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Abstract
Background: Control effective flux (CEF) of a reaction is the weighted sum of all fluxes through
that reaction, derived from elementary flux modes (EFM) of a metabolic network. Change in CEFs
under different environmental conditions has earlier been proven to be correlated with the
corresponding changes in the transcriptome. Here we use this to investigate the degree of
transcriptional regulation of fluxes in the metabolism of Saccharomyces cerevisiae. We do this by
quantifying correlations between changes in CEFs and changes in transcript levels for shifts in
carbon source, i.e. between the fermentative carbon source glucose and nonfermentative carbon
sources like ethanol, acetate, and lactate. The CEF analysis is based on a simple stoichiometric
model that includes reactions of the central carbon metabolism and the amino acid metabolism.

Results: The effect of the carbon shift on the metabolic fluxes was investigated for both batch and
chemostat cultures. For growth on glucose in batch (respiro-fermentative) cultures, EFMs with no
by-product formation were removed from the analysis of the CEFs, whereas those including any
by-products (ethanol, glycerol, acetate, succinate) were omitted in the analysis of growth on
glucose in chemostat (respiratory) cultures. This resulted in improved correlations between CEF
changes and transcript levels. A regression correlation coefficient of 0.60 was obtained between
CEF changes and gene expression changes in the central carbon metabolism for the analysis of 5
different perturbations. Out of 45 data points there were no more than 6 data points deviating
from the correlation. Additionally, up- or down-regulation of at least 75% of the genes were in
qualitative agreement with the CEF changes for all perturbations studied.

Conclusion: The analysis indicates that changes in carbon source are associated with a high degree
of hierarchical regulation of metabolic fluxes in the central carbon metabolism as the change in
fluxes are correlating directly with the change in transcript levels of genes encoding their
corresponding enzymes. For amino acid biosynthesis there was, however, not found to exist a
similar correlation, and this may point to either post-transcriptional and/or metabolic regulation,
or be due to the absence of a direct perturbation on the amino acid pathways in these experiments.
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Background
Metabolic fluxes are functions of metabolite levels,
enzyme properties (affinities and specific activities), and
the concentrations of enzymes. The latter are controlled at
transcriptional, translational and/or post-translational
levels, and is therefore referred to as hierarchical regula-
tion [1,2]. In the field of functional genomics, there has
been several studies on whether flux regulation is through
the expression levels of metabolic genes [3-5], and a com-
mon approach is to compare flux levels calculated by flux
balance analysis (FBA) or metabolic flux analysis (MFA)
with mRNA levels [5-7]. Since many reactions in the met-
abolic network are not active at the optimum growth con-
ditions determined by FBA, this approach does not enable
evaluation of whether there is such a correlation for all
genes. There is a similar problem with using MFA, as this
approach also only provides information of a limited set
of fluxes [3]. Moreover, in FBA the occurrence of alternate
optima cannot be excluded causing further uncertainty [8-
10]. Additionally, organisms with different flux states may
coexist in the same culture. It was previously shown that
these approaches do not account for the flexibility of the
metabolic network and that the quality of the resultant
prediction is greatly improved by the incorporation of
flexibility [11]. Elementary flux modes identified by the
enumeration of the flux solution space using linear alge-
bra [12] may be a way to provide the missing flexibility
information. Thus, weighted sum of fluxes through these
elementary modes for each reaction, called control-effec-
tive fluxes (CEF), lead to the implicit incorporation of
functionality and regulation into metabolic network
structures [11,13,14]. CEF changes were previously used
for the prediction of transcriptome changes in carbon
source shifts for E. coli [11] and S. cerevisiae [13] metabo-
lisms. Application to erythrocyte enzymopathies was also
demonstrated [15].

In this work, the metabolic model for S. cerevisiae used in
our previous study [13] was improved and extended by
the addition of reactions responsible for the amino acid
biosynthetic pathways. The resulting metabolic model
contains 77 metabolites and 81 reactions which are gov-
erned by a total of 137 genes (Additional File 1). Elemen-
tary flux modes of this reaction network were calculated
for growth on different carbon substrates to determine
CEFs. The fold changes of CEFs of reactions in the model
in response to perturbations arising from carbon shifts
were compared with the fold changes in expression levels
of genes encoding the enzymes of the corresponding reac-
tions. The number of fluxes obeying an acceptable corre-
lation was used to evaluate whether the metabolic fluxes
are transcriptionally regulated at the studied perturba-
tions. The here-presented methodology is described in
Figure 1.

