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Abstract

Background

Vector-borne diseases are important causes of mortality and morbidity in humans and live-

stock, particularly for poorer communities and countries in the tropics. Large-scale programs

against these diseases, for example malaria, dengue and African trypanosomiasis, include

vector control, and assessing the impact of this intervention requires frequent and extensive

monitoring of disease vector abundance. Such monitoring can be expensive, especially in

the later stages of a successful program where numbers of vectors and cases are low.

Methodology/Principal findings

We developed a system that allows the identification of monitoring sites where pre-interven-

tion densities of vectors are predicted to be high, and travel cost to sites is low, highlighting

the most efficient locations for longitudinal monitoring. Using remotely sensed imagery and

an image classification algorithm, we mapped landscape resistance associated with on- and

off-road travel for every gridded location (3m and 0.5m grid cells) within Koboko district,

Uganda. We combine the accessibility surface with pre-existing estimates of tsetse abun-

dance and propose a stratified sampling approach to determine the most efficient locations

for longitudinal data collection. Our modelled predictions were validated against empirical

measurements of travel-time and existing maps of road networks. We applied this approach

in northern Uganda where a large-scale vector control program is being implemented to con-

trol human African trypanosomiasis, a neglected tropical disease (NTD) caused by trypano-

somes transmitted by tsetse flies. Our accessibility surfaces indicate a high performance

when compared to empirical data, with remote sensing identifying a further ~70% of roads

than existing networks.

Conclusions/Significance

By integrating such estimates with predictions of tsetse abundance, we propose a methodol-

ogy to determine the optimal placement of sentinel monitoring sites for evaluating control
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programme efficacy, moving from a nuanced, ad-hoc approach incorporating intuition,

knowledge of vector ecology and local knowledge of geographic accessibility, to a reproduc-

ible, quantifiable one.

Author summary

Assessing the impact of vector control programmes requires longitudinal measurements

of the abundance of insect vectors within intervention areas. Such monitoring can be

expensive, especially in the later stages of a successful program where numbers of vectors

and cases of disease are low. Efficient monitoring involves a prior selection of monitoring

sites that are easy to reach and produce rich information on vector abundance. Here, we

used image classification and cost-distance algorithms to produce estimates of accessibil-

ity within Koboko district, Uganda, where vector control is contributing to the elimina-

tion of sleeping sickness, a neglected tropical disease (NTD). We combine an accessibility

surface with pre-existing estimates of tsetse abundance and propose a stratified sampling

approach to determine locations which are associated with low cost (lowest travel time)

and potential for longitudinal data collection (high pre-intervention abundance). Our

method could be adapted for use in the planning and monitoring of tsetse- and other vec-

tor-control programmes. By providing methods to ensure that vector control programmes

operate at maximum efficiency, we can ensure that the limited funding associated with

some of these NTDs has the largest impact.

Introduction

Vector-borne diseases (VBDs) are important causes of mortality and morbidity in humans

and livestock, particularly for poorer communities and countries in the tropics, accounting for

an estimated 17% of the global burden of all infectious diseases [1]. The control of VBDs, or

their elimination as a public health problem, is dependent upon effective vector management,

which includes pre-intervention surveys and subsequent longitudinal monitoring of vector

abundance to assess the effectiveness of an intervention. Such monitoring is an important

component of the overall costs of control.

To improve the efficiency of vector control programs, there is a requirement to identify

optimal locations for longitudinal monitoring site placement. Ideally, these sites should be in

locations that maximise information on the distribution and density of vectors while minimis-

ing costs of obtaining these data. In practice, most vector surveillance is opportunistic and

lacks a rigorous framework [2]. A more rational method would involve combining informa-

tion on vector abundance with estimates of geographical accessibility, to identify sites across

operational areas where pre-intervention catches are high and sampling costs are low. Towards

this goal, we examined the utility of remotely sensed (RS) data to produce contemporary esti-

mates of geographic accessibility to entomological sampling sites, using sleeping sickness con-

trol as an example application.

