

Generally, lymphocytes contain two major categories that are
T cells and B cells. T cells, which originate from bone marrow
(BM) progenitors, migrate to the thymus for maturation and
subsequently export into the periphery, are divided into alpha
beta T (αβT) cells and gamma delta T (γδT) cells according to
respective T-cell receptors (TCRs) on their surfaces. αβT cells
are further classified into cluster of differentiation (CD)4+T cells,
CD8+T cells, and double-negative T (DNT) cells, of which naïve
CD4+ T cells differentiate into various helper subsets in immune
responses such as T helper (Th)1, Th2, and Th17. In addition,
one unique type of T cells, called regulatory T cells (Tregs), plays
an important role in immune tolerance and homeostasis (Kumar
et al., 2018; Zhu, 2018).

Another type of lymphocytes, named innate lymphoid cells
(ILCs), have recently seen a great upsurge in studies related
to kidney diseases. Unlike T cells and B cells, ILCs lack
diversified and adaptive antigen receptors, which determine
their innate-immune properties. ILC1, ILC2, and ILC3 are the
innate counterparts of Th1, Th2, and Th17, respectively (Vivier
et al., 2018). Besides ILCs, several types of T cells function
like innate cells and exist extensively in normal kidneys with
tissue-resident characteristics, including invariant natural killer
T (iNKT) cells, mucosa-associated invariant T (MAIT) cells, and
γδT cells. These innate or innate-like lymphoid cells respond
earlier to renal damage than adaptive lymphocytes (Turner et al.,
2018).

Recent studies have challenged the view that CD4+ T
helper cell subsets are a cluster of terminally differentiated
homogeneous cells, demonstrating that T cells have more
powerful plasticity than previously thought. Ulf Panzer et al.
summarized the current perceptions of Th17 cell plasticity
and heterogeneity in autoimmune kidney diseases and debated
the single-side and harmful effect of Th17 cells on renal
inflammation (Krebs and Panzer, 2018). In addition, the stability
and anti-inflammatory effect of Tregs are also in doubt.
Researchers found that with the acquisition of hybrid fates,
Tregs became unstable under certain inflammatory conditions
and exerted promotion rather than suppression of inflammation
(Sakaguchi et al., 2013). Furthermore, ILCs and γδT cells are
also flexible in the inflammatory milieu with diverse activating
signals (Corpuz et al., 2017; Colonna, 2018). Understanding the
molecular basis of lymphocyte heterogeneity and plasticity in
AKI and CKD may allow the development of therapies to target
lymphocytes in a specific manner.

In this review, we summarized the mechanisms by which
various types of lymphocytes participate in AKI, subsequent
repair and progression to CKD with a focus on T cells and
ILCs. Then, we illuminated the diversity and plasticity of these
cells with time-course to progression and inflammatory status
changes. Finally, we discussed the potential effective therapeutic
interventions associated with lymphocytes for AKI and CKD
under current studies.

LYMPHOCYTES MEDIATE AKI AND CKD:
DIVERSITY AND MECHANISMS

During the past decades, many studies have uncovered that
lymphocytes, particularly diverse T cells and ILCs, play a
crucial role in postischemic, nephrotoxic, septic, and postrenal
AKI as well as subsequent repair and CKD, which are
nonautoimmune diseases (shown in Figure 1). Ischemia and
reperfusion induce sterile inflammation, in which hypoxia-
induced sterile cell death or injury causes the release of
some ligands, leading to immune responses. Such ligands,
called damage-associated molecular patterns (DAMPs), are
normally detained intracellularly. However, upon tissue damage,
they are released into the extracellular environment where
immune responses are activated (Eltzschig and Eckle, 2011).
The mechanisms of nephrotoxic AKI have a difference. Due
to high blood flow and local metabolism of drugs, the kidneys
are extremely sensitive to drug hypersensitivity. Drugs acting
as prohaptens or haptens turn native renal proteins into neo-
antigens, activating innate immune responses. And in the effector
phase, nephrotoxic AKI is characterized by the infiltration of
lymphocytes in the kidney (Perazella, 2019). In addition, sepsis
triggers a systemic and activated immune response followed by
immune suppression that may make septic AKI more severe
than non-septic AKI (Alobaidi et al., 2015). Due to the multiple
characteristics and functions of lymphocytes, mechanisms are
intricate, by which these cells give full play to their own expertise
and interact with infiltrated or intrinsic cells in kidneys. The
systematical findings in animal experiments and human studies
of AKI are shown in Tables 1, 2, respectively.
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FIGURE 1 | The roles of diverse lymphocyte subsets on AKI and renal fibrosis. Different subsets of T cells, innate-like lymphocytes, and innate lymphoid cells mediate

renal injury and fibrosis by regulating intrinsic cell death, proliferation, and fibroblast formation. In the process, cytokine secretion and cytotoxicity are two major

mechanisms. Some subsets of lymphocytes, such as Th1, Th17, type I NKT cells, and γδT cells, produce pathogenic cytokines like IFN-γ, induce renal inflammatory,

(Continued)
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FIGURE 1 | and impair TECs and VECs, resulting in the decline of renal function and exacerbation of renal fibrosis. While MAIT cells play the pathogenic role by

cytotoxicity. Other subtypes, such as Tregs, DNT cells, ILC2, and type II NKT cells, produce protective cytokines like IL-10, reduce renal inflammation, promote TEC

repair, leading to preserve renal function and alleviate renal fibrosis. In addition, Th2 and CD8+ T cells have dual roles in AKI and CKD. Cells colored red represent that

they are pathogenic. Cells colored blue represent that they are protective. Cells colored orange represent that they have dual roles. The rectangle with red background

represents the pathogenic role and that colored blue means the protective role. The up arrows mean increased roles, and the down arrows mean decreased roles. Th,

T helper cell; NKT, natural killer cell; γδT, γδ+T cell; MAIT, mucosa-associated invariant T cell; Treg, regulatory T cell; DNT, double-negative T cell; ILC2, type 2 innate

lymphoid cell; MAIT, mucosa-associated invariant T cell; IFN-γ, interferon γ; IL, interleukin; TEC, tubular epithelial cell; VEC, vascular endothelial cell.

TABLE 1 | The systematically findings of lymphocytes in animal experiments of AKI.

Year Models Findings References

2001 IR 1. Mice with deficiency in CD4+ T cells, rather than those with deficiency in

CD8+ T cells, were remarkedly protected from AKI that was called acute kidney

failure (ARF).

2. Adaptive transfer of wild-type CD4+ T cells for the reconstitution of

CD4-deficient mice was found to restore post-ischemic kidney injury.

Burne et al., 2001

2000 Cisplatin-induced

AKI

Harmful role of CD4+ T cells was confirmed in murine acute cisplatin

nephrotoxicity by adaptive transfer experiments.

Rabb et al., 2000

2003 IR STAT4 deficient in mice mildly improved renal function, whereas STAT6 deficient

markedly aggravated function and tubular injury.

Yokota et al., 2003

2015 IR Activated T cells, mostly positive for IL-17, were increased in the kidney after AKI

and elevated salt dietary intervention.

Mehrotra et al., 2015

2006 IR Isolation and transfer of T lymphocytes infiltrated in kidney into T cell-deficient

mice with renal IRI, reduced the functional and histological injury, thus,

suggesting the possible existence of reno-protective T cell populations, Tregs.

Ascon et al., 2006

2009 IR 1. There was a significant recruitment of Tregs into kidneys 3- and 10-days post

ischemia.

2. These infiltrated Tregs promoted tubular proliferation and reduced

pro-inflammatory cytokine generation.