Results
The set of experimental gene expression data for carbon
source perturbations used in this study are summarized in
Table 1. If multiple genes correspond to a single reaction,
their expression levels were summed up for each condi-
tion before the fold change was calculated, and in the fol-
lowing we use the term 'a gene' for both a single gene but
also as a representation for several genes involved in a sin-
gle reaction. The metabolic model consists of central car-
bon metabolism reactions as described by [13], and was
improved by the addition of reactions involved in the syn-
thesis of several amino acids (Additional File 1). Biosyn-
thesis of amino acids that only contribute to a small
fraction of the protein in S. cerevisiae [16] were directly
incorporated into the biomass reaction (r81a) rather than
including individual reactions responsible for their for-
mation in the model. The metabolic model could there-
fore be kept at a manageable size. This processing of the
model was particularly necessary to avoid combinatorial
explosion in the number of elementary flux modes with
an increase in the number of considered reactions [17,18].
The stoichiometric coefficients of the reaction leading to
biomass formation were calculated on the basis of the
biomass composition given by [16].

The number of EFMs calculated for each carbon source is
given in Table 2 for the model in Additional File 1, called
M81 (based on the number of included reactions), and for
a modified version of this model, M57, which only
includes central carbon metabolism reactions as in [13].
When the number of EFMs of the two models is com-
pared, an approximately ten-fold increase is observed for
M81 compared with M57. Therefore, it may be concluded
that the inclusion of amino acid reactions enables better
and less-restricted representation of the network flexibil-
ity. The coefficients of biomass constituents were calcu-
lated also on the basis of another cellular macromolecular
composition reported by [19] for S. cerevisiae (r81b), and
this calculation led to noticeable differences in the result-
ant number of EFMs for the same carbon source (Table 2).
However, variations between calculated CEFs for the two
different set of EFMs were small and, therefore, the bio-
mass composition does not seem to influence the analysis
substantially. In our analysis we used the biomass compo-
sition described in [16].

In order to identify active EFMs during growth on glucose,
basic information on the yeast metabolism was used.
Thus, the following strategy was pursued: For batch exper-
iments (Table 1), where metabolism is respiro-fermenta-
tive, EFMs producing any of the byproducts ethanol,
glycerol, acetate and succinate were retained since this
mode is mainly associated with simultaneous biomass
and product formation, whereas those producing only
biomass were discarded, reducing the number of EFMs
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Table 1: Transcriptome datasets used in this study.

Article Source change Fermentation type

DeRisi et al., 1997 Carbon: Glucose- Ethanol Batch
Lapujade et al., 2004 Carbon: Glucose-Ethanol Chemostat
Williams et al., 2002 Carbon: Glucose-Acetate Batch
Lapujade et al., 2004 Carbon: Glucose-Acetate Chemostat
Prokisch et al., 2004 Carbon: Glucose-Lactate Batch
Piper et al., 2002 Oxygen: Aerobic-Anaerobic Chemostat

Methodology employed to analyze metabolic flux regulation in response to a shift in carbon sourceFigure 1
Methodology employed to analyze metabolic flux regulation in response to a shift in carbon source. The change in control-
effective fluxes calculated based on determined elementary flux modes (EFMs) is plotted against the change in mRNA levels of 
the corresponding genes encoding the enzymes catalyzing the reactions. Data points not obeying the correlation are identified 
by a genetic algorithm approach. Remaining points correspond to hierarchically regulated fluxes.
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from 136,925 to 127,872. For chemostat experiments,
where there is hardly any metabolites being produced [3],
only EFMs leading to biomass without co-current metab-
olite production were considered, This resulted in 9,600
EFMs instead of 136,925. EFMs with only ATP mainte-
nance activity were kept in both cases. This approach was
used to test the prediction capabilities of the previous
models where all the EFMs had been used without such
distinction for comparison with experimental data
[11,13], and the present strategy to include only active
EFMs into the model was found to enable improved cor-
relations between gene expression changes and changes in
CEFs (results not shown). Our approach can be seen as a
reduction in the possible flexibility in operation of the
metabolic network, but using our approach we indirectly
incorporated information on overall regulation of respira-
tory metabolism in S. cerevisiae, i.e. at conditions with fer-
mentative metabolism respiration is to a large extent
repressed and at respiratory metabolism there is hardly
any substantial metabolite production.