Sleeping sickness control as an example application

Human African trypanosomiasis (HAT) is a neglected tropical disease (NTD) affecting remote

areas of sub-Saharan Africa. The disease, also termed ‘sleeping sickness’, is caused by the pro-

tozoan parasite Trypanosoma brucei with two sub-species, T.b.gambiense and T.b.rhodesiense,
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causing Gambian (gHAT) and Rhodesian (rHAT) human African trypanosomiasis respec-

tively. The burden of the Gambian form of the disease, for which humans are the main hosts,

is>10 times that of the Rhodesian form, with annual reported cases being in the region of

2–3,000 [3]. The World Health Organization (WHO) has targeted the elimination of gHAT as

a “public health problem” by 2020, which is defined as a 90% reduction in areas reporting >1

case in 10 000 compared to 2000–2004, and<2000 annually reported cases globally [4]. Several

countries appear to be on track to achieve this target [5]. Uganda is unique in that it is the only

country where both gHAT and rHAT occur, albeit within different local level zones [6, 7]. Vec-

tor control forms an important part of Uganda’s efforts against both forms of HAT [8, 9].

The important vectors of gHAT are Palpalis-group species of tsetse, which concentrate in

riverine vegetation where, consequently, interventions are focused. In Uganda, tsetse control

is being achieved through the deployment of Tiny Targets, small (20 x 50 cm) panels of insecti-

cide-treated material which are deployed at 50-100m intervals along rivers [9, 10]. Prior work

produced estimates of tsetse abundance across Northern Uganda, identifying locations of high

pre-intervention abundance [11], which has informed the identification of operational control

areas.

Methods to quantify accessibility largely involve cost-distance analyses, which have been

widely used within the field of public health in analyses mapping accessibility to healthcare

[12–15]. Such analyses require an input surface of landscape friction (‘resistance’)–estimates of

associated travel cost for gridded cells within a Cartesian plane. The cost-distance analysis

identifies the cumulative cost of traversing each cell based on the given resistance surface and

an origin location–opting to traverse through cells associated with the lowest resistance values.

The use of accessibility mapping in the planning and implementation of control programmes

for vector-borne disease is novel and has the potential to improve the efficiency of monitoring

VBD interventions.

In this paper, we use remotely sensed (RS) satellite data to derive a contemporary road net-

work within Koboko district, Northern Uganda, where an existing tsetse control programme

is in operation. To obtain a road network within this district, we compare the utility of RS data

at two differing spatial resolutions (one source characterising locations within the district as

3 × 3m grid cells on a Cartesian plane, and another as 0.5 × 0.5m grid cells) [16, 17], and an

existing open source dataset detailing road locations [18]. Image classification algorithms, spe-

cifically maximum likelihood estimators were used to detect dirt and tarmac roads within the

RS imagery [19]. Ground truth tracking (GPS) data detailing motorbike speeds along roads

within the district were used to assign on-road travel costs to each grid cell. We used published

estimates of time taken to traverse through different densities of vegetation to assign resistance

values to off-road grid cells [20, 21]. Resistance surfaces were validated using withheld ground-

truth tracking data, comparing observed and predicted travel times within a linear regression.

The resulting resistance surfaces were used within a least-cost path algorithm to identify

cumulative costs to locations of high tsetse abundance [11]. We apply a stratified sampling

approach to determine locations which are associated with low cost (lowest travel time) and

potential for rich longitudinal data collection (high pre-intervention abundance).

Here, by combining field data on travel time along varying road types and remotely sensed

imagery, we describe the process of producing a high-resolution accessibility surface. By inte-

grating such estimates with predictions of tsetse abundance, we propose a methodology to

determine the optimal placement of sentinel monitoring sites for evaluating the efficacy of a

tsetse control programme, moving from a nuanced, ad-hoc approach incorporating intuition,

knowledge of vector ecology and local knowledge of geographic accessibility to a reproducible,

quantifiable one. The work described here is presented in the context of tsetse control, but the

methods used are applicable to a wide range of vector-borne diseases.
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Materials and methods

Study area

The focal area of this study was Koboko District, located within the West Nile Region of

Uganda. The West Nile region consists of eight districts, with current and planned interven-

tion initiatives (i.e. the Tiny Target programme), operating in seven. Koboko district covers

roughly 860km2 and has a population of 229,200 people [22]. Between 2000 and 2018, 14.6%

(620/4235) of gHAT cases reported from Uganda occurred in Koboko, but the incidence of

gHAT is in decline as a consequence of an integrated programme of screening and treatment

of the human population and, more recently, vector control [23]. A map showing the location

of existing, and planned intervention areas within West Nile Region is provided as S1 Fig,

highlighting the position of Koboko within these intervention districts.