3. Depletion of Tregs worsen renal function and mortality.

Gandolfo et al., 2009

2018 FA-induced AKI The strong upregulation of CCL20 was confirmed at day 2 of renal injury and

persisted for 7 days.

Gonzalez-Guerrero

et al., 2018

2009 IR Transfer of wild-type Tregs into immunodeficient mice prevented renal IRI, but

transfer of IL-10-deficient Tregs did not.

Kinsey et al., 2009

2016 IR DNT cells expand significantly and become the dominant subsets of the early

responders.

Martina et al., 2016

2020 Cisplatin-induced

AKI

DNT cells alleviate cisplatin-induced dysfunction and structure damage from AKI

by reducing apoptosis in kidney proximal tubular epithelial cells (PTECs).

Gong et al., 2020

2015 IR Given the protective role of Th2 and type 2 immunity on AKI, researchers intent

to whether ILC2s are also beneficial to kidney injury.

Huang et al., 2015

2019 IR A loss of ILC2s does not alter the severity of IR-induced renal injury suggesting

the redundancy of ILC2s for IRI protection.

Cameron et al., 2019b

2018 α-GalCer-induced

AKI

NKT cells injured kidney vascular endothelial cells by perforin-mediated pathway

and tubular epithelial cells by TNF-α/FasL pathway, leading to AKI with hematuria

in mice.

Uchida et al., 2018

2014 Cisplatin-induced

AKI

Depletion of γδT cells did not ameliorate cisplatin-induced renal injury indicating

γδT cells were unnecessary to injury.

Chan et al., 2014

T Helper Cells
An article published in 2001 provided direct evidence of
the pathogenic role of CD4+ T cells in AKI induced by
ischemia reperfusion (IR). Researchers found that mice with
deficiency in CD4+ T cells, rather than those with deficiency
in CD8+ T cells, were remarkedly protected from AKI that
was called acute kidney failure (ARF) at that time. The
following adaptive transfer of wild-type CD4+ T cells for the
reconstitution of CD4-deficient mice was found to restore

postischemic kidney injury. In addition, the reconstitutions with
CD4+ T cells lacking the ability of interferon gamma (IFN-
γ) production were insufficient to restore kidney injury, which
implied IFN-γ-producing CD4+ T cell might be a pathogenic
factor in AKI (Burne et al., 2001). A similar harmful role
of CD4+ T cells was confirmed in murine acute cisplatin
nephrotoxicity by adaptive transfer experiments (Rabb et al.,
2000). In addition, a clinical research showed that CD4+

lymphocyte ATP might be a new marker in sepsis-associated
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TABLE 2 | The systematically findings of lymphocytes in human studies of AKI.

Year Patients Findings References

2014 23 patients with sepsis CD4+ lymphocyte adenosine triphosphate (ATP) might be a new marker in

sepsis-associated AKI.

Patschan et al., 2014

2019 AKI after cardiac

surgery

Th1-induced IFN-γ, Th2-induced IL-4, and IL-13 increased after surgery

associated with postoperative AKI.

Moledina et al., 2019

2018 AKI secondary to

glomerular injury (IgA

nephropathy)

diagnosed based on

renal biopsy

CCL20 was increased in human kidneys and urine with AKI and urinary CCL20

was associated with severity.

Gonzalez-Guerrero

et al., 2018

2015 Sepsis-associated AKI The ratios of Tregs in peripheral blood might provide a potential biomarker to

accurately evaluate prognosis of sepsis.

Chen et al., 2015

2018 20 consecutive

patients undergoing

multibranched

endovascular

thoracoabdominal

aortic repair

The changes of infiltrated γδT cells were correlated with the elevated biomarkers

of tubular stress or injury.

Gocze et al., 2018

AKI because of its correlation with survival in sepsis (Patschan
et al., 2014). In summary, CD4+ T cells are generally
pathogenic agents in AKI induced by IR, nephrotoxic drugs,
and sepsis.

Furthermore, depletion of CD4+ T cells was proved to retard
UUO-induced renal fibrosis (Liu et al., 2012), and reconstitution
of lymphopenic recombination activating gene (RAG)−/− mice
with CD4+ T cells but not CD8+ T cells prior to unilateral
ureteric obstruction (UUO) led to more severe renal fibrosis
manifesting a significant increase in interstitial expansion and
collagen deposition, which revealed the pivotal role of CD4+ T
cells in renal fibrosis (Tapmeier et al., 2010). Naïve CD4+ T cells
activated by renal damage signals differentiate into distinct Th
cells producing lineage-specific cytokines. How various subtypes
of Th cells regulate the process of AKI and renal fibrosis
is noteworthy.

T Helper 1 and T Helper 2
T helper (Th) 1 and T helper 2 were initially Th cell
subsets reported to preferentially produce IFN-γ and IL-
4, respectively. These Th cell differentiations and cytokine
productions are regulated by their lineage-specific master
transcription factors, including T-bet/signal transducer and
activator of transcription (STAT)4 for Th1 and GATA binding
protein 3 (GATA3)/STAT6 for Th2 (Zhu, 2018). In experimental
animal models, STAT4 deficiency in mice mildly improved
renal function, whereas STAT6 deficiency markedly aggravated
tubular injury following renal ischemia-reperfusion injury (IRI).
T cells from STAT6 knockout mice expressed increased IFN-
γ, but reduced IL-4 (Yokota et al., 2003). In addition, IL-4-
deficient mice, representing defective Th2 immune responses,
were also showed to suffer from a significantly aggravated
functional and histological damage after IRI, especially the
impairment of tubular regeneration. While IL-12- or IFN-γ-
deficient mice with defective Th1 responses were completely
protected from IRI by upregulating the expression of HO-1

encoding cytoprotective proteins (Yokota et al., 2003; Marques
et al., 2006; de Paiva et al., 2009). A clinical study on biomarkers
of AKI after cardiac surgery showed that Th1-induced IFN-
γ and Th2-induced IL-4 and IL-13 increased after surgery
associated with postoperative AKI (Moledina et al., 2019). The
chemokines attracting leukocytes are generated from all types
of intrinsic renal cells, such as endothelial, mesangial, tubular
epithelial, interstitial cells, and podocyte, and regulate all the
steps of leukocyte recruitments, including activation, adhesion,
chemoattraction, and transmigration. In normal kidneys, the
production of chemokines for proinflammatory T cells is very low
but sharply increased under pathophysiological circumstances
(Segerer et al., 2000; Chung and Lan, 2011). C-XC motif
chemokine ligand (CXCL) 9 and CXCL10 are the two ligands
of C motif chemokine receptor (CXCR) 3, which are mainly
expressed on activated Th1 cells. The levels of CXCL9 and
CXCL10 expression were elevated over time after IR to 72 h
consistent with the loss of renal function (Fiorina et al., 2006).
These data demonstrate Th1 cells are pathogenic for AKI, while
Th2 cells are anti-inflammatory and protective.