For each case (Table 1), the operation efficiency of each
EFM was quantified in terms of its biomass production
flux (r81b) and ATP production flux for maintenance pur-
poses (r51) (see Methods section for details). The resulting
score, called the efficiency, was used as a weight for the
fluxes passing through the corresponding EFM. As a result,
control-effective flux of a reaction represents the sum of
all weighted fluxes for this particular reaction that may
participate in all the EFMs. Both efficiency and flexibility
of the network is thereby reflected in the CEF score. The
correlation between fold changes in CEFs and in mRNA
levels were then investigated as depicted in Figure 1.

Table 3 summarizes the simulation results for genes
belonging to the central carbon metabolism (45 points in
total) for each of the cases listed in Table 1. The results
include the fraction of genes in first/third quadrants of
plots (qualitative agreement), the correlation coefficient,
the slope, and the number of omitted genes to reach R2 =
0.60. An acceptable correlation (R2 = 0.60, see methods)
with a slope close to unity was possible by omitting at

most 6 points for all the studied carbon shifts (Table 3,
Figure 2). Points which had to be omitted correspond to
reactions whose CEF values do not show correlation with
the change in expression levels of the genes encoding the
enzymes catalyzing these reactions. It is highly probable
that these fluxes are regulated at the post-transcriptional
and/or the metabolic level. The qualitative agreement
between CEF and mRNA changes for up-regulation and
down-regulation (points in first and third quadrants) was
above 76% for all cases. These results (Table 3) indicate
that fluxes through the central carbon metabolism reac-
tions are mainly transcriptionally regulated in carbon
shift experiments. However, there was no correlation in
the oxygen shift experiment (Table 3, Figure 3), for which
19 data points had to be discarded to reach the threshold
correlation (R2 = 0.60). Plots of mRNA ratios versus CEF
ratios for all cases studied are shown in Figure 2. Our
results also revealed that central metabolic genes are pre-
dominantly upregulated in response to a shift from fer-
mentative carbon source to a carbon source consisting of
C-2 or C-3 compounds as most of the points lie in the first
quadrant in Figure 2.

Discussion
The correlation between mRNA ratios of the genes and
corresponding CEF ratios were investigated for the genes
belonging to central carbon metabolism and amino acid
metabolism separately using the M81 model.

Correlation between mRNA ratios for the genes of central 
carbon metabolism and corresponding CEF ratios
Our results indicate that the change in fluxes in the central
carbon metabolism is to a large extent controlled at the
transcriptional level for carbon source perturbations
(Table 3). However, the same genes are found to be
weakly correlated with CEFs in the case of oxygen shift,
indicating that the response of the same genes to different
perturbations is not necessarily shaped by a similar con-
trol mechanism.

For each carbon source perturbation, a small set of genes
whose mRNA ratios were weakly correlated with the CEF

Table 2: Number of EFMs for each studied carbon source and with the biomass composition reported in [16].

Substrate EFMs – M81* EFMs – M57

Glucose 136,925 (184,631) 13,255
Ethanol 11,427 (15,099) 1,225
Acetate 4,240 (5,452) 536
Lactate 25,484 (34,319) 2,533