Field methodology and data collection

To obtain data informing variation in speeds along road class, technicians making routine vis-

its to traps within Koboko were provided with GPS devices. The recording of GPS tracks was

performed during three time periods in the dry season: May-June 2017, February-April 2018,

and December 2018-January 2019. Trap attendants within Koboko operate using motorbikes;

therefore, observed speeds were representative of motorbike-based travel. Devices were config-

ured to record track points at ~15-second intervals.

Obtaining remotely sensed satellite data

To compare the effect of different spatial resolutions of satellite data on the ability to identify

roads, we used two differing sources of remotely sensed imagery. Imagery obtained from Pla-

netScope satellites, captured on February 12th, 2018 were utilised. PlanetScope imagery is pro-

vided at a 3m × 3m resolution, and includes the following four spectral bands: blue (455–515

nm), green (500–590 nm), red (455–515 nm), and near infrared (780–860 nm) [16, 24]. Planet-

Scope data are freely accessibly through an education and research program account.

Data captured through the Pléiades-1A satellite, available at a 0.5m × 0.5m resolution and

captured on 27th December 2016 were used to represent high-spatial resolution imagery [25].

Imagery captured on this date was the most contemporary data available. The Pléiades-1A

imagery similarly consists of the same four spectral bands as PlanetScope. Data obtained by

Pléiades-1A is available by request through Airbus (previously known as the European Aero-

nautic Defence and Space Company) [17].

GPS data review and cleaning

To calculate travel speeds, the time-difference between subsequent points within a track and

the Euclidean distance between these points were used within the following formula (Eq 1):

Where xi represents the GPS coordinate of point i, ti represents the time recorded for point

i and ||�|| represents the Euclidean distance:

speed ¼
jjxi � xjjj
jti � tjj

ðEq 1Þ

Recorded points with a speed <1km/hr were assumed to be stationary points (based on

average walking speeds [26]), and were removed from the track dataset. Similarly, we removed

data points for which the speed exceeded 150 km/hr (93.2 mph) as these were likely to be
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artefacts created due to errors with location positioning and are not representative of true

travel speed.

Open street map validation

To determine the accuracy of currently available open source data, OpenStreetMap (OSM)

geolocated roads, and roads visible within 0.5m and 3m satellite data were compared. Shape-

files detailing mapped roads hosted by OSM were retrieved from Geofabrik OSM Data

Extracts on March 3rd, 2018, to align with the dates during which field-obtained tracking data

were collected [18]. A 1 km × 1km fishnet constructed for Koboko district was used to produce

a random sample of 25 grid squares for manual digitisation. The digitisation process consisted

of tracing over visible roads and tracks, as seen in the 0.5m resolution imagery (metric one), or

as seen in the 3m resolution imagery (metric two). The length of digitized road obtained from

each of the three sources was calculated in metres.

Remote sensing image preparation

In total, 14 scenes covering an area of 745.8 km2 were downloaded from Planet.com. To pro-

duce one complete surface, overlapping scenes were merged using ArcGIS (version 10.4), and

the composite image was cropped to district boundaries. Imagery obtained from Pléiades-1A

(0.5m) were provided as a pre-prepared mosaic.

