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Abstract 

The safety of inorganic nanoparticles (NPs) remains a critical challenge for their clinical 

translation. To address this, we developed a machine-learning (ML) framework that predicts NP 

toxicity both in vitro and in vivo, leveraging physicochemical properties and experimental 

conditions. A curated in vitro cytotoxicity dataset was used to train and validate binary 

classification models, with top-performing models undergoing explainability analysis to identify 

key determinants of toxicity and establish structure-toxicity relationships. External testing with 

diverse mesoporous silica NPs validated the framework’s predictive accuracy for in vitro settings. 

To enable organ-specific toxicity predictions in vivo, we integrated a physiologically-based 

pharmacokinetic (PBPK) model into the ML pipeline to quantify NP exposure across organs. 

Retraining the ML models with PBPK-derived exposure metrics yielded robust predictions of 

organ-specific nanotoxicity, further validating the framework. This PBPK-informed ML approach 

can thus serve as a potential Novel Alternative Method (NAM) to streamline NP safety 

assessment, enabling the rational design of safer NPs and expediting their clinical translation. 
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Inorganic nanoparticles (NPs) have emerged as versatile platforms in biomedical applications, 

offering unparalleled tunability and precise control over physicochemical properties, including 

size, morphology, zeta (ζ) potential, surface coating, surface chemistry, and core composition1. 

This flexibility underpins the design of next-generation inorganic NPs with advanced drug delivery 

capabilities2, such as superior drug encapsulation3, enhanced colloidal stability4, targeted 

delivery5, controlled release6, and stimuli-responsive release7. Beyond drug delivery, inorganic 

NPs enable a diverse range of applications, including bioimaging8-10, antimicrobial therapy11, 

photodynamic therapy12, biosensing13, enzyme-mimicking catalysis14, and theranostics15, 16. 

 

Despite these promising features, translating inorganic NP technologies to clinical practice 

remains a formidable challenge17. A critical hurdle is the control of nano-bio interactions18, such 

as protein corona formation, opsonization, and immune cell recognition, which often trigger rapid 

sequestration of NPs by the mononuclear phagocytic system (MPS), primarily the liver and 

spleen19, 20. This early clearance diminishes NP accumulation at target sites21, 22 while increasing 

the risk of off-target toxicity23-25. Additionally, the delayed degradation of inorganic NPs and the 

potential toxicity of their degradation products pose significant long-term safety concerns26. Nano-

bio interactions, along with the resulting exposure and toxicity profiles, are heavily influenced by 

the physicochemical properties of NPs, offering opportunities for rational design to optimize in 

vivo disposition and safety. For instance, physicochemical attributes such as particle size, ζ-

potential, surface coating, and core composition dictate circulation half-life27, biodistribution28, and 

toxicity29, 30. Typically, smaller NPs persist longer in circulation, exposing unintended organs like 

the kidneys, while larger particles are rapidly sequestered by the MPS31. Such off-target 

accumulations can induce localized reactive oxygen species (ROS) generation32, causing 

oxidative stress and disrupting many cellular processes through DNA damage33, membrane 

disruption34, and apoptosis35. Moreover, charged NPs can amplify interactions with immune cells, 

further exacerbating inflammation and safety concerns36.  

 

Addressing these challenges requires predictive tools that quantitatively link NP properties to 

toxicity outcomes, thereby facilitating the rational design of safer NPs for clinical applications. 

Although traditional quantitative structure-activity relationship (QSAR) models have proven 

successful for small molecules, they face significant limitations when applied to nanomaterials 

due to their unique physicochemical properties and complex nano-bio interactions. Early attempts 

at applying QSAR to metallic and metal oxide NPs incorporated molecular-level descriptors such 

as electronegativity and oxidation state but largely overlooked size-dependent phenomena and 
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surface effects critical at the nanoscale37. This mismatch underscores the urgent need for nano-

specific approaches that accommodate the surface characteristics, size, and the dynamic 

interactions distinguishing NPs from small molecules. 

 

Machine learning (ML) has emerged as a powerful alternative, leveraging nano-relevant 

descriptors to improve toxicity predictions. Studies have demonstrated its utility across various 

NP systems. For instance, CatBoost models identified concentration, hydrodynamic size, and 

exposure time as key predictors for silica NP cytotoxicity38, while decision tree classifiers 

emphasized material chemistry, ζ-potential, and NP size for broader NP types39. Random forest 

models have similarly revealed composition, ζ-potential, and exposure time as critical toxicity 

determinants40. These findings underscore the power of ML to integrate physicochemical and 

experimental parameters for robust in vitro predictions, however many studies remain limited to 

single endpoints or specific NP types. 

 

Expanding on cytotoxicity-focused models, studies have employed ML frameworks to address 

more complex toxicity endpoints and systemic interactions. For example, ML models have been 

used to assess pulmonary immune responses and NP lung burden, identifying parameters such 

as surface area, dose, and size as significant predictors41. Tree-based models have highlighted 

core type, size, and surface coatings for human lung cytotoxicity42, while in vitro studies in cells 

have found cell line, dose, and tissue as major toxicity determinants43. These efforts demonstrate 

ML’s adaptability to diverse toxicity contexts, although gaps remain in integrating dynamic in vivo 

processes. 

 

Emerging approaches incorporating omics data and advanced descriptors offer deeper insights 

into nano-bio interactions. For example, Bayesian networks with transcriptomics data have 

revealed disruptions in DNA damage and cell cycle regulation44, while studies on silver45 and 

zinc46 oxide NPs highlight exposure duration, ζ-potential, and surface coatings as critical toxicity 

drivers. ML models integrated to omics data have leveraged the use of nanoscale and molecular 

descriptors, including lysosomal dissociation degree, ζ-potential, and particle size to 

predict immune cell toxicity47. Advanced algorithms, such as neural networks, have further refined 

predictions, capturing intricate interactions between NP properties and biological systems48. 

 

Despite these advances, current ML-based NP toxicity models are frequently constrained by 

limited data, narrow descriptor coverage, and a focus on specific NP types, reducing their 
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applicability. Additionally, their inability to account for organ-specific in vivo exposure diminishes 

their translational relevance. To address these challenges, we assembled diverse descriptors 

spanning physicochemical properties, testing conditions, and biological contexts to predict 

cytotoxicity of inorganic NPs. To our knowledge, this study encompasses the largest curated 

database to date and introduces a novel binary classification framework integrating ML and 

physiologically-based pharmacokinetic (PBPK) modeling to predict nanotoxicity under both in 

vitro and in vivo conditions. Through explainability analysis and experimental testing on 

mesoporous silica NPs in primary and established cell lines, this framework uncovers hierarchies 

of toxicity determinants and quantitative structure-toxicity relationships. By experimentally 

verifying our predictions, we enhance model generalizability, bridging the gap between 

computational forecasts and real-world outcomes. This standardized Novel Alternative Method  

(NAM)49 offers a transformative approach to inorganic NP safety-by-design, accelerating clinical 

translation and regulatory approval of next-generation nanomaterials. 

 

ML workflow and data curation and for in vitro nanotoxicity predictions 

To address the need for robust predictive frameworks, we developed a computational workflow 

that integrates advanced ML tools for nanotoxicity prediction and curated a diverse dataset of 

inorganic NP cytotoxicity. The workflow outlined in Fig. 1a bridges data curation and 

computational modeling, starting with dataset harmonization and progressing through binary 

classification model training and testing. Explainability analyses were conducted to uncover key 

toxicity determinants, and external testing, leveraging in-house experimental data and the Safe 

and Sustainable Nanotechnology repository (S2NANO; www.s2nano.org), assessed model 

performance and generalizability. This integrative framework establishes a robust pipeline for 

predicting in vitro NP cytotoxicity, bridging computational predictions with experimental testing 

and advancing safety-by-design efforts for inorganic NPs. 