The numbers in paranthesis shows EFM numbers when the biomass composition of [19] is employed for comparison. EFM numbers for a smaller 
model (M57) are also given for comparison. The larger model (M81) includes 81 reactions and contains part of the amino acid biosynthesis together 
with the central carbon metabolism. The smaller model only covers the central metabolism with 57 reactions. *In M81, the EFMs with simultaneous 
occurrence of GDH2 and GDH13 were not taken into account since this leads to transhdrogenase activity, which is known to be not available in S. 
cerevisiae.
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ratios were omitted; e.g. 3 genes, pfk12, fbp1 and pyc12,
which displayed a weak correlation as a response to a
diauxic shift in batch cultures [20] (Table 3, Figure 2).
Two of these genes (fbp1, pfk12) are responsible for the
expression of enzymes involved in conversion between
fructose-6-phosphate and fructose-diphosphate in reverse
directions.fbp1 is known to be active during growth on
ethanol whereas pfk12 is active during growth on glucose.
Although their up or down regulation matches well with
CEF predictions, there is no quantitative correlation. In
other words, relatively insensitive responses at the level of
gene expression may indicate an amplified transmission
of the signal after the transcriptional level. However,
investigation of another dataset [21] for the same respiro-
fermentative shift shows better correlation for these genes
and corresponding CEF values as shown in Figure 2a by
the square points. Therefore, these genes may also be
false-negatives resulting from the absence of replicates in
the dataset.

For the glucose/ethanol shift in the chemostat culture, the
glycolysis pathway genes (pfk12,pyc12, ald45,pda12-
pdb1,fba1/tpi1/tdh1) were to be omitted from the analysis
to reach R2 0.60, indicating that these genes undergo other
kinds of regulation (Table 3). This is supported by a recent
study, which shows that glycolytic genes are regulated at
the proteomic level in response to the same perturbation
[22]. Our results indicate a good correlation between the
magnitude of change in CEFs and transcript levels of
genes, with the exception of these six data points. Here, we

get better correlation than the comparison made using
MFA based fluxes from [3], where 19 out of 43 genes
could not be included in the quantitative correlation anal-
ysis since the corresponding MFA-based fold change was
either zero or infinity, and the fold changes of 21 of the
remaining points showed a correlation above the thresh-
old (R2 = 0.60), with a slope several folds higher than
unity (3.5). This indicates that the use of CEF approach
which reflects different metabolic capabilities of the
microorganism for growth on a given carbon source (as
reflected in the EFMs) results in a better representation of
the hierarchical control, i.e. control at the transcriptional
level, on metabolic fluxes, compared with focusing on a
single flux distribution predicted by MFA. This is also
valid for the diauxic shift in batch cultures, where our CEF
approach gives a 82% qualitative agreement (Table 3),
which is superior to the FBA approach that only gives 61
% qualitative agreement [6] which is based on the
number of up-regulated and down-regulated points that
are in agreement between experimental and simulation
results.

For the glucose/acetate shift in chemostat cultures, 3 of
the 6 omitted genes belong to pentose phosphate path-
way (rki1, sol34, zwf1). The other three are from different
pathways, lsc12 from TCA cycle, fba1 and adh145 from gly-
colytic pathway. Unlike chemostat cultures, lack of tran-
scriptional regulation through fluxes of reactions
governed by two different genes, namely idp23 and mae1,
is implied in the case of batch cultures for a glucose-ace-

Table 3: Results of simulations for genes belonging to central carbon metabolism. Corresponding figures are given in figure 2 and 3.

Qualitative Quantitative

Actual EFM number 
used in simulations

Qualitative 
agreement*

Omissions 
for R2:0.60

Slope Correlation 
coefficient (R2)

Omitted Genes Not Applicable 
Genes#

Glucose/Ethanol, 
batch

127,872/11,427 0.82 (36/44) 3$ 1.06 0.65 PFK12$FBP1$PYC12 (GPP1-HOR2)

Glucose/Ethanol, 
chemostat

9,600/7,051 0.77 (33/43) 6 0.81 0.60 PFK12 PYC12 ALD45 
(PDA12-PDB1) 