Image classification

To aid image classification, image segmentation utilising a mean-shift approach was first per-

formed within ArcGIS (version 10.4). Mean-shift segmentation is a process that identifies seg-

ments in imagery by grouping adjacent pixels that have similar spectral characteristics; a

detailed introduction and theory related to mean-shift segmentation algorithms can be found

within Demirović 2019 [27]. We utilised the “Segment Mean Shift” tool within the “Spatial
Analyst Toolbox” in ArcGIS, with the following default parameters: spectral detail = 15.5, spa-

tial detail = 15, minimum segment size (in pixels) = 20. Following mean-shift segmentation,

we applied a maximum likelihood (ML) classification algorithm using an equal a priori proba-

bility weighting to identify the class in which each cell had the highest probability of being a

member. The ML classification algorithm considers both the variances and covariances of pix-

els assigned to ‘classes’ (groups of pixels relating to a specific type of land-cover, in this

instance), selected within a signature training file [19]. Under the assumption that the distribu-

tion of a class sample is normal, each class was characterized by the mean vector and the

covariance matrix. Given these characteristics, for each cell value within the remotely sensed

imagery, the statistical probability of a cell belonging to each class is calculated and an appro-

priate classification is assigned [19]. We opted to use the following classes within this analysis:

dirt road and/or track, tarmac road, dense vegetation (for example: woodlands, forest, bush-

wood and shrubwood), grassland (for example: grassland, meadow, steppe and savannah) and

barren land. Signature files for use in the ML classification were produced by manually tracing

and assigning pixels within the remotely sensed imagery to one of the five classes described

above. Classification was performed using the “Train Maximum Likelihood Classifier” tool

within the “Spatial Analyst Toolbox” in ArcGIS. To account for “salt and pepper” speckling

effects representative of potentially misclassified and/or isolated cells, we performed post-clas-

sification processing. This processing stage included filtering to remove isolated cells [28],

smoothing to smooth rugged class boundaries [29], and generalizing to reclassify small regions

of isolated cells [30]. Post-classification cleaning was performed in ArcGIS.
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Classification validation

A total of 500 accuracy assessment points were randomly generated for each classified surface

(i.e. 3m × 3m and 0.5m × 0.5m imagery). A step-by-step comparison was then made for each

randomly selected point, noting the algorithm-derived class and the manually assigned

(ground-truth) class. Utilising this information, a confusion matrix was constructed for each

image source. Accuracy was calculated with respect to both omission and commission rates,

where omission refers to instances where a feature (point) is omitted from the evaluated cate-

gory, and commission refers to instances where a feature is incorrectly assigned to the category

being evaluated.

Road network update

Using the outputs from the image classification process, the GPS tracking data, and available

OSM data, two contemporary road networks (one per remotely sensed data source) were pro-

duced. Cleaned, field-obtained tracking points were used to inform estimates of average travel

speeds along selected roads as follows. Tracking points were converted to polylines, consisting

of line segments constructed from five trailing points. These segments were assigned a mean

observed speed by calculating the Euclidean distance of each segment and incorporating start

and end times. These segments were then rasterised, resulting cells were stacked, and overlap-

ping cells resulting from replicate trips across all tracking days were averaged. This produced a

surface indicating the average observed speed for each cell. Tracks obtained during December

2018 were withheld from this network and were used for validation (see below). A surface

detailing urban and rural locations [31] was used to categorise roads as being within urban or

rural areas. This classification was paired with data from the Ugandan Traffic and Road Safety

Act, detailing maximum speed limits based on roads within urban/built-up areas and rural

areas. Characterising roads by these features imply a legal maximum speed for each road rep-

resentative of true travel speeds. Classified urban and classified rural cells were assigned the

speeds given in Table 1, as informed by the official Traffic and Road Safety Act 2004 [32] and

the Highway code [33].

Normalized Difference Vegetation Index analysis

As the majority of mapped roads do not lead directly to a river or tributary, trap attendants are

required to traverse off-road in order to reach suitable habitats for trap placement. We there-

fore aimed to characterise the cost associated with off-road travel within our analysis. Utilising

the two differing imagery sources, two separate NDVI surfaces were generated (Eq 2). During

the NDVI calculation, output values were normalised to range between -1.0 and 1.0, represent-

ing greenness. Generally, output NDVI values�0 represent waterbodies including lakes and

major rivers; values between 0.1 and 0.2 represent barren land, including areas of rock, sand,

or snow; values between 0.2 and 0.3 represent shrub and grassland (areas of moderate vegeta-

tion), and values between 0.3 and 0.8 represent areas of dense vegetation (for example temper-

ate and tropical rainforest) [34, 35].