 

The curated dataset comprises 8,190 samples extracted from 425 studies published between 

January 2004 and December 2023. These studies identified through systematic searches and 

prior meta- analyses38, 39, 44-46, 50, targeted in vitro toxicity of inorganic NPs in mammalian cell lines. 

Inclusion criteria focused on studies reporting essential descriptors, such as NP size, composition, 

concentration, surface coating, shape, ζ-potential, exposure time, and toxicity outcomes 

quantified via cell viability (Fig. 1b(i)). 

 

http://www.s2nano.org/
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The final dataset represents one of the most comprehensive collections for NP cytotoxicity 

studies, integrating diverse compositions, physicochemical properties, and experimental 

configurations (Fig. 1b(iii-iv)). Particle sizes spanned 1.5 to 1,000 nm, with SiO₂ (41.1%), Ag 

(22.69%), and ZnO (14.51%) being the most common compositions. Surface coatings were 

predominantly unmodified (74.57%), while spherical geometries dominated (89.62%). ζ-potential, 

critical for assessing colloidal stability and biocompatibility, was reported as negative for 43.15% 

of NPs, neutral for 5.89%, and undetermined for 42.8%, reflecting data gaps. Experimental 

configurations varied widely, with exposure durations spanning 0.083 to 336 hours and 

administered concentrations from 5×10-4 to 3.2×106 µg mL-1. Human-derived cells accounted for 

75.27% of samples, with lungs (18.71%), skin (8.79%), and blood (8.33%) being the most studied 

organs, reflecting their relevance to primary exposure routes and systemic distribution. 

Harmonization aligned features across datasets, enabling consistent toxicity classification based 

on ISO 10993-5 standards (see Methods). Using the 70% viability threshold38, 62.74% of 

samples were classified as non-toxic and the remaining as toxic, indicating a moderate class 

imbalance (Fig. 1b(ii)). 

 

Boosting and tree-based models: optimal tools for nanotoxicity 

prediction 

Building on the curated dataset’s diversity and comprehensive descriptor coverage, we 

systematically explored its potential for cytotoxicity classification using advanced ML approaches. 

A total of 18 algorithms were evaluated within a robust 10-fold nested cross-validation (nCV) 

framework (Fig. 1a), enabling precise hyperparameter tuning (Table S1) and effective overfitting 

control via early stopping where applicable (Fig. S1). Generalizability was assessed using a 

reserved 20% test subset, ensuring unbiased performance evaluation. 

 

Given the class imbalance inherent in our dataset and the elevated cost of false negatives, we 

prioritized the precision-recall area under the curve (PR-AUC) and recall metrics over the receiver 

operating characteristic area under the curve (ROC-AUC) during evaluation. While ROC-AUC 

provides a general measure of classification performance, it often overestimates model capability 

in imbalanced scenarios51, 52. PR-AUC and recall better capture a model’s ability to identify toxic 

NPs while minimizing the risk of misclassification. Moreover, while PR-AUC is a comprehensive 

metric across thresholds, recall is particularly critical for high-stakes applications like nanotoxicity 

predictions, where minimizing false negatives is vital to avoid underestimating potential risks. This 
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emphasis on recall shaped our model selection, as models with slightly lower PR-AUC but higher 

recall were prioritized to ensure sensitivity in detecting toxic NPs. 

 

Among the tested algorithms, boosting and tree-based models emerged as the top performers, 

with superior PR-AUC values (0.8798–0.9098) and high recall rates (0.8164–0.8705) (Fig. 1c,d; 

Fig. S2; Table S3). The best performing models included CatBoost (PR-AUC: 0.9098, Recall: 

0.8705), Gradient Boosting Classifier (GBC) (PR-AUC: 0.9079, Recall: 0.8607), Random Forest 

(RF) (PR-AUC: 0.8990, Recall: 0.8164), Extra Trees (PR-AUC: 0.8911, Recall: 0.8197), and 

LightGBM (PR-AUC: 0.8798, Recall: 0.8377) (Fig. 1d). Despite its marginally lower PR-AUC, 

LightGBM was favored over XGBoost due to its superior recall, highlighting its sensitivity in 

identifying toxic NPs (Table S3). 

 

Conversely, models such as support vector machines (SVM), clustering algorithms, linear models, 

Naïve Bayes classifiers, and discriminant analysis exhibited poorer performance, characterized 

by higher false-negative and false-positive rates (Figs. S2, S3; Table S3). For example, SVC 

(PR-AUC: 0.8623, Recall: 0.7918), LDA (PR-AUC: 0.7403, Recall: 0.8246), and Logistic 

Regression (PR-AUC: 0.7501, Recall: 0.8410) showed limited reliability, underscoring their 

unsuitability for high-sensitivity applications such as nanotoxicity predictions. 

 

To evaluate whether artificial neural networks (ANNs) offer advantages over traditional models, 

we conducted a comparative analysis using our top-performing boosting and tree-based 

algorithms as benchmarks. An ANN optimized via the Keras-Tuner framework achieved a PR-

AUC of 0.9011, comparable to the best traditional models (Fig. S4; Table S3). However, its recall 

(0.7902) lagged behind, resulting in a higher misclassification rate for toxic NPs. While the ANN 

had predictive potential, its computational demands and reduced recall limit its practicality for 

preclinical applications. Boosting and tree-based models not only deliver superior sensitivity in 

detecting toxic NPs but also offer greater interpretability and computational efficiency, making 

them the preferred choice for scalable and explainable nanotoxicity predictions. 

 

SHAP analysis reveals concentration, composition, and size as key 

predictors of toxicity 

Boosting and tree-based models not only deliver superior sensitivity in detecting toxic NPs but 

also offer greater interpretability and computational efficiency, making them the preferred choices 
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for scalable and explainable nanotoxicity predictions. However, understanding why these models 

make specific predictions is crucial for translating computational insights into actionable 

guidelines for NP safety-by-design. To this end, we employed SHAP (SHapley Additive 

exPlanations)53, a widely adopted algorithm for feature attribution in ML, to quantify the relative 

importance of input features in predicting NP toxicity. 

 

Using CatBoost, our best-performing model, we analyzed the relative feature influence on NP 

toxicity predictions through SHAP values. Concentration in culture media, NP composition, and 

particle size emerged as the top three predictors of cytotoxicity (Fig. 2a). These features 

consistently ranked highest across the top-performing models, highlighting their critical role in 

determining NP toxicity (Fig. 2b). Secondary influential features, including target organ, exposure 

time, and surface coating also contributed to predictive performance but to a lesser degree 

compared to the top three factors (Fig. 2a, 2b). 

 

In contrast, features such as animal species, ζ-potential, particle shape, and cell class had 

minimal influence, as reflected by low SHAP values (Fig. 2a, 2b). While ζ-potential is widely 

recognized for its role in influencing colloidal stability, cellular uptake, and protein corona 

formation, its low ranking in our analysis may stem from several factors. Approximately 43% of 

entries in our dataset lack defined ζ-potential values (Fig. 1b(iv)), limiting the model’s ability to 

extract meaningful patterns. Furthermore, ζ-potential alone may not fully capture the complexity 

of NP surface interactions, as suggested by prior studies highlighting surface charge density as 

a more reliable predictor of toxicity than ζ-potential alone54. The diversity of surface modifications 

across our dataset may have also diminished ζ-potential’s relative importance, as other surface 

properties could play a more prominent role in specific NP subgroups. Similarly, although particle 

geometry is often considered a key determinant of toxicity due to its effects on circulation half-life, 

endocytosis, immune response, and cell membrane disruption55, its reduced importance here can 

be attributed to the homogeneity of this feature in our dataset. With 89.62% of NPs being spherical 

(Fig. 1b(iv)), compounded by our assumption of spherical geometry when unspecified, this 

feature lacked sufficient variability to provide discriminative power. Lastly, cell class (i.e., primary 

versus cell lines) exhibited minimal influence, likely due to the limited variability in cell type 

composition within the dataset. With 87% of the entries corresponding to immortalized cell lines 

and only 13% to primary cells (Fig. 1b(iv)), the predictive utility of this feature in distinguishing 

toxicity outcomes was diminished. 
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To validate the reliability of the SHAP-derived feature hierarchy, we extended the analysis to the 

remaining top-performing models (Fig. 2b). The consensus of feature rankings was evaluated 

using the Spearman correlation coefficient, revealing strong alignment across models, 

with R>0.89. CatBoost exhibited excellent agreement with Gradient Boosting Classifier 

(R=0.9879), LightGBM (R=0.9758), and Random Forest (R=0.9515), supporting the robustness 

of the derived rankings. However, Extra Trees showed moderate agreement (R=0.7818) due to 

its greater emphasis on ζ-potential and lower prioritization of particle size. While this deviation 

highlights model-specific tendencies, the overall consistency reinforces the generalizability of the 

identified toxicity determinants. 