Despite the protective role of Th2 in AKI, the benefit does not
extend to the subsequent CKD. In 2012, the first direct evidence
was provided that Th2 cells depraved renal fibrosis in the UUO
mouse model. Thus, researchers put forward inhibition of Th2
differentiation from CD4+ T cells as a potential therapeutic
intervention for renal fibrosis (Liu et al., 2012). Braga et al.
demonstrated the absence of IL-4 was associated with alleviated
UUO-induced renal fibrosis with better renal function that
was contrary to its role in AKI. In the past, Th2 immunity
was considered only as a simple regulator suppressing Th1
immunity to exert the anti-inflammatory function. Currently,
the dual effects of Th2 become clear that these cell populations
not only engage in protective events in reducing tissue
inflammation and activating tissue repair, but also contribute to
the development of tissue fibrosis when Th2 cytokine-mediated
recovery processes become long-term, excessive, or dysregulated
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(Gieseck and Wynn, 2018). Furthermore, the study indicated
that Th cell mediated renal injury by regulating macrophage
differentiation into anti-inflammatoryM2 and fibroblast collagen
deposition rather than directly regulate the fibrotic response,
and modulation of Th1:Th2 balance may be a potential strategy
against renal fibrosis (Braga et al., 2012). These studies suggest
that Th2-related immune responses exacerbate renal fibrosis
contrary to the effect on AKI.

T Helper 17
The third major Th cell population, Th17 cell, was discovered
just several decades ago, which is controlled by the master
transcription factors retinoic acid receptor-related orphan
receptor (ROR)γt and STAT3 (Zhu, 2018). Th17 cells are
generally perceived as detrimental factors for the pathogenesis
of renal autoimmune diseases (Krebs et al., 2017; Dolff et al.,
2019). Moreover, recent studies confirmed that Th17 cells also
made a vicious influence on non-autoimmune AKI and CKD.
Exposure to high-salt diets accelerated the transition from AKI
to CKD for mice mediated by lymphocyte activities. Activated T
cells, mostly positive for interleukin-17 (IL-17), were increased in
the kidney after AKI and elevated with salt dietary intervention.
The enhanced Th17 response hastened CKD and interstitial
fibrosis and was inhibited by angiotensin II type-1 receptor
(AT1R) antagonist, Losartan (Mehrotra et al., 2015). These
studies demonstrate that Th17 cells play a pathogenic role in AKI
and CKD mainly by IL-17 production.

The proinflammatory function of Th17 cells was achieved
partly through IL-17 family of cytokines, which induced the
mobilization and activation of neutrophils or participated in
macrophage-mediated tissue injury (Kitching and Holdsworth,
2011; Mi et al., 2011; Cortvrindt et al., 2017). The effect of IL-
17 on neutrophil recruitment was conducted in the acute phase
of injury. IL-17 also contributed to chronic inflammation in
lung (Wilson et al., 2010; Mehrotra et al., 2018) and liver (Tan
et al., 2013) injuries in spite of low-frequency IL-17-producing
cells in the later stage of inflammation, which was a dynamic
multistep process (Miossec and Kolls, 2012; Tan et al., 2013).
In renal obstruction models, IL-17A, a major member of the
IL-17 cytokine family, facilitated renal fibrosis by RANTES-
mediated leukocyte infiltration (Peng et al., 2015). However,
the effects of therapy targeting IL-17 are contradictory. Several
studies showed that systemic inhibition of IL-17 by antagonists
significantly reduced renal fibrosis and neutrophil infiltration
as well as pulmonary fibrosis and inflammation (Wilson et al.,
2010; Miossec and Kolls, 2012; Mehrotra et al., 2017; Orejudo
et al., 2019). Nevertheless, some other studies raised doubts due
to blockade or deficiency of IL-17A having no beneficial effect
on preventing renal fibrosis progression following severe IRI.
The different severity of IRI might account for the contradictory
conclusions (Thorenz et al., 2017; Rosendahl et al., 2019). Thus,
whether the inhibitors of IL-17 cytokine family can be clinically
applicated remains to be explored. And researchers need to focus
on the confirmation of the specific subtype of cytokines in IL-17
family such as IL-17A and IL-17F associated with the pathogenic
process of AKI and CKD. In addition, the severity and stages of
renal injury are also worthy of consideration.

REGULATORY T CELLS

Isolation and transfer of T lymphocytes infiltrated in kidney
into T cell-deficient mice with renal IRI reduced functional
and histological injury, thus, suggesting there may be a kind
of renoprotective T-cell populations, which was confirmed
as Tregs (Ascon et al., 2006). Foxp3 is currently the best
marker to identify Tregs, which constitute 5–10% of the total
CD4+ T-cell populations. Despite the relative low frequency,
Tregs are regarded as crucial orchestrators of the regulation
of inflammation, the maintenance of immune tolerance, and
homeostasis (D’Alessio et al., 2019). In animal experiments,
there was significant recruitment of Tregs into kidneys 3- and
10-days postischemia. These infiltrated Tregs promoted tubular
proliferation and reduced proinflammatory cytokine generation,
and depletion of Tregs worsened renal function and mortality
(Gandolfo et al., 2009). C-C motif chemokine ligand (CCL20),
expressed by tubular, endothelial, and interstitial cells, is a key
attractor for the influx of Tregs as well as Th17 into injured
kidneys. CCL20 was upregulated in three models of renal injury
induced by over-dose folic acid (FA), cisplatin, and UUO. In FA-
induced AKI, the strong upregulation of CCL20 was confirmed
at day 2 of renal injury and persisted for 7 days. CCL20 was
increased in human kidneys and urine with AKI and urinary
CCL20 was associated with severity (Gonzalez-Guerrero et al.,
2018). In one clinical study of sepsis-associated AKI, the ratio of
Tregs in peripheral blood might provide a potential biomarker
to accurately evaluate the prognosis of sepsis (Chen et al., 2015).
Another research on patients with AKI demonstrated the positive
effect of T-cell immunoglobulin and mucin domain 3 (TIM-3)
on Treg protective function (Dong et al., 2019). The mechanisms
of Treg protective role in kidney injury refer to the secretions
of immunosuppressive cytokines and pro-repair mediators. IL-
10 is the major anti-inflammatory molecule produced by Tregs
(D’Alessio et al., 2019). IRI induced a significant increase in IL-
10+ Tregs in the repair phase (Kinsey et al., 2010). Treg reduction
caused the increase of neutrophil and macrophage infusion and
innate cytokine transcription. Furthermore, transfer of wild-
type Tregs into immunodeficient mice prevented renal IRI, but
transfer of IL-10-deficient Tregs did not. These data indicate that
Tregs regulate renal IRI in early injury stage by suppression of the
innate immune responses in an IL-10-mediated manner (Kinsey
et al., 2009). In addition, Treg-derived adenosine activates
adenosine 2A receptor (A2AR) is expressed on immune cells
suppressing inflammation and improving renal function decline
after IRI through a programmed cell death (PD-1)-dependent
mechanism, which is regulated by CD73, the final enzyme
participating in the extracellular adenosine production (Kinsey
et al., 2012). Endogenous Toll-like receptor 9 (TLR9) is also
an important regulator of AKI by promoting Treg recruitment
(Alikhan et al., 2016). These studies imply that expansion of Tregs
might be a potential strategy for preventing AKI.

In vitro, Tregs modulated macrophages by inhibiting
their activation and downregulating the effector phenotype
of macrophages, leading to alleviate chronic kidney injury.
The Treg-macrophage inhibitory interaction was transforming
growth factor-β (TGF-β)-dependent (Mahajan et al., 2006).
Besides that, CD226 deficiency on Tregs exacerbated renal
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fibrosis in the UUOmodel by upregulating Th2-related cytokines
like IL-4 (Mu et al., 2020). Recently, a single-cell RNA sequencing
study showed that tissue-resident IL-33R+ and IL-2Ra+ Tregs
markedly increased following injury in the two mouse models
of either kidney repair or fibrosis. Mice with expansion of
this population before injury were protected from renal injury
and fibrosis. However, despite Tregs showing a upregulation of
regenerative and proangiogenic pathways in the repair phase,
they expressed markers related to hyperactivation and fibrosis
in the fibrotic environment, suggesting the plasticity in Treg
function (do Valle Duraes et al., 2020). Many interventions
targeting Treg expansion were confirmed to attenuate kidney
injury, including the CCL20 blocking agent (Zuk and Bonventre,
2016), the IL-2/anti-IL-2 complex (IL-2C) (Kim et al., 2013),
IL-233(Stremska et al., 2017), resolvin D1 (Luan et al., 2020),
mesenchymal stem cell–derived extracellular vesicles (Song et al.,
2020), and oxidized ATP (oATP) (Koo et al., 2017). These data
suggest that it is necessary to understand the plasticity and
heterogeneity of Tregs and figure out the precise function of each
Treg subset.