Table 1. Assigned travel speeds to roads lacking ground-obtained tracking data.

Road type Speed (km/h)

Built-up area Rural area

Paved 50 100

Gravel/dirt 50 80

https://doi.org/10.1371/journal.pntd.0008096.t001

PLOS NEGLECTED TROPICAL DISEASES Entomological monitoring using GIS

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008096 March 23, 2020 6 / 19

https://doi.org/10.1371/journal.pntd.0008096.t001
https://doi.org/10.1371/journal.pntd.0008096


Where NIR represents the near infrared band, and R represents the red band within the RS

imagery:

NDVI ¼
ðNIR � RÞ
ðNIRþ RÞ

ðEq 2Þ

Assigning off-road resistance values

Resistance values are values associated with a specific cost to traverse through a cell (time, in sec-

onds). For this study, off-road resistance values were assigned utilising the NDVI outputs, with

cost values ranging based on indicative terrain. Locations which contain dense vegetation are gen-

erally slower to navigate and therefore cells representative of these areas were associated with a

higher resistance value; conversely, cells which represent areas with little to no vegetation were

presumed to be easier to traverse and were assigned a lower resistance value. Average off-road

walking speeds for differing terrains were obtained from published literature [20, 21] (Table 2).

Resistance surface and cost-distance analysis

The updated road networks, featuring a cell crossing time based on assigned speeds (represen-

tative of on-road resistance), were combined with their respective off-road resistance surface.

To validate the generated surfaces, we used field-obtained tracking data (obtained December

2018) withheld from the road network construction. Sixty-three segments along the withheld

tracks were used to create validation points. Using the resistance surface, the travel time from

the start to the end point of each segment was generated utilising a least-cost path algorithm

within QGIS 3.4.4 [36], plugin “Least-Cost Path” (produced by FlowMap Group [37]). The

specific algorithm implemented is referred to as Dijkstra’s algorithm, and is an approach utilis-

ing graph theory to identify the shortest path between two nodes; the algorithm is described in

detail in Dijkstra 1959 [38]. A linear regression model was then fitted to the observed travel

time data with predicted travel time being included as the only covariate to quantify the rela-

tionship between the two measures. The ability of the predicted travel time to each validation

point to accurately predict the observed travel time was used to detect an association between

the two, and to provide a means of adjusting the generated surface values if necessary. The

accuracy of each resistance surface was defined by the coefficient p-values, and by root-mean-

square error (RMSE). Utilising these resistance surfaces, two separate cost-distance analyses

were performed (one per spatial resolution), each using the location of our district entomolo-

gist’s base as the origin. The cost-distance analysis again implemented Dijkstra’s algorithm,

calculating the cumulative cost of travel from the origin to each grid cell in the resistance

surface.

Identifying optimal sentinel site placement

We performed a spatially stratified sampling approach to aid the identification of 104 least-

cost, high abundance locations per 25km2 for sentinel site placement. Firstly, we produced a

Table 2. Resistance values (cell crossing time) associated with off-road travel.

NDVI value Off road walking speed (km/h) Off road walking speed (m/s) Cell crossing time (ti)
0.5 × 0.5m 3m × 3m

�0 Essentially impassable Essentially impassable 200 200

0.1–0.2 3.5 0.97 0.73 4.37

0.2–0.3 2.48 0.69 1.03 6.14

0.3–0.8 1.49 0.41 1.73 10.34

https://doi.org/10.1371/journal.pntd.0008096.t002
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fishnet consisting of 5 km × 5 km grid squares across Koboko district, and assigned each grid

square a sequential stratum identification number (see S2 Fig for strata distribution). For each

strata within the proposed intervention area, we ranked each cell by their predicted tsetse

abundance values [11], and by their predicted travel time from the origin–as obtained from

the cost-distance output. To account for spatial clustering, and to ensure a more even spatial

distribution of sentinel sites, we retained the cell with the highest predicted abundance and

lowest associated cost per 50m × 50m area. We calculated the cumulative rank for each cell

within the de-clustered dataset, where predicted abundance values were ranked from high to

low, and accessibility values ranked from low to high. We retained two locations (paired sites)

with the lowest cumulative rank per sampled strata, with these locations being identified as the

optimal placement for sentinel monitoring sites.