 

This SHAP analysis not only elucidates the key drivers of NP toxicity but also provides actionable 

insights for the rational design of safer NPs. By focusing on key features like composition and 

particle size, which indirectly influence exposure levels and cellular interactions, researchers can 

optimize NP formulations to minimize cytotoxicity and enhance their translational potential. 

Furthermore, SHAP’s feature rankings present an opportunity to streamline predictive models by 

identifying and retaining only the most impactful features, reducing model complexity while 

maintaining accuracy. 

 

SHAP-guided feature reduction and model optimization 

Building upon the SHAP analysis, we implemented an iterative retraining strategy to identify the 

minimal subset of features required for robust model performance. Features were progressively 

added to the top-performing models in descending order of SHAP importance, and changes in 

PR-AUC, ROC-AUC, recall, and precision were monitored at each step (Fig. 2c). This process 

revealed a performance plateau in PR-AUC, ROC-AUC, and precision after incorporating eight 

features: NP concentration, composition, particle size, target organ, exposure time, surface 

coating, species, and ζ-potential. These features proved essential for maintaining high predictive 

performance. In contrast, features such as shape and cell class demonstrated negligible impact, 

confirming their limited role in toxicity predictions. 

 

Strategically reducing features enhances interpretability and computational efficiency while 

retaining predictive accuracy. The reduced-feature models achieved PR-AUC values above 

0.8619 and recall exceeding 0.8098 across all top-performing algorithms (Fig. 2d, 2e; Table S3). 

The ROC curves further validate the minimal performance loss, showing near-identical trends 

between the full-feature and reduced-feature models (inset Fig. 2d). This consistency 
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underscores the effectiveness of SHAP-guided feature reduction in simplifying models without 

compromising their predictive power. 

 

The streamlined models offer significant advantages for preclinical deployment by reducing 

computational demands and enhancing interpretability. Additionally, the reduced model 

minimizes the number of features required from experimental measurements. By prioritizing eight 

key features, the model enables researchers to streamline experimental workflows, reducing the 

need to collect data on low-impact features. This not only enhances cost-efficiency but also 

accelerates NP screening and design, making the model highly suitable for preclinical and 

translational applications. These findings highlight the practical utility of explainable AI in toxicity 

modeling, providing a scalable framework for NP safety evaluation and rational design. 

 

Feature-specific insights into nanotoxicity: a framework for safety-by-

design 

Building upon these insights, we leveraged the reduced features set to establish guidelines for 

safety-by-design. Using Partial Dependence Plots (PDPs) and SHAP, we systematically analyzed 

how variations in the top-ranked features influence NP toxicity. Concentration of NPs in culture 

media demonstrated a strong positive correlation with toxicity, showing a sigmoidal relationship 

as identified through regression analysis (Fig. 3a). The regression model indicates a rapid 

increase in toxicity probability at concentrations exceeding 10 μg mL-1, saturating at higher values. 

Similarly, exposure time followed a sigmoidal relationship, with a rapid increase in toxicity 

probability observed within the first 50 hours, followed by a gradual plateau around 100 hours 

(Fig. 3b). This trend suggests that toxic effects primarily manifest early during exposure, though 

some effects may persist over longer durations depending on experimental conditions. 

 

Our findings also reveal that the probability of a toxic prediction decreases following a power-law 

decay with particle size, resulting in a linear trend when plotted against log10-transformed particle 

size (Fig. 3c). This trend aligns with existing evidence that smaller NPs are more toxic due to their 

higher surface area-to-volume ratio. For example, Song et al. demonstrated that smaller TiO₂ 
NPs (~25 nm) induce significant ER stress and apoptosis in HepG2 cells, in contrast to larger 

NPs (~100 nm)56. Similarly, Pan et al. found that 1.4 nm AuNPs exhibit heightened genotoxicity 

across cell types by interacting with the major groove of B-DNA, disrupting transcription and 

initiating cell death within 12 hours57. 
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Further, positively charged NPs exhibited an increased propensity for toxic predictions compared 

to neutral or anionic counterparts, as shown by higher SHAP values for cationic particles (Fig. 

3d). This effect can be attributed to stronger electrostatic interactions with negatively charged cell 

membranes, enhancing cellular uptake54 or destabilizing cell membranes58. Once internalized, 

these NPs dysregulate intracellular processes, particularly within the mitochondrial electron 

transport chain and endoplasmic reticulum (ER), leading to oxidative stress, cellular damage, and 

genotoxic effects, including prolonged arrest in the G0/G1 phase59. This ζ-potential-toxicity 

relationship aligns with literature60, including Hühn et al.’s findings that 3T3 fibroblasts rapidly 

internalized cationic AuNPs, resulting in elevated ROS levels61. 

 

Additionally, NP composition was also a critical determinant of toxicity (Fig. 3e). Heavy metal-

based NPs such as Cd, Cu, ZnO, Mn, Ni, and Ag exhibited higher SHAP values, indicating 

increased toxicity likelihood. In contrast, compositions like Ce, hydroxyapatite, Co, Al, and Fe 

were associated with greater safety. The release of toxic ions, modulated by microenvironmental 

factors like pH and ionic strength, underlies this trend. Toxic ions such as Ag⁺ cause direct cellular 

damage, while biologically essential ions like Fe²⁺ can be harmful at high concentrations59. These 

findings are consistent with Kobayashi et al., who evaluated the cytotoxic potential of 12 inorganic 

NPs and ranked Cd NPs as the most toxic62. 

 

Surface coatings further modulate toxicity outcomes, with certain coatings reducing toxicity by 

preventing ion release or altering surface charge (Fig. 3f). For example, polyethylene glycol 

(PEG) coatings have been shown to improve colloidal stability and reduce cellular uptake, 

mitigating toxicity63. However, the large variability in SHAP values across surface coatings 

underscores the importance of considering interdependent factors, such as geometry and 

composition, which collectively influence properties like colloidal stability, ion release, and cellular 

interactions. 

 

While PDP and SHAP analyses elucidate the marginal effects of individual features on toxicity 

predictions, NP toxicity is inherently multifactorial. The nonlinear interactions between 

physicochemical properties (e.g., size, charge, composition, coating) and testing conditions (e.g., 

concentration, exposure time) necessitate an ML model to accurately capture these dynamics. 

The integration of SHAP and PDP with ML enables both accurate predictions and interpretable 

insights, providing a robust framework for understanding and mitigating NP toxicity. 
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The large variability in SHAP values, particularly for NP coatings and composition, underscores 

the importance of considering the interdependence of physicochemical properties across 

heterogeneous experimental protocols64. For instance, surface coatings modify surface charge65, 

colloidal stability, and hydrodynamic size59, while geometry influences systemic half-life, organ 

bioaccumulation, and endocytosis mechanisms. Composition further affects surface chemistry 

and reactivity, including crystal structure, which can impact toxicity outcomes66. 