CD8+ T Cells
After IRI, renal IFN-γ-producing CD8+ T cells were increased
(Ascon et al., 2008). Germ-free mice encountered more severe
IRI, which was associated with the enhancement of CD8+ T
cell trafficking to the kidney (Jang et al., 2009). However, unlike
CD4+ T cells, CD8+ T cell deficiency did not alter the renal
outcomes of IRI (Burne et al., 2001). In spite of this, the detailed
roles of CD8+ T cells on AKI are yet to be completely determined.

In the UUO mouse model of renal fibrosis, genetic ablation
of CD8+ T cells increased renal interstitial fibrosis by promoting
BM-derivedmonocyte-to-fibroblast transition, whereas, adaptive
transfer of CD8+ T cells to CD8 knockout mice decreased
fibrosis, which indicated that CD8+ T cells might have an
anti-fibrotic effect on kidneys. A further study discovered that
depletion of CD8+ T cells resulted in the higher expression
of IL-4 and GATA3 and lower expression of IFN-γ and T-
bet on CD4+ T cells, suggesting that CD8 knockout primed
the immune response of Th1 skewing to that of Th2 (Dong
et al., 2016). The infiltrated CD8+ T cells from obstructed
kidneys expressed perforin, granzyme, and Fas ligand (FasL)
that were related to cytotoxicity. The activation of CD8+ T cells
required the inflammatory milieu, in which chemokines like
CCL2, CCL3, CCL4, and CCL5 existed obviously. In addition,
CD8+ T cells were distributed around fibroblasts to mediate the
apoptosis of these profibrotic cells. Moreover, CD11c expression
made CD8+ T cells express higher levels of the cytotoxicity-
associated genes, and in vitro, CD11c+ CD8+ T cells induced
fibroblast death (Wang et al., 2016). Thus, promoting CD8+

T cell recruitments may be an effective mechanism, by which
clusterin (Guo et al., 2016) and astaxanthin (Diao et al., 2019)
protect against renal fibrosis.

Double-Negative T Cells
Double-negative T cells identified by CD4- and CD8- are an
unconventional component of αβT cells, which constitute 20–
38% of the αβT cell pool in normal kidneys of mice. In

contrast, the frequency levels in the lymph nodes and spleen
are lower in only 5–10%. In a steady state, DNT cells in the
kidney display an activated phenotype expressing less CD62L
with higher expressions of CD44 and CD69 compared to CD4+

and CD8+ counterparts. Besides that, kidney-resident DNT
cells proliferate actively under the steady state and suppress
CD4+ T cell proliferation in vitro (Martina et al., 2016). Many
previous studies showed that DNT cells producing IL-17 and
IFN-γ expanded in patients with systemic lupus erythematosus
(SLE) (Crispin et al., 2008) and were a potential biomarker for
SLE (Alexander et al., 2020). They also contributed to other
autoimmune diseases such as type-1 diabetes (Ford et al., 2007),
Sjögren’s syndrome, and psoriasis (Brandt and Hedrich, 2018).
In response to IR-induced AKI, DNT cells expanded significantly
and become the dominant subsets of the early responders. IL-10
and IL-27 cytokines were markedly expressed in DNT cells in a
steady state but altered in IRI with significantly increased IL-10
and slight decreased IL-27 that suggested that DNT cells might
be beneficial to prevent AKI depending on IL-10 as conventional
cytokine from Tregs. Further study confirmed this hypothesis by
adaptive transfer experiments (Martina et al., 2016). DNT cells
alleviated cisplatin-induced dysfunction and structure damage in
AKI by reducing apoptosis in proximal tubular epithelial cells
(PTECs) of the kidney (Gong et al., 2020). Another mechanism
of DNT cells in the suppression of immune responses was
directly killing effector T cells by antigen-specific recognition and
Fas/FasL or perforin/granzyme pathway(Chen et al., 2004; Voelkl
et al., 2011). In human kidneys, DNT cells also accounted for a
high proportion of T cells, which suggested the prospect of DNT
cells for clinical translation (Martina et al., 2016). These studies
demonstrate that DNT cells protect mice from AKI in the early
stage by regulating cytokine production and the cytotoxic effect,
and their roles on CKD remain to be understood.

Innate Lymphoid Cells
Innate lymphoid cells originate from common progenitors with
T and B lymphocytes but lack adaptive antigen receptors, which
are a heterogeneous population and the innate counterparts
of T cells. Based on the major cytokines ILCs produce and
the master transcription factors driving their differentiation,
ILCs are distinguished from three groups: IFN-γ-producing T-
bet+ ILC1s, GATA3+ ILC2s secreting IL-5, IL-9, IL-13, and
amphiregulin, and RORγt+ ILC3s producing IL-22 and IL-17.
ILC1s, ILC2s, and ILC3s correspond to Th1, Th2, and Th17,
respectively (Vivier et al., 2018). ILCs are found predominantly
resident in barrier organs like the gut, the lung, and the
skin, where they maintain tissue homeostasis, regulate against
infection and contribute to immune-mediated diseases in mice
and humans (Gasteiger et al., 2015). Recently, a novel regulatory
subpopulation of ILCs existing in the gut has been identified
called ILCregs, which harbor a unique gene identity distinct from
that of ILCs or Tregs. ILCregs secret IL-10 to activate ILC1s
and ILC3s, causing protection against innate gut inflammation
(Wang S. et al., 2017), but whether they can function as
conventional Tregs for reno-protection remains unclear. These
data suggest ILCs have a large family and the members exert
different functions.
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In healthy murine and human kidneys, ILC2s are the major
ILC population and play a similar role in AKI and CKD to
Th2 due to their co-participating type 2 immunity (Wang Y.
M. et al., 2017; Gieseck and Wynn, 2018). Given the protective
role of Th2 and type 2 immunity on AKI, the intent of the
researchers is to find whether ILC2s are also beneficial to
kidney injury. Expanding ILC2s by IL-25 or IL-33 released from
damaged epithelial cells significantly improved renal function
and alleviated injury after IR with greater amounts of Th2
cytokines such as IL-4, IL-5, and IL-13, which induced M2
macrophage subtype and suppressed M1 in vitro. Furthermore,
adaptive transfer of ILC2s identically reduced renal functional
and histological damage as well as enhancing M2 induction and
amphiregulin production in the kidney (Huang et al., 2015; Cao
et al., 2018; Gieseck and Wynn, 2018). But the concrete effects
of IL-33 treatment depended on the dosage, the duration, and
the injury type, which might reverse the advantageous role to a
deleterious one (Cameron et al., 2019a). IL-233, a novel hybrid
cytokine bearing the activities of IL-2 and IL-33, increased the
frequency of ST2-bearing ILC2s in both blood and kidneys to
protect mice from IRI (Stremska et al., 2017). In a doxorubicin-
induced nephrotoxic renal injury model, IL-233 treatment not
only augmented anti-inflammatory cytokines and attenuated
proinflammatory cytokine thus reducing renal inflammation,
injury, and fibrosis, but also promoted regeneration with
increased expression of genes related to renal progenitor cells
and nephron segments (Sabapathy et al., 2019). However, a loss
of ILC2s does not alter the severity of IR-induced renal injury
suggesting the redundancy of ILC2s for IRI protection, which
may be due to the compensation of another type 2 immune cell
activation (Cameron et al., 2019b).