Utilising the travelling salesperson problem (TSP) to identify the optimal

route

Once the optimal location of monitoring sites was identified, we applied the travelling sales-

person problem (TSP) to identify the most efficient order in which to visit each site. The TSP

is an optimisation problem in which the following question is addressed: “Given a list of cities

and distances between each pair of cities, what is the shortest possible route that visits each city

and returns to the origin city?”[39]. We adapt this problem to answer “Given a list of monitor-

ing locations and travel times between each pair of locations, what is the shortest possible

route that visits each monitoring site and returns to the origin location?”. We solve this

through the implementation of “Concorde’s algorithm” [39], through the TSP package in R

[40]. First, the 3 × 3m friction surface was converted into a transition matrix through use of

the “transition” function in the gdistance R package [41]. Second, the pairwise distances

between each site was calculated to produce a distance matrix, through use of the “costDis-
tance” function in the gdistance package. We then implemented the TSP using the function

“TSP” and the distance matrix, and solved the TSP with “solve_TSP”; both functions are from

the TSP R package. By following the route identified by solving the TSP, and incorporating

30-minute stays at each pair of sites to deploy traps and/or collect samples, we group sites into

‘clusters’ which are feasible to visit within a 5-hour sampling day.

Results

GPS data collection

To inform estimates of on-road travel cost for each 3m × 3m and 0.5m × 0.5m cell within

Koboko district, Northern Uganda, we obtained tracking data during three periods: May-June

2017, February-April 2018, and December 2018-January 2019. Tracks collected between May

2017—April 2018 were used to inform road speeds, and tracks collected between December

2018-January 2019 were withheld for validating the resistance surfaces (S3 Fig).

OpenStreetMap accuracy assessment

Analyses evaluating the accuracy of an existing, community-driven, open-source road network

(from OpenStreetMap), indicate that at least one road exists within the OpenStreetMap

(OSM) dataset for 17 out of 25 randomly sampled 1km2 grid squares across Koboko district

(mean road length = 1.97 km). Only one out of 25 grid squares contained no visible roads

across sources (i.e. 0.5m imagery, 3m imagery, and OSM). When comparing total road length

visible in 3 × 3m imagery with that charted by OSM, the two sources show close agreement

(97.43% similarity [total road length across 25km2], paired t-Test p = 0.91), however, when
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comparing the 0.5 × 0.5m imagery and the OSM dataset, only 28.16% of digitised roads are

charted by OSM (paired t-Test p< 0.001, Fig 1, S1 Table, S4 Fig). This section of the analysis

provided the rationale for the classification of 0.5m imagery, with the inclusion potentially cap-

turing up to 71% more roads than OSM within the study area.

Image classification

Classification of two differing sources of remotely sensed imagery (0.5 × 0.5m and 3 × 3m)

yielded varying accuracies across classes, and across spatial resolutions, with accuracy values

ranging from 38% to 89% for dirt roads and 5% to 84% for tarmac roads for 3m and 0.5m

imagery respectively (Table 3; Fig 2). Overall image classification accuracy, considering all five

classes utilised (dirt road and/or track, tarmac road, dense vegetation, grassland and barren

land), ranged from 53% (3m) to 78% (0.5m), with 0.5m imagery proving to be more effective

at identifying both dirt and tarmac roads than the 3m imagery.

Resistance surface and cost-distance analysis

The accuracy of the resistance surfaces was assessed by investigating the relationship between

observed travel times and predicted travel times using withheld field-obtained GPS tracks and

a linear regression. Predicted values produced utilising the 3m resistance surface have a much

closer alignment with ground truth (observed) values, root-mean-square error (RMSE) = 3.93

Fig 1. Example of composite images of digitised road networks within Koboko district. Purple roads represent roads visible in 0.5m imagery [17], as digitised in this

study; black roads represent roads visible in 3m imagery [24], as digitised in this study, and light blue roads represent roads available within the OSM dataset [18]. The

overlap of all three colours indicate areas of consistency across sources.

https://doi.org/10.1371/journal.pntd.0008096.g001

Table 3. Maximum likelihood classification (MLC) accuracy assessment validation values for each class. Values represent the percentage of correctly classified cells

(classified vs ground truth) for the five classes of interest.