 

Thus, our guidelines necessitate a holistic approach to safety-by-design, as previously 

demonstrated by Wu et al., who showed a size-dependent toxicity relationship in ultrasmall 

superparamagnetic iron oxide NPs (USPIONs)67. Their study showed USPIONs of 2.3 nm and 

4.2 nm localized in lysosomes in cardiac tissue after IV administration in mice, releasing Fe2+ ions 

under acidic conditions. This release inversely correlated with NP size and catalyzed Fenton 

reactions, producing hydroxyl radicals (·OH) that led to oxidative stress and acute cardiac failure. 

In contrast, larger USPIONs (9.4 nm), as well as Au and SiO₂ NPs, did not exhibit toxic effects. 

These findings highlight how size interacts with composition and the biological microenvironment 

to determine toxicity, underscoring the multifactorial nature of NP safety. This example 

demonstrates why a holistic framework, integrating key physicochemical properties and testing 

conditions, is critical for designing NPs that balance safety and functionality. 

 

External testing of predictive models for in vitro cytotoxicity  

Building on the feature-specific insights from the previous section, we evaluated the real-world 

utility of our ML framework in predicting NP toxicity. While the integration of SHAP and PDP 

analyses established a comprehensive safety-by-design framework, validating its generalizability 

across diverse datasets and experimental conditions remains essential. To address this, we 

performed external testing with in-house experimental data derived from cytotoxicity and 

hemolysis assays using mesoporous silica nanoparticles (MSNs). MSNs were specifically chosen 

due to their tunable physicochemical properties, which our team has extensive expertise in 

tailoring during synthesis68-70. This allowed us to systematically generate a diverse set of well-

characterized MSNs, encompassing variations in size, porosity, and surface functionalities. These 

particles served as an ideal model nanomaterial for robust experimental testing. The experimental 

workflow is depicted in Fig. 4a, 4b, and detailed protocols are provided in Supplementary 

Methods S1. 
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To extend the scope of testing, we incorporated high-quality entries from the S2NANO repository. 

This rigorously curated database contains NPs of diverse compositions, exposure scenarios, and 

experimental conditions, enabling a broader assessment of the predictive capabilities of our 

framework. The merged dataset of 517 samples (63 in-house and 454 from S2NANO) reflects a 

balance between cytotoxic (32.9%) and non-toxic (67.1%) samples (Fig. 4a). This balance 

ensures that model performance is evaluated across both high- and low-risk samples, simulating 

realistic testing conditions. Importantly, the dataset encompasses diverse NP compositions (ZnO, 

SiO₂, TiO₂), surface coatings, and ζ-potential values, as well as a wide range of particle sizes, 

concentrations, and exposure times (Fig. 4c). 

  

The external testing results, as shown in Fig. 4d and 4e, illustrate the predictive power of the ML 

models using both PR and ROC curves. The models yielded robust predictive performance on 

the external dataset, with PR-AUC values ranging from 0.82 to 0.85 and recall values from 0.81 

to 0.91 (Fig. 4e, Table S3). Among the individual models, Random Forest (RF) emerged as the 

top performer, achieving a PR-AUC of 0.84 and a recall of 0.89, surpassing its internal testing 

metrics (recall: 0.84). In contrast, CatBoost, which excelled in internal testing, did not perform as 

well during external testing, achieving a PR-AUC of 0.82 and a recall of 0.85. These discrepancies 

highlight the importance of external testing in identifying models that generalize effectively beyond 

their training datasets. 

 

ROC curves provided complementary insights into the models’ classification capabilities, 

balancing sensitivity (true positive rate) and specificity (false positive rate) (inset Fig. 4d). Across 

all models, ROC-AUC values remained consistently high, ranging from 0.89 to 0.9247. Among 

the individual models, RF also achieved the highest ROC-AUC of 0.9247, followed closely 

by CatBoost (ROC-AUC: 0.9214) and GBC (ROC-AUC: 0.9147). While LightGBM had slightly 

lower performance with an ROC-AUC of 0.9010, all models exceeded 0.89, confirming their 

reliability in external testing scenarios (Fig. 4e, Table S3). 

 

To mitigate variability in individual model performance and reduce dependency on any single 

algorithm, we integrated the top-performing models into a unified stacking ensemble. By 

leveraging the complementary strengths of each base model, the ensemble achieved superior 

overall performance, with a PR-AUC of 0.85, a recall of 0.91, and a ROC-AUC of 0.92 (Fig. 4e, 

Table S3). While the ensemble underperformed in precision compared to CatBoost (0.73), GBC 

(0.72), RF (0.70), and LightGBM (0.71), it achieved the highest recall among all models. This 
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makes the ensemble particularly well-suited for applications where minimizing false negatives is 

critical, such as nanotoxicity predictions. By optimizing recall while maintaining competitive overall 

performance, the ensemble model ensures robust generalizability and addresses the limitations 

of individual models, particularly in high-stakes preclinical testing scenarios. 

 

The ensemble model’s robust performance across diverse experimental conditions and NP 

compositions signifies a pivotal advancement in in vitro nanotoxicity prediction. By replacing 

traditional trial-and-error approaches with a data-driven framework, our methodology supports the 

rational design of safer and more effective nanomedicines. These findings highlight the potential 

for deploying ML-driven strategies in nanomedicine, with far-reaching implications for both clinical 

translation and regulatory approval processes. 

 

Extending ML frameworks to predict in vivo nanotoxicity 

Leveraging the strength of our in vitro ML framework, we extended its applicability to in vivo 

settings by retraining it on curated in vivo nanotoxicity data. This adaptation bridges the gap 

between in vitro studies and complex in vivo dynamics, capturing the influence of organ-specific 

exposure and nano-bio interactions on toxicity outcomes. To achieve this, we incorporated a 

PBPK modeling approach71-73 to quantify time-averaged NP concentrations in individual organs. 

PBPK modeling incorporates the transport phenomena associated with NP biodistribution and 

simulates physiologically meaningful whole-body concentration-time profiles (Fig. 5b; Equations 

S1–S8, Supplementary Methods S2). This allowed us to capture the nuances of in vivo 

exposure across diverse experimental conditions and study designs. The resulting exposure 

metrics replaced the concentration feature used in the in vitro ML framework, enabling a seamless 

extension of the ML models to in vivo settings while maintaining its predictive robustness (Fig. 

5a). 

 

The minimal PBPK (mPBPK) model developed here, comprising six compartments (plasma, liver, 

spleen, lungs, kidneys, and others), successfully simulated NP biodistribution kinetics across 

diverse physicochemical and physiological conditions (Fig. 5c). Physiological parameters were 

either known a priori74, 75 (Table S4) or estimated through non-linear least squares fitting (Table 

S5), achieving Pearson correlation coefficients >0.9 for all simulations (Fig. 5d and Fig. S5). 

Time-averaged concentration of NPs across organs in the various studies estimated from the 

simulated concentration-time curves (𝐶𝑖̂ = AUC𝑖(0–𝑡tox)𝑡tox ; see Methods) ranged from 0.01 to 7185.65 
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µg mL-1 (Fig. 5c(iii)), capturing diverse exposure scenarios relevant to both acute and chronic 

toxicity assessments. This metric consolidates temporal dynamics into a single representative 

value, enabling direct comparisons across studies with varying exposure durations. The mPBPK 

model offers a computationally efficient approach to quantify NP biodistribution, guiding preclinical 

NP design for enhanced safety. 

 

Using a curated dataset of 390 samples derived from 35 studies (Fig. 5c), detailed NP 

biodistribution data enabled the parameterization of the mPBPK model and the retraining of the 

ML framework. This dataset encompassed diverse physicochemical properties, including gold 

(42.8%), iron oxide (23.1%), and silver (9.1%) NPs, with a range of surface modifications and 

organ-specific exposure patterns. The integration of PBPK-derived metrics enhanced the 

framework’s ability to predict organ-specific in vivo toxicity, as demonstrated by robust model 

performance (Fig. 5e, 5f). 