Expanded ILC2s by IL-33 were also confirmed to ameliorate
glomerulosclerosis in mice with Adriamycin-induced CKD
(Wang et al., 2015). Nevertheless, the anti-fibrotic role of ILC2s
needs to be well-argued since type 2 immunity is commonly
considered as a profibrotic factor such as Th2 response
mentioned above (Gieseck and Wynn, 2018). In summary, ILCs
alleviate AKI by mechanisms similar to Th2, and their effects on
CKD remain to be explored.

Innate-Like T Lymphocytes
Innate-like T lymphocytes, including NKT cells, γδT cells, and
MAIT cells, are a significant component of innate immunity and
they along with ILCs hold a unique capacity for innate responses
to maintain homeostasis of the gut (Constantinides, 2018), and
the lung (Borger et al., 2019). Their early responses to renal injury
also deserve special attention.

Natural Killer T Cells
Natural killer T cells are an unusual T lymphocyte subpopulation
that co-expresses the natural killer receptors and TCRs, serving
as a bridge between innate and adaptive immunity. These cells
are lipid-sensing innate-like T cells, which express semi-invariant
αβTCR only recognizing glycolipid antigens presented by CD1d,
a major histocompatibility complex (MHC)-I-like molecular
(Sun et al., 2019). According to the Vα14-Jα18 in TCRs, NKT
cells are categorized into type I and type II NKT cells. The

former type, also named iNKT cells, is sensitive to glycolipid α-
galactosyl ceramide (αGalCer) and the latter is activated by the
self-glycolipid 3-sulfated β-galactosyl ceramide (sulfatide) (Jahng
et al., 2004).

Natural killer T cells are not sensitive to non-protein DAMP
molecules, but alarms like IL-33 cytokines that are tissue-derived
nuclear proteins released after damage, activate NKT cells to
recruit neutrophils by IFN-γ and IL-17A release (Ferhat et al.,
2018). By this means, NKT cells regulate the initial process
of sterile inflammation in the kidney (Li et al., 2007). IFN-
γ cytokines are the important downstream effector molecular
of NKT cells. Spontaneous, local, and probably extravascular
activation events of NKT cells in the liver and kidney result in
the local secretion of IFN-γ (Zeng and Howard, 2010; Aguiar
et al., 2015). NKT cells injured kidney vascular endothelial
cells by perforin-mediated pathway and tubular epithelial cells
by tumor necrosis factor (TNF)-α/FasL pathway, leading to
AKI with hematuria in mice. The human CD56+ T cells, a
counterpart of mouse NKT cells, exerted their similar functions
(Uchida et al., 2018). Natural Immunoglobulin M (IgM) anti-
leukocyte autoantibodies (IgM-ALAs) (Lobo et al., 2017) and
A2AR agonists (Li et al., 2012) attenuated AKI by suppressing
NKT cells. However, studies on type II NKT cells found that
they abrogated kidney IRI. In vitro, type II NKT cells attenuated
tubular apoptosis after transient hypoxia through hypoxia-
inducible factor (HIF)-1α and IL-10 pathways (Yang et al., 2011).

In adenine-induced renal injury, administration of αGalCer
to activate iNKT cells reduced renal fibrosis. CD1d-dependent
NKT cells improved non-alcoholic fatty liver disease (NAFLD)-
associated CKD via reducing renal inflammation, mesangial
cell proliferation, and tubular cell apoptosis (Alhasson et al.,
2016). Besides that, IL-22 cytokines produced by NKT cells have
been proved to play a protective or pathogenic role in chronic
inflammation depending on the nature of the influenced tissues
and the cytokine microenvironment (Witte et al., 2010; Dudakov
et al., 2015). These data imply that NKT cells in the kidney have
dual effects depending on the polytropic inflammatory milieu.

Gamma Delta T Cells
Gamma delta T cells are another type of T cells,
distinguishing from αβT cells based on the distinct TCR
types. They are triggered by stress-induced ligands from
aberrant cells without antigen processing and presentation,
thus acting in the initial phase of injury and playing
a major role in bridging innate and adaptive immune
responses (Patil et al., 2015).

Gamma delta T cells are one of the sources of IL-17A
that is increased in cisplatin-induced AKI and UUO-induced
renal fibrosis (Huen and Cantley, 2017; D’Alessio et al., 2019).
However, depletion of γδT cells did not ameliorate cisplatin-
induced renal injury, indicating γδT cells were unnecessary to
injury (Chan et al., 2014). Even so, γδT cells responded very
quickly to human AKI. The decrease in circulating γδT cells
and increase in kidney γδT cells demonstrated the possibility of
their migration from circulation to kidney tissues. The changes of
infiltrated γδT cells were correlated with the elevated biomarkers
of tubular stress or injury (Gocze et al., 2018). Analysis of kidney
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biopsy tissues from patients with renal fibrosis showed that larger
numbers of γδT cells were infiltrated in kidneys with lower
estimated glomerular filtration rate (eGFR), which suggested
the negative correlation between γδT cell number and loss of
renal function. In addition, fibrotic tissues contained significantly
more Vδ1+ γδT cells, and CD161+ γδT cells displayed an innate-
like cytotoxic phenotype. Furthermore, the localization and the
expression of IL-17A of γδT cells implied that theymight mediate
the survival of PTECs (Law et al., 2019a). These data from
animal experiments and clinical studies showed that γδT cells
are pathogenic factors for renal injury and fibrosis by promoting
IL-17A production.

Mucosa-Associated Invariant T Cells
Mucosa-associated invariant T cells are one of the innate-like
T cell subtypes recognizing riboflavin metabolites depending
on the MHC-related molecule 1. When activated, they rapidly
produce various proinflammatory cytokines suggesting their
detrimental roles in chronic inflammatory diseases (Howson
et al., 2015). MAIT cells are enriched in the gut, liver, and
lung to defend against pathogen attack (Le Bourhis et al.,
2010). In recent years, only one article published in Journal
of the American Society of Nephrology (JASN) addressed that
tissue-resident MAIT cells in human kidneys might contribute
to the fibrotic process of CKD by complex interactions with
PTECs. In this study, researchers found that MAIT cells
were increased in the tissue samples from fibrotic kidneys
compared with those from non-fibrotic kidneys. And the
numbers of MAIT cells were correlated with loss of kidney

function. Furthermore, theseMAIT cells accumulated adjacent to

PTECs, and highly expressed activation marker CD69 cytotoxic

molecules perforin and granzyme B, which led to PTEC necrosis
(Law et al., 2019b). Despite that, further studies of MAIT cells are
necessary to unequivocally determine the non-redundant role in
CKD pathogenesis.