Class 3m imagery 0.5m imagery

Correct Incorrect Accuracy (%) Correct Incorrect Accuracy (%)

Dirt road and/or track 38 62 38.00 97 11 89.81

Tarmac road 5 95 5.00 84 16 84.00

Dense vegetation 91 9 91.00 95 5 95.00

Grassland 65 34 65.65 80 20 80.00

Barren land 70 30 70.00 38 54 41.30

Overall 269 230 53.91 394 106 78.80

https://doi.org/10.1371/journal.pntd.0008096.t003
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(3m) than the 0.5m resistance surface (RMSE = 6.01). In separate regressions with validation

data from both surfaces, we identify that there is a significant association between observed and

predicted values (p<0.001 (0.5m) and p<0.001 (3m)), indicating a high performance of each

surface, with the 3m surface showing a stronger relationship with less variability (R2 = 0.66 vs

R2 = 0.49, 3m and 0.5m respectively). Summaries of resistance surface validation are provided

within S5 Fig and Table 4. Output cost-distance surfaces detailing the travel time from the loca-

tion of our field station to each gridded cell within Koboko district are provided as Fig 3.

Identification of optimal sentinel site placement

Utilising the 3m cost-distance surface and a predictive surface of tsetse abundance [11], we

identified the optimal placement of 104 sentinel sites within the current intervention area (52

paired locations) (Fig 4). Such sites are positioned within the most easily accessible, high abun-

dant locations for 26 unique 5 x 5 km strata across the intervention area. Optimal sentinel-site

placement identifies locations with abundance values ranging from 0.04–19.57 (mean = 5.21)

flies per cell, and locations which are within 5.55–151.81 (mean = 68.42) minutes from the

field station location.

Identification of the optimal route

Utilising the coordinates of the 52 paired monitoring site locations, derived above, we imple-

mented the traveling salesperson problem (TSP) to identify the optimal route in which to visit

these sites. The result of the TSP is shown as Fig 5. Based on the assumption that the field-team

Fig 2. Confusion matrices for the classification of each surface (Left: 3m, Right: 0.5m). Diagonal squares (bottom

left to top right) indicate the percentage of correctly classified cells per class.

https://doi.org/10.1371/journal.pntd.0008096.g002

Table 4. Model summaries for resistance surface validation. Summary statistics from four separate linear regressions are provided.

3m resistance surface 0.5m resistance surface

Training data Validation data Training data Validation data

p-value < 0.001 < 0.001 < 0.001 < 0.001

Coefficient 1.10 0.59 0.78 0.34

RMSE 1.11 3.93 0.85 6.01

R2 0.93 0.66 0.95 0.49

https://doi.org/10.1371/journal.pntd.0008096.t004
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will spend up to 5 hours sampling per day, incorporating travel times, we grouped sites to

identify sampling clusters to visit per day. We show that a sampling period of four days is

required to ensure that all sample locations are visited.

Discussion

This analysis investigated the ability of high-resolution satellite imagery to inform estimates of

accessibility to entomological sampling sites, using tsetse control as an example application.

Fig 3. Cost-distance surfaces. Figures show the cumulative travel time from the field site origin (black point), to each subsequent cell within the

surface. Left: 3m cost-distance surface, Right: 0.5m cost-distance surface. This figure was generated using ArcGIS version 10.4 [42].

https://doi.org/10.1371/journal.pntd.0008096.g003
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Fig 4. Optimal placement of sentinel sites (max two sites per grid square [25km2]) within Koboko district. Location of

optimal sites visualised alongside the 3m accessibility surface (this study) and tsetse abundance surface [11], dashed lines

represent the 5 x 5km sampling strata used to allocate optimal sites. This figure was generated using ArcGIS version 10.4

[42].

https://doi.org/10.1371/journal.pntd.0008096.g004
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We started by scrutinising the completeness of an existing open source road network for