 

Individual models were characterized by strong testing performance, with PR-AUC values ranging 

from 0.89 to 0.96 and recall values from 0.86 to 1.0 (Fig. 5f, Table S3). Among 

these, GBC achieved the highest PR-AUC (0.96) with a recall of 0.98, while RF attained perfect 

recall (1.0) but a slightly lower PR-AUC (0.93) due to reduced precision. Extra Trees balanced 

precision and recall effectively, with a PR-AUC of 0.93 and a recall of 0.86. The stacking 

ensemble strategy leveraged the strengths of individual models, achieving a robust PR-AUC 

of 0.93 and perfect recall (1.0), demonstrating its ability to enhance generalizability and mitigate 

biases in individual models. 

 

Complementary ROC analysis (inset Fig. 5e) confirmed the high predictive reliability of the 

models. The stacking ensemble achieved an outstanding ROC-AUC of 0.99, indicating near-

optimal classification performance across all false positive rates. Similarly, RF matched the 

ensemble’s performance with an ROC-AUC of 0.99, while Extra Trees followed closely at 0.98. 

Both CatBoost and LightGBM demonstrated strong classification capabilities, achieving ROC-

AUCs of 0.98 and 0.97, respectively. In contrast, GBC exhibited comparatively lower 

performance, with an ROC-AUC of 0.82, reflecting variability in its reliability. Collectively, these 

results underscore the robustness of the ensemble approach, effectively combining the strengths 

of individual models for highly accurate and generalizable nanotoxicity predictions. 
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The stacking ensemble’s consistent performance across PR-AUC and ROC-AUC metrics 

underscores its suitability for in vivo toxicity predictions. By mitigating individual model biases, the 

ensemble enhances reliability and generalizability across diverse datasets. These findings 

emphasize the PBPK-ML framework’s potential to bridge in vitro and in vivo toxicity assessments, 

facilitating the clinical adoption of safer, design-optimized NPs while minimizing toxicity risks. 

 

Conclusion 

The clinical translation of inorganic NPs has been stymied by a lack of standardized frameworks 

to predict toxicity across diverse experimental settings. Conventional trial-and-error approaches, 

compounded by inconsistencies in data reporting, have limited progress in the design and 

deployment of safe and effective NPs. Addressing these challenges, we present a novel ML 

framework, enhanced by PBPK modeling, to predict NP toxicity both in vitro and in vivo with 

unprecedented precision and scalability. 

 

Our ML framework, trained on the largest curated in vitro cytotoxicity dataset to date, achieved 

robust predictive performance, with ensemble models demonstrating PR-AUCs exceeding 0.89 

and recalls above 0.9. Explainability analyses revealed NP concentration as the dominant 

predictor of toxicity, while other physicochemical features such as composition and size provided 

critical design insights. These findings informed safety-by-design principles, providing a 

quantitative foundation for rational NP development. 

 

The integration of a PBPK model represents a significant step forward, enabling mechanistic 

insights into organ-specific NP biodistribution and its impact on toxicity. This mechanistic layer 

allowed for the generation of time-averaged exposure metrics, bridging in vitro predictions with 

the complexity of in vivo environments. Ensemble models retrained on curated in vivo datasets 

achieved outstanding predictive accuracy, with PR-AUCs and ROC-AUCs approaching optimal 

performance. This integration of mechanistic modeling and ML provides a scalable and 

physiologically meaningful approach to preclinical safety assessment. 

 

While these advances represent a significant milestone, several limitations warrant consideration. 

The relatively small size of the in vivo dataset and variability in biodistribution reporting across 

studies posed challenges to the PBPK model’s generalizability. The exclusive focus on inorganic 

NPs limits the framework’s applicability to organic or hybrid nanomaterials, while the minimal 

PBPK model does not yet account for more complex nano-bio interactions, such as immune 
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responses or protein corona formation. These constraints underscore the need for further data 

curation and mechanistic model refinements to enhance the framework’s scope and accuracy. 

 

Looking ahead, this PBPK-informed ML framework offers a potential Novel Alternative Method 

(NAM) for preclinical safety assessments, providing a harmonized and scalable approach for 

evaluating NP toxicity. Future work will focus on addressing data gaps, particularly in 

biodistribution reporting, and expanding the framework to include organic NPs and hybrid 

materials. By bridging computational insights with experimental testing, this framework 

establishes a blueprint for rational NP design, accelerating the development of safer and more 

effective nanomedicines. 
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Methods 

Data collection, curation, and preprocessing for in vitro cytotoxicity predictions 

Our in vitro cytotoxicity dataset was assembled from previously published meta-analyses38, 39, 44-

46, 50 and a systematic review of peer-reviewed articles (January 2004–December 2023) identified 

through Google Scholar, PubMed, and Web of Science. We applied strict inclusion criteria: (i) 

only inorganic NPs were considered; (ii) studies must provide NP size, exposure duration, and 

NP concentration data; (iii) the focus was on biomedical rather than environmental safety 

applications; (iv) experiments had to be conducted in vitro using mammalian cell lines; and (v) 

cytotoxicity had to be quantified via percentage cell viability. We extracted viability data using 

WebPlotDigitizer (https://automeris.io/). This screening yielded 425 papers (Fig. 1a). 

 

To ensure data harmonization, particle sizes were standardized to nanometers (nm), exposure 

durations to hours (h), and concentrations to micrograms per milliliter (µg mL-1). For 

missing categorical variables, surface coating was labeled “Unmodified” and shape was labeled 

“Sphere” where not reported. ζ-potential was categorized as positive (ζ > 10 mV), negative (ζ < 

−10 mV), neutral (−10 mV ≤ ζ ≤ 10 mV), or “not determined,” prioritizing measurements 

in deionized water (or culture media if water measurements were unavailable). 

 

Following ISO 10993-5 guidelines, the cell viability endpoint was binarized such that ≥70% 

viability was labeled “safe” (assigned 0), and lower viability was labeled “cytotoxic” (assigned 1)38. 

This encoding was performed using Pandas (Python). Next, each continuous variable (particle 

size, concentration, and exposure time) underwent outlier detection using a 1.5× interquartile 

range cutoff; flagged outliers were manually inspected and removed if 

deemed unreliable or nonsensical. 

 

The resulting dataset was then shuffled to eliminate order bias and split into training (80%) 

and test (20%) subsets via train_test_split() in Scikit-Learn (v1.5.1). We applied a logarithmic 

transformation to each continuous variable to mitigate skewness and stabilize 

variance. Categorical variables underwent one-hot encoding using Scikit-Learn, omitting the 

least frequent category to avoid collinearity (i.e., the “dummy variable trap”; Table S2). Finally, to 

handle the expanded feature space after one-hot encoding, we converted the DataFrame into 

a sparse matrix using SciPy(v1.13.1), enabling efficient model training. 

  

Machine learning (ML) pipeline for in vitro cytotoxicity predictions  

https://automeris.io/
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Model selection and implementation 

A diverse array of 18 binary classification algorithms was employed to predict the cytotoxicity of 

inorganic NPs. These models were implemented using the SciKit-Learn, CatBoost (v1.2.2), 

LightGBM (v4.4.0), and XGBoost (v2.0.3) libraries in Python 3.12. To ensure reproducibility, a 

random state of 3 was set. The suite of algorithms spanned multiple methodological classes, 

including boosting and tree-based models (such as AdaBoost, Gradient Boosting Classifier, and 

Random Forest), clustering algorithms (k-nearest neighbor and radius-neighbor classifiers), 

discriminant and kernel-based approaches (linear and quadratic discriminant analysis, support 

vector classifiers), linear models (logistic regression, perceptron, and stochastic gradient 

descent), and Naïve-Bayes classifiers. This comprehensive selection allowed for an unbiased 

evaluation of algorithmic efficacy, ensuring robustness across diverse methodologies. 

 

Training and internal testing 

Model training was performed on a Lenovo ThinkStation P520 equipped with an Intel Xeon W-

2125 CPU and NVIDIA Quadro P4000 GPU, as well as a 2022 Apple MacBook Pro featuring an 

M2 chip. A 10-fold nested cross-validation (nCV) technique was implemented to ensure robust 

model evaluation and hyperparameter optimization. In the nCV framework, the outer loop 

assessed model performance, while the inner loop optimized hyperparameters using 

the StratifiedKFold, cross_validate, and GridSearchCV functions from the SciKit-Learn library. 