FBA1§TPI1§, TDH1§

(GPP1-HOR2) 
BPH1

Glucose/Acetate, 
batch

127,872/4,238 0.76 (31/41) 3 1.11 0.63 MAE1 IDP23 RPE1 (GPP1-HOR2) 
BPH1 PYC12 

PFK12
Glucose/Acetate, 
chemostat

9,600/4,190 0.78 (32/41) 6 1.18 0.61 ADH145 RKI1 LSC12 
SOL34 FBA1 ZWF1

(GPP1-HOR2) 
BPH1 PYC12 

PFK12
Glucose/Lactate, 
batch

127,872/25,482 0.84 (38/45) 4 0.89 0.60 PFK12 IDP23 PYK12 
MAE1

-

Aerobic/Anaerobic, 
chemostat

9,600/8,363 0.80 (33/41) 19 1.23 0.60

*Data points in first/third quadrants of the plots. The points with a fold change between 0.95–1.05 for either of model or experiment were 
considered to be in qualitative agreement.
$These genes were found to exhibit better agreement with CEF ratios in the analysis of [21].
#CEF ratio was either zero or infinity for these genes. Therefore, they could not be used in the correlation calculation.
§ Omission of any two of these there points additional to the other four reported points is enough to get a correlation above the cut-off value, 
resulting in the same slope.
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Comparison of the model-based and experimental data-based logarithmic ratios for carbon shiftsFigure 2
Comparison of the model-based and experimental data-based logarithmic ratios for carbon shifts. The filled circles are the 
omitted points to reach regression coefficient R2 0.60. (a) shift from glucose to ethanol for batch cultures under respiro-fer-
mentative conditions (data from [20]). Filled squares belong to ratios for pfk12 and fbp1 from [21]. (b) shift from glucose to 
ethanol for chemostat cultures under respiratory conditions (data from [3]). (c) shift from glucose to acetate for batch cultures 
under respiro-fermentative conditions (data from [25]). (d) shift from glucose to acetate for chemostat cultures under respira-
tory conditions (data from [3]). (e) shift from glucose to lactate for batch cultures under respiro-fermentative conditions data 
from [30]. For experiments with replicate data (b and d), the horizontal lines on the circles show 95% confidence intervals.
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tate shift (Table 3). However, they are closely linked since
both sets are directly involved in NADPH metabolism.
Analysis of an additional dataset [23] with limited data
points (27) for batch cultures resulted in a very high cor-
relation without any omission (R2 = 0.78, y = 0.92 ×) (fig-
ure not shown).

For genes of the central carbon metabolism predictions by
M81 was better than that of M57, meaning that further
incorporation of the possible paths spanning amino acid
pathways reflects the flexibility of the metabolic network
better (results not shown).

Correlation between mRNA ratios for the genes of amino 
acid pathways and corresponding CEF ratios
For respiratory chemostat datasets, it is difficult to estab-
lish a correlation between the ratios of expression levels of
amino acid genes and corresponding CEF ratios since
numerical values of both experimental mRNA and model
CEF ratios for these genes are very close to unity. There-
fore, these genes do not have pronounced effect on the
resultant overall correlation and slope.

For respiro-fermentative batch datasets, on average ten
more data points had to be removed from the graph to get
the predetermined correlation of R2 0.60. That is, there
was a lack of correlation between the ratios of expression
levels of amino acid pathway genes and corresponding
CEF ratios. The observed lack of correlation for amino
acid genes was also found for E. coli [11]. There was no
positive correlation between 5 genes available in the
model belonging to amino acid metabolism, consistent
with what we find here. However, it should be noted that
as we only looked at carbon source perturbations there
were only small changes in the fluxes towards amino
acids, and hence these results may not be suitable to dis-
sect whether there is transcriptional control of fluxes
towards amino acid biosynthesis. Additionally, the lack of
correlation in batch cultures may be explained by the use
of rich media in these fermentations. Due to the availabil-
ity of amino acids in the medium, the amino acids may
not have been synthesized within the cell, and this may be
another cause of the poor correlation found here. Further
analysis of the amino acid biosynthetic pathways there-
fore requires specially designed experiments.

In another study where we compared the significance of
statistical change in both transcriptome and metabolome
profiles of S. cerevisiae under different growth conditions
[24], we concluded that almost all of the genes governing
amino acid metabolism were metabolically regulated
with or without transcriptional regulation. Although we
cannot state that our current study supports this finding
due to the reasons mentioned above, still it seems that
there is less transcriptional regulation of metabolic fluxes
in the amino acid biosynthesis compared with the central
carbon metabolism. We have therefore focused our fur-
ther discussion on the central carbon metabolism.