Recently, the application of high-dimensional cellular
analyses, such as single-cell RNA sequencing (scRNA-seq), has
helped researchers to figure out detailed characterization of

immune cell population in kidney disease. The research on

patients with kidney transplant rejection showed that recipient-
origin T-cells expressed proinflammatory genes, whereas
donor-origin T-cells expressed oxidative phosphorylation genes,
which indicated that T cells from two sources had distinct
transcriptional profiles (Malone et al., 2020). In addition, the
technique of scRNA-seq has been used to identify CD4+ tissue-
resident memory T cells with a Th17 signature in the kidney of
patients with antineutrophil cytoplasmic antibody–associated
glomerulonephritis and dysfunction of CD8+ T cells in patients
with SLE and IgA nephropathy (Krebs et al., 2020; Maria and
Davidson, 2020). However, this advanced technique is rarely
used in studies on AKI, which may be due to the lack of samples
from patients of AKI. Our team has recently identified four
subcluster macrophages at different time points in the I/R model
and analyzed the transition of Arg1+ macrophages (Cluster 1)
into Ccr2+ macrophages (inflammatory Cluster 0) (Zhu et al.,
2021). In a further study, we will focus on the identification of

lymphocyte characteristics and analyze different functions of
subtypes in AKI and CKD.

VERSATILE LYMPHOCYTES IN AKI AND
CKD: CHRONOLOGICAL RESPONSES
AND PLASTICITY

The pathogenesis of AKI and CKD is a complicated process
with the involvement of multicellular and multifactor in the
above elaboration. These pleiotropic immune cells respond to
injury in a chronological order according to their immunological
characteristics and mechanisms of damage responses (shown in
Figure 2). It is indispensable to determine the “time window” of
distinct lymphocytes, which will guide precise therapies targeting
corresponding effector cells at different stages of injury.

In general, innate and innate-like lymphocytes respond
rapidly to organ injury. For instance, NKT cells and γδT
cells were immediate participants in the hyperacute immune
responses following the first 6 h of trauma and hemorrhagic
shock (Manson et al., 2019). In the kidney, Hochegger et al.
confirmed that αβT cells were the major effector cells, whereas
γδT cells acted as mediator cells in the first 72 h of renal
IR-induced injury, bridging immediate innate and subsequent
adaptive immunity. Deficiency of αβT cells reduced renal
functional and histological damage 72 h after IR, but had no
influence on renal function 24 h after IR. Moreover, infiltration
of γδT cells into kidney was equal in αβT cell-deficient mice
and wild-type mice, whereas, lack of γδT cells led to the
significant decrease in αβT cells until 120 h after IR, suggesting an
interaction between αβT cells and γδT cells. These data indicated
that γδT cells functioning in the early injury stage might be
a driver of CD4+ and CD8+ T responses in the later stage
(Hochegger et al., 2007). DNT cells are also early responders,
which significantly expanded, and rapidly became the major
subpopulation 3 h after IRI and remained dominant until 24 h.
However, they decreased to the level below steady state by 72 h
after IRI. DNT cells are a dominant kidney-resident subset and
largely produce cytokines at the steady state, which may be one
explanation why they respond so quickly to AKI in an innate-
like manner (Martina et al., 2016). Besides that, NKT cells and
ILC2s are also considered as initial responders to kidney injury
due to their innate-immune and tissue-resident properties. They
are activated and expanded by molecules released from damaged
cells without the involvement of antigen-presenting cells, while
adaptive T cells need to go through the process of differentiation,
thus determining their delayed responses to kidney injury (Cao
et al., 2018; Ferhat et al., 2018). Therefore, we cannot ignore the
crucial effects of innate and innate-like lymphocytes, a pioneer of
AKI, whether they are beneficial or detrimental.

After innate immunity activation, adaptive T lymphocytes
come on stage and they persist activated from acute to chronic
phase. Th1/Th2 balance regulated renal injury 24 and 48 h after
IR (Marques et al., 2006). Th17 cells produced IL-17 cytokines to
recruit neutrophils, thus influencing early kidney injury events
with dramatical enhancement at day 1 and day 3 post IR and
recovery to the baseline at day 7. The second expansion of Th17
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FIGURE 2 | The mechanisms of diverse lymphocyte subsets on AKI and renal fibrosis in the different stages. Innate and innate-like lymphocytes reside in normal

kidneys and become early responders to renal injury. Subsequently, differentiated adaptive T cells migrate into the kidney in progressing phase, and some of these

cells like Treg and MAIT participate in the repair or fibrotic process. Cell-cell interactions are achieved by the production of various cytokines and cytotoxicity mediated

by FasL/Fas. VEC, vascular endothelial cell; TEC, tubular epithelial cell.

cells existed with the high-salt diet hit (Mehrotra et al., 2015,
2019). Tregs trafficked into the kidney to suppress the function of
Th1, Th2, and Th17 at day 3 post IR and involved in repair at day
10 (Gandolfo et al., 2009). In addition, Th2 also mediated tubular
reparation and promoted fibrosis with excessive repair (Marques
et al., 2006). In summary, early responses of innate and resident
lymphocytes along with later responses of adaptive T cells
participate in the pathogenesis of AKI and T cells related to tissue
repair or fibrosis engage in the subsequent CKD progression.

In renal IRI, a clear M1-to-M2 phenotypic switch occurs,

which provides the possibility that the same cell possesses

plasticity under the changes of microenvironment (Tang et al.,

2019). Like macrophages, the plasticity of CD4+ T cells is

also reflected in immune-mediated kidney disease (Krebs and

Panzer, 2018). The expressions of their lineage-specific master

transcription factors are dynamic and cross-regulation. The co-
expressions of these transcription factors result in CD4+ T
cell plasticity (Zhu, 2018). Researchers found the conversion
of Tregs to IL-17+ phenotypic cells enhanced renal fibrosis

in UUO mice, which was prevented by inhibition of histone
deacetylase (HDAC) activity suggesting the importance of
epigenetic modifications (Wu et al., 2017). Besides CD4+ T
cells, ILC2s can also switch into ILC1s or ILC3s due to yet
unknown triggers (Krabbendam et al., 2018). Differentiated T
cells have the potential to dedifferentiate and undergo the shift to
another subtype, which is driven by a complex network of signals
under the microenvironment of AKI and CKD. Nevertheless,
whether this plasticity occurs, which form it presents with and
which signals trigger it remains to be further studied, aiming to
provide enough evidence of the possibility of modulating cell-cell
plasticity to alleviate inflammatory kidney diseases (Rajendran
et al., 2019).

POTENTIAL THERAPIES TARGETING
LYMPHOCYTES OF AKI AND CKD

Based on the versatile lymphocytes engaging in the process of
AKI and CKD, what targeting these players may be potential
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TABLE 3 | The treatments targeting of lymphocytes in vivo.

Agents Descriptions Species Models In vivo effects References

IL-18 Bp A IL-18 inhibitor Mouse IR T cell infiltration ↓

Renal fibrosis ↓

Wu et al., 2017

soluble ST2 (sST2) A decoy receptor

Neutralizing IL-33 activity

Mouse IR T cell infiltration ↓

Renal function ↓

Renal injury score ↓

Renal fibrosis ↓

Krabbendam et al.,

2018

BX471 A CCR1 blocker Mouse UUO T cell infiltration ↓

Renal fibrosis ↓

Histopathological injury ↓

Hochegger et al., 2007

Margatoxin A Kv1.3-channel inhibitor Rat UUO T cell infiltration, proliferation and cytokine

production ↓

Renal fibrosis ↓

Rajendran et al., 2019

ICG-001 A Wnt/β-catenin pathway

inhibitor

Rat 5/6 nephrectomy T cell infiltration ↓

Renal function ↓

Renal fibrosis ↓

Anders et al., 2002

YM58343/BTP2 A calcium-channel inhibitor Rat IR Th17 activation ↓

Renal function ↓

Acute renal injury ↓

Renal fibrosis ↓

Mehrotra et al., 2019

IL-17Rc The IL-17Rc soluble

receptor

Mouse IR Th17 activation ↓

Renal fibrosis ↓

Mehrotra et al., 2017

Losartan An angiotensin receptor 1

(AT1) antagonist

Mouse UUO Treg accumulation ↑ Mehrotra et al., 2015

Rat IR Th17 number ↓

Renal function ↓

Renal fibrosis ↓

IL-36Rn IL-36R Antagonist Mouse UUO Th17 differentiation ↓

Renal fibrosis ↓

Chi et al., 2017

MSCs and

paricalcitol

Co-administration of MSCs

and a vitamin D receptor

agonist

Mouse UUO CD4+ and CD8+ T cell accumulation ↓ Duffy et al., 2014

Th17 differentiation ↓

Renal fibrosis ↓

Trichostatin A

(TSA)