 

The dataset was stratified into ten folds to maintain a consistent class distribution across folds. 

During each iteration of the outer loop, nine folds were used for training and one for testing. 

Hyperparameters were optimized in the inner loop to maximize the area under the precision-recall 

curve (PR-AUC), a metric well-suited for imbalanced datasets. The list of hyperparameters 

optimized through grid search is provided in Table S1. Optimal hyperparameters identified from 

each fold of the inner loop were consolidated into a refined parameter grid, which was 

subsequently applied to retrain the models on the entire training data partition. This approach 

enhanced the robustness and generalizability of the final models by focusing on the most effective 

parameter combinations. 

 

Early stopping was incorporated to prevent overfitting for boosting models (CatBoost, Gradient 

Boosting Classifier, LightGBM, and XGBoost) that support history monitoring. Log-loss was 

monitored on a 10% hold-out subset of the training data, with early stopping triggered after 50 
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consecutive iterations without improvement, up to a maximum of 5,000 boosting rounds. For 

models not employing early stopping, default settings for the number of estimators were used. 

 

To further evaluate model performance, an unseen 20% of the dataset was reserved as an 

internal test set. The decision threshold was programmatically adjusted using threshold tuning to 

maximize the F1 score, balancing precision and recall for imbalanced datasets. Evaluation 

metrics, calculated using the metrics package from SciKit-Learn, included accuracy 

(
TP+TNTP+TN+FP+FN), ROC-AUC, sensitivity (

TPTP+FN), specificity (
TNTN+FP), F-1 score (2 x Precision x Recall Precision+Recall ), 

PR-AUC, Matthews Correlation Coefficient (MCC) (
(TPxTN)−(FPxFN)√(TP+FP)x(TP+FN)x(TN+FP)x(TN+FN)), and 

Balanced Accuracy (BA) score (
sensitivity+specificity2 ). 

 

For the purpose of NP toxicity predictions, true positives (TP) referred to correctly identified toxic 

NPs, false positives (FP) to non-toxic NPs misclassified as toxic, true negatives (TN) to correctly 

identified non-toxic NPs, and false negatives (FN) to toxic NPs misclassified as non-toxic. 

Precision, defined as TP / (TP + FP), measured the proportion of true toxic predictions among all 

toxic predictions made, while recall (sensitivity), defined as TP / (TP + FN), quantified the 

proportion of correctly identified toxic NPs among all actual toxic NPs. 

 

Performance metrics such as PR and ROC curves were visualized using the plot() function in 

Matplotlib (v3.9.1). Given the dataset’s imbalance and the high cost associated with false 

negatives, PR-AUC and recall were prioritized during model evaluation. The five best-performing 

models were selected based on their robustness in managing class disparity and their 

effectiveness in minimizing false negatives. 

 

Artificial neural network 

Neural network models were developed using the Keras-Tuner toolkit (v1.4.7; 

https://github.com/keras-team/keras-tuner) and TensorFlow (v2.10), with TensorFlow Metal 

employed for enhanced compatibility with Apple hardware. To ensure consistency across 

experiments, we implemented a 10-fold nested cross-validation (nCV) framework, mirroring the 

protocol used for traditional ML models. Four critical hyperparameters—learning rate, number of 

hidden layers, dropout rate, and type of regularization (L1, L2, or elastic net)—were optimized 

using Keras-Tuner's GridSearch. 

 

https://github.com/keras-team/keras-tuner
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The model architecture followed a sequential design, beginning with an input dense layer 

containing a number of nodes equal to the dataset’s feature count (Fig. S4). Hidden layers, 

configured based on grid search results, consisted of 128 units each, with ReLU activation, batch 

normalization, and dropout layers applied consistently. Regularization was implemented using L1, 

L2, or elastic net techniques at a fixed strength of 0.01, enhancing the network’s ability to 

generalize across diverse data. The output layer utilized a sigmoid activation function to generate 

binary predictions, and the Adam optimizer was selected for its effectiveness in handling sparse 

gradients and noisy datasets. Binary_crossentropy was employed as the loss function, with PR-

AUC as the primary evaluation metric to address the dataset’s class imbalance. 

 

Training included a 10% validation split to monitor binary cross entropy loss, analogous to log-

loss monitoring in traditional ML models. This ensured early detection of overfitting while 

maximizing the use of training data. After identifying optimal hyperparameters for each inner fold 

during nCV, the model was retrained on the full outer training fold before final evaluation on the 

held-out outer test fold. This systematic optimization and evaluation protocol ensured a thorough 

assessment of ANN performance, with results directly comparable to those from traditional ML 

models. 

 

Model unification 

To improve the accuracy and robustness of cytotoxicity predictions, we developed a unified model 

using a stacked ensemble classifier approach implemented with the SciKit-Learn library. This 

methodology integrates predictions from the five best-performing base models, which were 

selected based on their PR-AUC and recall performance during cross-validation. A logistic 

regression meta-model was employed as the stacking layer, enabling an equitable combination 

of base model outputs while leveraging their diverse predictive strengths. The choice of logistic 

regression as the meta-learner was motivated by its simplicity and effectiveness in managing 

multi-model integration without overfitting. Logistic regression operates on the probability outputs 

of the base models, ensuring smooth integration while maintaining interpretability. This design 

minimizes bias by distributing reliance across multiple models, improving generalizability and 

reducing the risk of overfitting that could arise from dependence on a single predictive model. By 

combining the unique strengths of individual classifiers, the stacking strategy enhances overall 

predictive accuracy and addresses the challenges of imbalanced data in NP cytotoxicity 

predictions. This unified approach ensures that the complementary insights of diverse models are 

systematically captured, offering a reliable and scalable solution for toxicity assessment. 
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Explainability analysis 

Global SHAP ranking 

We performed explainability analysis using SHapley Additive exPlanations (SHAP, v0.44)53 to 

establish a global hierarchy of toxicity determinants. SHAP values quantify the contribution of 

individual features to model predictions, providing insights into their influence on toxicity 

outcomes. The SHAP value (𝜙𝑖(𝑓)) for a feature 𝑖 is calculated as: 

𝜙𝑖(𝑓) = ∑ |𝑆|! (|𝑁| − |𝑆| − 1)!|𝑁|! ∙ [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]𝑆⊆𝑁   
where 𝑓 is the binary classifier model, 𝑆 is a subset of all features excluding 𝑖, and 𝑁 is the full 

feature set. This equation measures the average impact of including feature 𝑖 across all feature 

subsets. SHAP values were computed using 

the TreeExplainer(output_argument='probability') function, ensuring interpretations 

corresponded directly to the probabilistic model outputs. 

 

To simplify interpretation, SHAP values for one-hot encoded categories were aggregated to 

calculate a single influence score for each feature. This aggregation allowed for direct feature-

level comparisons and enhanced interpretability. Beeswarm plots were generated using 

the summary_plot() function to visualize the distribution of SHAP values, with color encoding to 

represent the magnitude of feature influence. One-hot encoded features were preprocessed using 

the encoder function from SciKit-Learn to facilitate visualization. To assess the consensus of 

feature rankings across the top five models, we calculated Spearman correlation coefficients 

using the corr(method='spearman') function from Pandas (v1.1.5). These rankings were 

visualized as a heatmap generated with the heatmap() function in Seaborn (v0.13.2). 