Effect of strains and media on the transcriptional 
regulation of fluxes
The fluxes of the central carbon metabolism are found to
be mainly transcriptionally regulated in response to the
carbon source perturbations studied here (Table 3). In
order to investigate the effect of strain type on the regula-
tion of fluxes, the experimental datasets for glucose-ace-
tate shifts in batch cultures [25] was used. That study
looked at identification of changes in the transcriptome as
a response to the same type of perturbation for two differ-
ent yeast strains (W303 and SK1). The result presented in
Table 3 is for the W303 strain and indicates that the fluxes
of the central carbon metabolism of this strain is subject
to transcriptional regulation, with only 3 genes being out-
liers. The analysis of the other strain (SK1) revealed a
requirement for omission of 7 additional genes in order to
reach the threshold correlation coefficient (R2 = 0.60).
This result suggests that the regulation behaviour can

Comparison of the model-based and experimental data-based [36] logarithmic ratios for oxygen source perturbation from aerobic to anaerobic conditions in chemostat culturesFigure 3
Comparison of the model-based and experimental data-
based [36] logarithmic ratios for oxygen source perturbation 
from aerobic to anaerobic conditions in chemostat cultures. 
The filled circles are the omitted points to reach the selected 
threshold value of R2 = 0.60. The horizontal lines on the cir-
cles show 95% confidence intervals, calculated from standard 
deviation of the replicate measurements.
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strongly depend on the genotype of the strain itself as sug-
gested elsewhere [24,26-29].

The W303 strain is suggested to exhibit more fermentative
behaviour than the SK1 strain in a glucose containing
medium [25]. The expression levels of genes involved in
respiratory metabolism were higher for the SK1 strain
than for the W303 strain. This information was used to
test our approach of distinguishing active EFMs operating
in respiratory and repiro-fermentative growth. CEF analy-
sis and comparison of CEF and mRNA ratios for SK1 were
performed considering all EFMs for glucose growth
instead of taking only those co-producing biomass with
any by-products, assuming that those producing only bio-
mass must also be active in this strain displaying a more
respiratory behaviour. This led to a requirement for omis-
sion of 8 genes for the SK1 strain, instead of 10. On the
other hand, use of all EFMs for the W303 strain caused an
increase in the number of required omissions to 5. This
shows that incorporation of information on the pheno-
typic/fermentative behaviour of the strain into the analy-
sis may improve the prediction of the fluxes that are
transcriptionally regulated.

In order to further investigate the sensitivity of our
approach, we analyzed data from a study on the influence
of the transcriptional response to a glucose-lactate shift
[30]. That study analyzed the transcriptome during a glu-
cose-lactate shift in carbon source with both a YPD and a
complete synthetic medium. The results in Table 3 are for
the YPD medium and a similar analysis was performed for
the data on the complete synthetic medium. The number
of the omitted fluxes for the complete synthetic medium
was found to be 8, indicating that there is an effect of
medium components on the regulation type of particular
fluxes. Thus, we find that our method is somewhat sensi-
tive to the actual conditions. However, still this analysis
supports our overall finding that there is a fairly strong
correlation between CEFs and transcriptional responses
upon shifts in carbon sources.

Conclusion
In the present study, a methodology was presented to
investigate the hierarchical transmission of transcriptome
changes to flux level using control effective fluxes. The
high degree of correlation between the transcriptome and
the fluxome obtained by the CEF approach shows that the
major reason for lack of correlation reported so far was
due to neglecting the flexibility of the network in opera-
tion. The detailed analysis using CEFs calculated based on
the active EFMs in a particular growth type showed that
fluxes in the central carbon metabolism are predomi-
nantly regulated at the transcriptional level in response to
changes in carbon source. Regulation of amino acid
metabolism seems to be mainly at the metabolic level;

however, a definite conclusion can not be drawn since the
analyzed perturbations were not directly related to this
metabolism. This leads us to the hypothesis that if an
applied perturbation has a direct effect on a metabolic
pathway, then the genetic response of that pathway at the
mRNA level is propagated into the fluxome, as demon-
strated for the central carbon metabolism in this study.