A histone deacetylase

(HDAC) inhibitor

Mouse UUO CD4+IL-17+ T cell percentage ↓

Renal fibrosis ↓

Maria and Davidson,

2020

Periodate-oxidized

ATP (oATP)

A P2X7 receptor (P2X7R)

antagonist

Mouse IR Treg infiltration ↑

Tubular injury ↓

Renal fibrosis ↓

Koo et al., 2017

IL-2/ – Mouse IR Treg number ↑

Renal function ↑

Tubular injury ↓

Renal fibrosis ↓

Kim et al., 2013

Anti-IL-2 complex

(IL-2C)

Rapamycin A mTOR inhibitor Mouse IR Treg number ↑

Acute kidney injury ↓

Renal fibrosis ↓

Liang et al., 2018

Resolvin D1 An endogenous lipid

mediator

Mouse IR Treg percentage ↑

Tubular injury ↓

Luan et al., 2020

IL-233 A hybrid cytokine bearing

IL-2 and IL-33

Mouse Cisplatin- and

doxorubicin-induced

nephrotoxic renal injury

Treg and ILC2 number and proportion ↑

Renal function ↑

Tubular injury ↓

Renal fibrosis ↓

Sabapathy et al., 2019

IR Treg number ↑

Renal function ↑

Tubular injury ↓

Stremska et al., 2017

Astaxanthin A natural and nontoxic

xanthophyll carotenoid

Mouse UUO CD8+ T cell recruitment ↑

Renal fibrosis ↓

Diao et al., 2019

(Continued)
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TABLE 3 | Continued

Agents Descriptions Species Models In vivo effects References

IL-25 – Mouse IR ILC2 frequency ↑

Tubular injury ↓

Huang et al., 2015

IL-33 – Mouse IR ILC2 and Treg number ↑

Renal function ↑

Tubular injury ↓

Cao et al., 2018

strategies for ameliorating the inflammation-mediated diseases,
including the interventions of lymphocyte activities in vivo, the
adaptive transfers of ex-expanded beneficial lymphocytes like
Tregs, and the treatments based on the gut-kidney axis.

Targeting of Lymphocytes in vivo
BX471, a CCR1 blocker, reduced renal fibrosis in mice of
UUO by decreasing the T cell infiltration, which represented
that blocking chemokines and respective receptors might be
a potential therapeutic strategy for alleviating renal fibrosis
(Anders et al., 2002). However, CCL20 blockade increased the
severity of FA-induced AKI, which might be related to a lower
infiltration of Tregs in spite of a decrease in proinflammatory
Th17 influx (Gonzalez-Guerrero et al., 2018). Therefore, the
treatments targeting chemokines and their receptors should be
considered for their non-specificity for recruiting lymphocytes.

Inhibiting IL-18 by IL-18 binding protein (Bp) also impaired
T cell infiltration and reduced IR-induced renal fibrosis (Liang
et al., 2018). In addition, IL-25 treatment protected mice
against IRI by elevating ILC2 frequency (Huang et al., 2015).
Interestingly, the administration of IL-33 is a double-edged
sword. On the one hand, IL-33 ameliorated IR-induced AKI
by expanding ILC2 and Tregs (Cameron et al., 2019a). On the
other hand, soluble ST2 (sST2), a decoy receptor that neutralizes
IL-33 activity, also reduced renal IRI by lowering CD3+ cell
level (Liang et al., 2017). The dosage of IL-33, the duration of
administration, and the severity and the stage of renal injury
may remarkably alter the responses performed to be beneficial or
deleterious. IL-233 is a hybrid cytokine bearing IL-2 and IL-33.
IL-233 increased the number of Tregs and ILC2s in doxorubicin-
induced nephrotoxic renal injury and enhanced Treg influx in
IRI, thus playing a protective role in AKI of the two models
(Stremska et al., 2017; Sabapathy et al., 2019). Moreover, IL-17Rc
inhibited Th17 activation leading to significantly mitigate renal
fibrosis (Mehrotra et al., 2017). The administration of an IL-
36R antagonist after UUO attenuated tubulointerstitial lesions
(TILs) that might be associated with the reduction of Th17
differentiation (Chi et al., 2017). IL-2/anti-IL-2 complex (IL-
2C) protected against mouse IRI by inducing Treg expansion
(Kim et al., 2013). Thus, various cytokines as the main effector
molecules are the valuable target of T cells to treat AKI and CKD.

Besides that, as one of the inhibitors of delayed rectifier
K+-channel, Kv1.3 like margatoxin (Abe et al., 2019) and
YM58343/BTP2 (Mehrotra et al., 2019) were expressed on T
lymphocytes, and also found to acute injury and chronic fibrosis
in rat kidney. T cell infiltration was decreased by a wingless-type

(Wnt)/β-catenin pathway inhibitor, ICG-001, which therefore
prevented CKD in a 5/6 nephrectomy model (Xiao et al., 2019).
Many other agents, including losartan (Mehrotra et al., 2015),
periodate-oATP (Koo et al., 2017), rapamycin (Chen et al.,
2016), and resolvin D1 (Luan et al., 2020) augmented Treg
accumulation to reduce renal damage and promote recovery.
Mesenchymal stem cells (MSCs) supplemented with a vitamin
D receptor agonist inhibited Th17 differentiation (Duffy et al.,
2014). Astaxanthin promoted CD8+ T cell recruitment (Diao
et al., 2019), and aHDAC inhibitor, trichostatin A (TSA), lowered
CD4+ IL-17+ T cell percentage (Wu et al., 2017). All of these
treatments prevented renal fibrosis. Besides that, Kynorenin as
an important immune modulator was found highly predictive
for “major adverse kidney events” of contrast induced AKI
(Reichetzeder et al., 2017). These data suggest how to expand
beneficial T cells and reduce pathogenic ones in vivo is the focus
issue. In summary, the treatments targeting lymphocytes in vivo
were listed in Table 3.

Adaptive Transfer of Ex-expanded
Lymphocytes
In animal experiments, adaptive transfer of beneficial
lymphocytes such as Tregs, DNT cells, and ILC2s can effectively
reduce renal injury caused by IR and nephrotoxins. Treg-based
cellular therapy has been extensively studied in recent years.
Studies have shown that Tregs protect allografts in kidney
transplant models of mice due to their immunosuppressive
function. However, clinical translation is challenging. Treg
preparations, dose, and frequency are worthy of consideration.
In addition, the instability and variability of Tregs arise safety
concerns, thus Tregs should be identified and quantified prior to
transplant trials (Chandran et al., 2017; Tang and Vincenti, 2017;
Zwang and Leventhal, 2017; Savage et al., 2018). Nevertheless,
Treg therapy has not been applied to treat patients with AKI
and CKD. The efficacy and safety need to be further explored.
The modifications of beneficial lymphocytes in vitro regulate
their protective effects. CD73-deficient or A2AR-deficient Tregs
failed to protect mice from IRI suggesting that the response
to adenosine was required to Treg to suppress inflammation,
and the induction of A2AR on Tregs augmenting the protective
functions verified this hypothesis (Kinsey et al., 2012). TLR9
expression regulated the migration of transferred Tregs into the
kidney (Alikhan et al., 2016). IL-233-treated mice were preferred
donors, of which Tregs exerted a beneficial effect on alleviating
renal IRI, and this protection depended on the cell dosages
(Stremska et al., 2017). Ex-expanded Tregs also promoted renal
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TABLE 4 | Adaptive transfer of ex-expanded lymphocytes.