 

Quantifying structure-toxicity relationships 

We employed partial dependence plots (PDPs) to evaluate the marginal effects of key continuous 

variables, i.e., concentration, exposure time, and particle size, on predicted NP toxicity 

probabilities. PDPs were generated using the partial_dependence() function from SciKit-Learn 

and extended using regression analysis in MATLAB (v2023b) to fit empirical mathematical 

functions. Confidence intervals (95%) were calculated to quantify variability. For categorical 

features, SHAP values were computed separately for each category and filtered to isolate their 
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specific contributions to predicting toxicity. Non-normal SHAP value distributions were 

summarized using the median, with positive median SHAP values indicating stronger associations 

with toxicity predictions and negative values reflecting decreased toxicity likelihoods. These 

distributions were visualized using boxplots created with Matplotlib and Seaborn. 

 

Feature reduction 

To streamline our best-performing models and improve computational efficiency, we applied an 

iterative retraining strategy based on feature rankings derived from SHAP analysis. SHAP ranked 

features by their contribution to toxicity predictions but did not provide a specific cutoff to 

distinguish crucial features from non-essential ones. Therefore, we progressively incorporated 

features into the model in descending order of SHAP importance, retraining the model at each 

step and monitoring changes in performance metrics, specifically PR-AUC and recall. This 

iterative approach identified a performance plateau, beyond which the inclusion of additional 

features did not improve PR-AUC or recall, indicating their marginal contribution to toxicity 

predictions. The results from each iteration were visualized using Matplotlib, highlighting the 

relationship between feature inclusion and model performance. 

 

Once the minimal subset of features was identified, final retraining phases were conducted on the 

best-performing models identified earlier (CatBoost, GBC, RF, Extra Trees, and LightGBM), using 

only the features deemed crucial. These reduced-feature models were trained and tested using 

the same nCV and internal testing processes as described previously to ensure consistency and 

reliability. Performance comparisons between full-feature and reduced-feature models were 

assessed to validate the efficacy of the reduction process. 

 

External testing for in vitro cytotoxicity predictions 

To evaluate the generalizability and robustness of our ML models, we conducted external testing 

using two complementary sources of in vitro cytotoxicity data: (1) independent cell viability and 

hemolysis experiments conducted in-house and (2) supplemental entries from the S2NANO 

database, a peer-reviewed repository of extensively characterized NPs. Together, these datasets 

mimic real-world testing conditions and provide a comprehensive framework for validating toxicity 

predictions. Mesoporous silica nanoparticles (MSNs) were selected as the model nanomaterial 

for in-house studies, leveraging our team’s expertise in synthesizing MSNs with diverse 

physicochemical properties, including hexagonal and dendritic architectures with tailored size, 

porosity, and surface functionality68. Lipid and polyethyleneimine (PEI) coatings were applied to 
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modulate surface charge and biocompatibility. Detailed descriptions of MSN synthesis, 

functionalization, characterization, and cytotoxicity assay protocols are provided in the 

Supplementary Methods S1. 

 

To ensure broader applicability of our framework, we expanded external testing by incorporating 

entries from the S2NANO (www.s2nano.org) database, a rigorously curated resource containing 

NPs across diverse compositions and experimental contexts. The high P-scores assigned to 

database entries reflect their reliability and quality, sourced through established meta-analyses. 

This inclusion enabled testing of model performance on a wide array of NP types, including 

materials beyond MSNs and across various organ-specific cell lines. All entries were processed 

using the standardized preprocessing pipeline described earlier, ensuring consistency in feature 

extraction and toxicity endpoint definitions. Metrics such as PR-AUC, recall, and F1-score 

confirmed the robustness and predictive accuracy of the ML models across the combined dataset, 

reinforcing their utility for real-world applications. 

 

Developing an in vivo nanotoxicity prediction framework 

To extend the predictive capabilities of our ML framework to in vivo settings, we integrated curated 

nanotoxicity data with a minimal physiologically based pharmacokinetic (mPBPK) model. This 

hybrid framework quantifies organ-specific NP exposure, enabling accurate toxicity predictions 

while accounting for both physiological and physicochemical factors. The approach involves 

comprehensive data curation, PBPK-based exposure quantification, and retraining the ML 

framework to enhance its generalizability across diverse preclinical scenarios. Organ-specific 

exposure metrics, derived from area under the curve (AUC) of PBPK simulations, replace the 

concentration feature used in vitro, bridging in vitro and in vivo predictions. 

 
In vivo data curation  

To develop robust and generalizable ML models for in vivo toxicity, we curated a dataset 

integrating toxicity and biodistribution data from studies published between January 2004 and 

May 2024. Data were sourced from Google Scholar, PubMed, and Web of Science. Studies were 

selected based on stringent inclusion criteria: they utilized murine and rodent models, focused on 

inorganic NPs with well-defined physicochemical properties (e.g., size, dose, and exposure 

duration), and employed non-inhalation administration routes (intravenous (IV), subcutaneous 

(SC), intraperitoneal (IP), and oral (PO)). Toxicity assessments included biochemical, 

hematological, or histopathological analyses compared to controls. Only studies reporting NP 

http://www.s2nano.org/
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concentrations in organs at a minimum of three distinct time points were included, enabling 

accurate PBPK modeling. This rigorous selection process resulted in 35 high-quality studies, 

forming the foundation for PBPK model development and ML retraining (Fig. 5a). 

 
The final curated dataset consisted of 390 samples, encompassing diverse physicochemical 

properties and biodistribution patterns. Predominant NP types included gold (42.8%), iron oxide 

(23.1%), and silver (9.1%), with particle sizes ranging from 1.2 to 310 nm. Surface modifications 

varied, with polyethylene glycol (PEG) coatings (27.44%) and unmodified NPs (42.05%) 

representing the majority. IV administration accounted for 90.77% of samples, and key organs 

such as the liver (32.05%), kidneys (26.41%), and spleen (16.92%) were most frequently 

analyzed due to their roles in NP metabolism and clearance. 

 

PBPK model development 

To simulate NP biodistribution and clearance dynamics in vivo, we developed a minimal PBPK 

model comprising six compartments: plasma, liver, spleen, lungs, kidneys, and others (Fig. 5b). 

The model accounted for perfusion-limited transport and first-order excretion kinetics, effectively 

capturing critical pharmacokinetics and transport phenomena (Equations S1–S8). Time-

averaged NP concentrations for individual organs were derived from simulated concentration-

time profiles and subsequently used as exposure metrics for ML training. Details on model 

equations, parameterization, and numerical implementation are provided in the Supplementary 

Methods S2. 

 

Quantifying organ-specific NP biodistribution  

Following the parameterization of the PBPK model, the time-averaged concentration (𝐶𝑖̂) was 

quantified for each compartment (𝑖) using the equation: 𝐶𝑖̂ = AUC𝑖(0– 𝑡tox)𝑡tox  

Here, AUC𝑖(0– 𝑡tox) represents the area under the PBPK model’s concentration-time curve for 

compartment 𝑖 up to the time of toxicity measurement (𝑡tox). This time-averaged concentration 

metric provides a robust summary of NP biodistribution dynamics during the period relevant to 

toxicity assessments. This approach is particularly advantageous when comparing studies with 

varying experimental designs or exposure durations, as it consolidates temporal dynamics into a 

single representative value. To ensure the reliability of the simulated biodistribution metrics, only 

model simulations achieving a Pearson correlation coefficient R>0.9 between fitted and observed 



 27 

biodistribution data were included in the final dataset. This threshold criterion ensured the 

inclusion of only high-confidence simulations for subsequent in vivo toxicity prediction modeling. 