Methods
Formulation
EFMs were calculated using FluxAnalyzer 5.3 [31]. CEF
calculations were performed under a MATLAB 7.0 envi-
ronment, and they were based on the efficiencies of calcu-
lated EFMs in terms of the chosen cellular objectives:
production of biomass itself and ATP for maintenance.
Efficiency of an EFM was determined by dividing the flux
corresponding to the cellular objective by the sum of all
fluxes through reactions of that mode. j is the index for
EFMs, and i is the index for fluxes.

Thereby, EFMs which are equivalent in terms of cellular
objectives were distinguished by assuming that the shorter
EFMs were more efficient as reflected in the denominator
of the formulation [11,17]. This approach coincides with
the recently suggested flux minimization objective [32],
which implies that the optimum flux distribution is the
one which has the minimum total flux.

Control-effective flux (vi) of a particular reaction ( ) was

determined by weighting that flux through all EFMs with
the efficiencies of the corresponding modes.

Here we used the ratio of CEFs of reactions at two different
conditions to correlate with the expression ratios of meta-
bolic genes responsible for the enzymes of the reactions in
S. cerevisiae.

Methodology
The methodology is depicted in Figure 1. Logarithms of
the CEF and mRNA ratios for reactions/genes between
two conditions were plotted against each other. A genetic
algorithm approach was used to identify data points
which caused the largest deviation from a pre-selected lin-
ear correlation (R2) of 0.60 ensuring as well that the slope
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was between 0.80–1.25, and these points were omitted
from the plot. The script written in MATLAB first identifies
maximum possible regression coefficient value (R2) for an
allowed number of simultaneous omissions. And, then,
the number of omissions required to reach cut-off value
(0.60) is determined. The correlation coefficient value of
0.60 was selected as the threshold for an acceptable degree
of correlation since it corresponds to a Pearson correlation
coefficient around 0.80, which is considered to be the
lower limit for a good correlation [33-35]. Moreover, the
correlation between logarithmic mRNA ratios of two dif-
ferent wild type strains [25] in response to the same car-
bon shift was around 0.70 with the slope being noticeably
different from unity. This inherent variability in cell
behaviour depending on its genotype cannot be reflected
into metabolic stoichiometry since stoichiometric models
are not strain-specific, which also justifies the selected
threshold value.

The number of data point omissions required to keep the
regression coefficient, R2, above 0.60 was assumed to be
one of the criteria for identifying the type of regulation
imposed on the fluxes for a particular carbon shift. If
many points are to be omitted to reach the threshold, this
means that: a) fluxes are not transcriptionally regulated,
but regulated at the translational or post-translational
level (i.e. other hierarchical control mechanisms are
active) or b) there is predominant metabolic regulation
corresponding to substantial changes in the metabolite
levels, or c) there is a combination of these two types of
regulation. In addition, a second qualitative criterion,
which is based on the number of points in the first (up-
regulation) and third (down-regulation) quadrants of the
plotted coordinate axis, was also used, as employed by
others [6].

Alternatively, a statistical outlier analysis for the regres-
sions can be employed by calculating confidence intervals
on the residuals at a confidence level (e.g. 0.05), and
thereby identifying outliers as those points whose residual
confidence intervals do not contain zero. In this study, we
preferred to use a single cut-off value for all cases ana-
lyzed. We think that this is reasonable since the correla-
tions for all the cases was highly significant (p-value
below ~10-8) even when no points were omitted from the
dataset. Additionally, the selected cut-off value (R2 = 0.60)
ensures that the retained dataset after omitting points to
reach the cut-off is free of outliers in all cases (data not
shown). In other words, the chosen cut-off is above all R2

values determined by our statistical outlier analysis. One
disadvantage with statistical analysis is that it does not
allow us to constrain the slope (between 0.80 and 1.25)
in addition to constraining the correlation coefficient.
Since statistical outlier analysis leads to the omission of

fewer points than in the original analysis, it supports our
conclusions.
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