Subsets Dosages Species of recipients Methods Effects References

Tregs 1.0 × 105 cells Mouse Before IR Wild-type Tregs protected mice from IRI. Dong et al., 2019

CD73-deficient or A2AR-deficient Tregs

failed to protected mice from IRI.

Pharmacologic stimulation of A2AR on

Tregs augmented the protective functions.

Tregs 2.0 × 106 cells Mouse 24 h before cisplatin

administration

Adaptive transfer of wild-type Tregs

resulted in less severe cisplatin-induced

AKI than that of TLR9-deficient Tregs.

Kinsey et al., 2010

TLR9 promoted Treg recruitment.

Tregs 50 × 103 cells Mouse 24 h before IR Tregs from IL-233-treated mice played

better protective roles in IRI at lower doses

(50 × 103).

Mu et al., 2020

100 × 103 cells Tregs at higher doses (100 × 103) had no

protective roles.

Tregs 2.0 × 106 cells Mouse 24 h after IR Rapamycin-treated Tregs enhanced

beneficial effects on reducing IRI on the

early (3 d) and later (14 d) repair stages.

Krabbendam et al.,

2018

Tregs 1.2 × 106 cells Mouse 24 h after IR Tregs promoted kidney repair after IRI. Liu et al., 2018

DNT cells 1.0–1.5 × 106 cells Mouse 24 h before cisplatin

administration

DNT cells attenuated cisplatin-induced

AKI.

Alexander et al., 2020

DNT cells 2.5 × 106 cells Mouse 24 h before IR DNT cells protected mice from AKI in a

IL-10-dependent manner.

Diao et al., 2019

ILC2s 1.0 × 106 cells Mouse 24 h before IR IL-33-treated ILC2s prevented renal injury

in an Areg-dependent manner.

Wang Y. M. et al., 2017

Human-derived ILC2s ameliorated renal

IRI in mice.

ILC2s 5.0 × 105 cells Mouse 24 h before IR IL-233-treated ILC2s protected mice from

IRI

Mu et al., 2020

repair and rapamycin, an inhibitor of mammalian target of
rapamycin (mTOR), enhanced their pro-repair effects (Gandolfo
et al., 2009; Chen et al., 2016). Besides that, DNT cells protected
mice against both cisplatin- and IR-induced renal injury, and the
process of the latter was in an IL-10-dependent manner (Martina
et al., 2016; Gong et al., 2020). For ILC2s, IL-33 and IL-233
treatment promoted their protection of the kidney against IRI.
Furthermore, human-derived ILC2s ameliorated renal damage in
mice (Stremska et al., 2017; Sabapathy et al., 2019). In conclusion,
the administration of ex-expanded beneficial lymphocytes might
prevent renal injury, which is listed in Table 4.

Potential Therapeutic Strategies Targeting
T Cells Based on the Regulation of the
Gut-Kidney Axis
Recently, the crosstalk of gut and kidney has been a hot
spot. Gut-derived metabolites, short-chain fatty acids (SCFAs),
were confirmed to prevent AKI. In vitro, SCFAs regulated the
inflammatory process, in which dendritic cells were inhibited in
the capacity of induced CD4+ and CD8+ T cell proliferation
(Andrade-Oliveira et al., 2015). Acetate, one of the SCFAs,
ameliorated AKI by redressing oxidant-antioxidant imbalance
of T cells dependent on nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX2)/reactive oxygen species

(ROS) signaling (Al-Harbi et al., 2018). The intestine microbiota
has a potential immunoregulatory role in CKD. The pathogen
overgrowth in the gut under the metabolic alterations of uremia,
and an increase of bacteria or their component translocation
may activate systemic inflammation concerned with lymphocyte-
participated immunity (Anders et al., 2013). The development
and application of multi-omics analysis technique have helped us
to screen out specific-altered gut microbiota and metabolites that
may be associated with T cell immunity modulation in kidneys.

Gut microbiota depletion by oral antibiotics was proved to

protect against IR-induced AKI in mice and the protective

role was related to Th1 and Th17 decrease accompanied by

Treg expansion in kidneys (Yang et al., 2020). The reduction

of Lactobacilli was one of the hallmarks of IRI-induced

gut microbial dysbiosis (Yang et al., 2020), and a similar

decrease was discovered in CKD (Yang et al., 2019). Oral

administration of Lactobacilli led to improvements in SCFAs

(Vemuri et al., 2019). Therefore, supplementation of probiotics

like Lactobacilli may be a promising strategy for AKI and CKD

therapies. However, the following three questions remained to
be solved: (1) Whether the reno-protective role of probiotics
is achieved through the modulations of lymphocytes? (2) How
do they act on lymphocytes? (3) What is the connection
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FIGURE 3 | The potential therapeutic strategies targeting T cells of AKI and CKD based on the gut-kidney axis. Based on the theory of “gut-kidney axis,” gut

dysbiosis and immune activation induced by kidney diseases including AKI and CKD, in turn, aggravate kidney damage. Thus, there are three aspects of potential

therapeutic target spots in the gut to prevent kidney diseases: (1) modulation of gut microbiota; (2) regulation of gut-derived lymphocytes; and (3) alteration of

gut-associated metabolites. In addition, gut metabolites and bacteria from circulation may affect lymphocyte-mediated immune responses in the kidney. Therefore,

they may also become therapeutic targets.

of lymphocyte alterations between the gut and kidneys? The
potential therapeutic strategies of AKI and CKD based on the
gut-kidney axis deserve further studies (shown in Figure 3).

CONCLUSIONS

Lymphocytes mediate non-autoimmune AKI and subsequent
CKD in a full-course manner. The diversity and plasticity of
lymphocytes result in their multifunction for renal injury and
fibrosis. Innate and adaptive lymphocytes cooperate in the
process and present a phenomenon of chronological responses,
which suggests the importance of the distinct “time windows”
of therapies targeting different lymphocyte subsets. Interventions
of lymphocytes in vivo and adaptive transfer of these cells
have provided the prospect of lymphocyte-related therapeutic
strategies. The modulations of gut microbiota and metabolites to
regulate AKI- or CKD-associated lymphocyte immune responses
show therapeutic potential for future drug development for
kidney diseases. Despite many efforts made to explore the
mechanisms of lymphocyte regulations to prevent AKI and
subsequent renal fibrosis or promote renal repair, some problems

remain to be addressed in the future: (1) What are the sources of
the renal infiltrated lymphocytes, and what are the relationships

between these lymphocytes and those of extrarenal organs? (2)
How to achieve precise intervention on pathogenic lymphocytes
without affecting systemic immunity? With the development of
the technique of single-cell RNA sequencing, we are looking
forward to a deeper understanding of lymphocyte subtypes and
functions, which guide more precise and specific interventions to
treat AKI and CKD.
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