 

ML framework retraining  

To extend the ML framework from in vitro to in vivo settings, the curated dataset was split into 

80% for training and 20% for testing. The same ML pipeline used for in vitro data was applied, 

employing nCV within the training set to optimize hyperparameters and ensure robust model 

performance. Specifically, a 10-fold nCV approach was implemented to optimize 

hyperparameters and assess generalization performance. The outer loop evaluated overall model 

generalization, while the inner loop fine-tuned hyperparameters for optimal performance. Only the 

top five performing models from the in vitro analysis, along with the stacking ensemble, were 

retrained to focus on models with demonstrated reliability and predictive power. Additionally, the 

integration of PBPK-derived time-averaged concentration metrics into the ML framework provided 

a physiologically meaningful representation of organ-specific NP exposure. This adaptation 

bridged the gap between in vitro and in vivo predictions, preserving methodological consistency 

while accommodating the complexities of in vivo dynamics. By concentrating on the most effective 

models and leveraging PBPK insights, the framework ensured robust and scalable predictions 

across biological contexts. 
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Figure 1. In vitro nanotoxicity prediction pipeline, dataset characterization, and machine learning 
(ML) model testing. a) The workflow for in vitro cytotoxicity predictions begins with data collection, 
resulting in a curated dataset of 8,190 samples. Data preprocessing includes harmonization of 
physicochemical descriptors, toxicity classification, scaling, and one-hot encoding (OHE) for ML model 
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training and testing. The dataset is split into 80% training and 20% test subsets, with a nested cross-
validation (nCV) framework applied to the training set. Internal testing is performed on the reserved test 
subset. Explainability analyses are employed to identify key toxicity drivers. External testing is performed 
using in-house experimental data based on mesoporous silica nanoparticles (MSNs) and additional data 
from the S2NANO repository. b) Dataset description and feature distributions. (i) Data inclusion criteria 
focus on studies reporting complete descriptors for inorganic NPs, including physicochemical properties, 
experimental conditions, and cell viability as a toxicity endpoint. (ii) Distribution of the target variable shows 
that 37.3% of samples were classified as cytotoxic, while 62.7% were non-toxic. (iii) Continuous input 
features include particle size, administered concentration, and exposure time, showcasing the wide 
variability in experimental conditions. (iv) Categorical input features include NP composition, surface 
coatings, ζ-potential, shape, cell class (primary or cell lines), and target organ. c) Internal testing results. 
Precision-recall (PR) curves demonstrate the performance of top ML models, including CatBoost, Gradient 
Boosting Classifier (GBC), Random Forest (RF), Extra Trees, and LightGBM. The inset receiver operating 
characteristic (ROC) curve shows true positive rates (TPR) versus false positive rates (FPR). Dashed black 
line in PR curve plot denotes the baseline precision for random guessing, while in ROC curve plot, it 
represents random classifier performance (FPR = TPR). d) Heatmap summarizing key testing metrics (PR-
AUC, ROC-AUC, recall, and precision) for the best-performing models, highlighting the strong predictive 
capabilities of boosting and tree-based algorithms. 
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Figure 2. Explainability analysis, feature reduction, and internal testing of reduced-feature models. 
a) SHapley Additive exPlanations (SHAP) analysis for CatBoost, visualized as a beeswarm plot. Each point 
represents an individual prediction, highlighting the direction and magnitude of each feature’s contribution 
to NP toxicity classification. Higher SHAP values indicate greater importance, with features like 
concentration, composition, and particle size emerging as the most influential determinants of toxicity. 
b) SHAP consensus rankings across the top-performing models (CatBoost, GBC, RF, Extra Trees, 
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LightGBM). The heatmap highlights high inter-model agreement, with concentration, composition, and 
particle size consistently ranked as the top three predictors. c) Iterative feature reduction results for 
CatBoost, visualizing changes in PR-AUC (i), ROC-AUC (ii), recall (iii), and precision (iv) as features are 
added in descending order of SHAP importance. The solid black line denotes the point of performance 
saturation, beyond which adding additional features provides minimal improvement in predictive 
performance. d) Internal testing of top-performing models using the reduced feature set, evaluated through 
PR curves and ROC curves. The PR curves demonstrate strong predictive power with minimal loss 
compared to full-feature models, while the inset highlights ROC curves for these models. Dashed black line 
in PR curve plot denotes the baseline precision for random guessing, while in ROC curve plot, it represents 
random classifier performance (FPR = TPR). e) Performance heatmap summarizing internal testing metrics 
(PR-AUC, ROC-AUC, recall, precision) for top-performing models with reduced features.  
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Figure 3. Feature-specific explainability analysis to inform NP safety-by-design strategies. a-
c) Partial dependence plots (PDPs) depict the marginal effects of continuous features—NP concentration 
(a), exposure time (b), and particle size (c)—on predicted toxicity probabilities, holding all other features 
constant. Black dots represent data points, solid blue lines indicate model fits, and red dashed lines denote 
95% confidence intervals. Empirical functions are provided to describe observed trends. d-f) SHAP 
summary plots illustrate the contribution of categorical features—ζ-potential (d), NP composition (e), and 
surface coating (f)—to toxicity predictions. Positive SHAP values indicate an increased probability of 
cytotoxicity, whereas negative values suggest reduced toxicity.  
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Figure 4. In vitro cytotoxicity data generation and external testing of ML model generalizability. 
a) Overview of test data sources, comprising in-house cytotoxicity experiments (N=63) and additional 
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external testing data from the rigorously curated S2NANO repository (N=454), resulting in a combined 
external dataset (N=517) for testing. b) Experimental workflow for in-house cytotoxicity studies: (i) MSN 
synthesis using sol-gel fabrication and subsequent functionalization with lipid or polyethyleneimine (PEI) 
coatings; (ii) Characterization of MSNs by hydrodynamic size and ζ-potential measurements; (iii) Cell 
viability assays performed on human cell lines (REH, 42D, MR49F) using ATP-based luminescence 
readings following NP exposure; (iv) Hemolysis assays involving red blood cell (RBC) isolation and NP 
exposure, with phosphate buffer saline (PBS, negative control) and distilled water (DI water, positive 
control) validating assay accuracy. c) Dataset description: (i) Distribution of categorical input features, 
including NP composition, surface coating, ζ-potential, species, and target organ; (ii) Continuous feature 
distributions for particle size, concentration, and exposure time. d) External testing results presented as PR 
and ROC curves for the top-performing models (CatBoost, Gradient Boosting Classifier (GBC), Random 
Forest (RF), Extra Trees, LightGBM) and the ensemble model. The dashed black line in the PR curve plot 
denotes the baseline precision for random guessing, while in the ROC curve plot, it represents random 
classifier performance (FPR = TPR). e) Performance heatmap summarizing metrics, including PR-AUC, 
ROC-AUC, recall, and precision, highlighting the robust external testing and generalizability of the 
ensemble model, which achieved high recall and overall strong predictive performance. 
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Figure 5.  PBPK-ML framework for predicting in vivo nanotoxicity. a) Overview of the PBPK-ML model 
integration pipeline. Data curation involved selecting 390 samples based on inclusion criteria, including NP 
composition, murine/rodent models, and time-series biodistribution data. Time-averaged NP concentrations 
derived from the PBPK model were incorporated into retrained ML models previously optimized for in vitro 
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predictions. b) Schematic of the minimal PBPK model, illustrating NP biodistribution across organs (plasma, 
spleen, liver, kidneys, lungs, and others) and clearance via feces and urine following intravenous (IV), 
subcutaneous (SC), oral (PO), or intraperitoneal (IP) administration. c) In vivo dataset description: (i) 
Toxicity outcomes, showing a majority (83.8%) with no observed toxicity; (ii) Categorical input features, 
including NP composition, surface coating, ζ-potential, species, and target organs; (iii) Continuous input 
features, such as particle size, concentration, and exposure time. d) Representative PBPK model 
concentration kinetics fits for gold nanorods (AuNR) with various surface coatings, showing excellent 
agreement with experimental data (Pearson correlation coefficients >0.98). e) Internal testing results for 
PBPK-ML models using PR and ROC curves, highlighting the performance of the top algorithms. Dashed 
black line in PR curve plot denotes the baseline precision for random guessing, while in ROC curve plot, it 
represents random classifier performance (FPR = TPR). f) Performance heatmap showing key metrics (PR-
AUC, ROC-AUC, recall, and precision) for individual models and the ensemble model. The ensemble model 
achieved the highest accuracy, with PR-AUC = 0.93 and recall = 1.00, demonstrating the robustness of the 
PBPK-ML framework for organ-specific nanotoxicity predictions. 
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