Koboko district, Uganda, comparing charted roads with those obtainable from manual digiti-

sation of remotely sensed (RS) imagery at two differing spatial resolutions. Results from this

section of the analysis indicate that, for this region of Uganda, roads visible within 3m imagery

matched 97.43% of roads identified in OpenStreetMap (OSM) (paired t-Test p = 0.91) (Fig 1,

Fig 5. Left: Optimal route in which to sample the identified sentinel sites within Koboko district. Right: Clusters of sentinel sites are identified by

enforcing a maximum sampling and travel period of 5-hours within Koboko district. This figure was generated using ArcGIS version 10.4 [42].

https://doi.org/10.1371/journal.pntd.0008096.g005
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S1 Table). Comparing roads visible within 0.5m RS imagery, and those charted by OSM, yields

28.16% consistency across sources (paired t-Test p< 0.001) (S1 Table).

As data published on OSM is the result of community contributions incorporating local

knowledge, data coverage is often inconsistent. The recent establishment of several refugee

camps across the West Nile Region has resulted in increased road mapping efforts within this

area, which explains the high levels of coverage seen here [43]. OpenStreetMap completeness

varies globally and the analyses we have developed will be particularly useful in places where

OSM and standard sources of information on road networks are scant [44].

Part of our analysis aimed to infer the effect of including spatially disaggregated data on

estimates of accessibility, detailing whether the extra information obtainable from 0.5m imag-

ery produces refined estimates. The results of a maximum likelihood classification algorithm

indicate a high ability to identify roads and associated features within the 0.5m imagery, mir-

roring that seen by manual digitisation (Table 3; Fig 2). Results from image classification also

indicate that the spatial detail available within 3m imagery is too coarse to classify roads in this

district accurately (38% and 5% accuracy for dirt and tarmac roads respectively). This result is

to be expected as the majority of roads within Koboko district rarely exceed a width of 3m,

resulting in decreased visibility; narrow roads are likely to be common across large parts of

rural Africa [45]. The utility of 3m imagery may be greater in more developed areas, where

roads exceed 3m in width.

Despite a higher image classification accuracy and a better model fit to training data, the

0.5m resistance surface appears to under-perform when presented with withheld GPS tracking

data compared to the 3m resistance surface (Table 4, S5 Fig). Both resistance surfaces show a

significant linear relationship between observed and predicted values, however, the 3m resis-

tance surface has a lower root-mean-square error (3.93 vs 6.01 respectively). This under-per-

formance may be due to the increased number of roads within the 0.5m resistance surface, and

some of the assumptions made regarding travel along roads of differing class. While we have

used the best possible information available to us, there will invariably be additional factors

that may affect how accessible a location is. Should, in practice, a location be more difficult to

access than predicted using our approach, an alternative location will be selected based both

on the outcome of this approach and field-based information. We envisage this process to be

somewhat iterative, with new GPS data collected during the first visit to a proposed monitor-

ing site. This new data may be used to improve surface validation and refine some of the

assumptions made during the approach described here. When using the surfaces to identify

optimal placement of sentinel-sites, the relative travel-time to each cell is as informative as the

actual travel-time. Despite varying RMSEs, the significant relationship between predicted and

observed travel times, support the utility of the generated surfaces.

By combining the generated 3m accessibility surface (Fig 3) with previously published esti-

mates of tsetse-abundance [11], we provide a novel framework for the identification of efficient

locations in which to place sentinel-monitoring sites (Fig 4). Previous methods to inform the

placement of sentinel-monitoring sites have been based on intuition, incorporating knowledge

of tsetse ecology and local knowledge of roads within an intervention area. Here, we further

quantify this process, providing a more robust approach that can be applied to a range of vec-

tor-borne diseases. The movement from a nuanced, ad-hoc process to an evidence-based one

will allow for a more efficient assessment of tsetse control programmes. Although we have pro-

vided a quantifiable approach for prioritising spatial sampling of disease vectors, we are aware

that knowledge of additional country and context specific factors such as varying vector behav-

iours and geographic accessibility are invaluable for designing and implementing an effective

monitoring program. Such approaches should be tailored for the vector, disease, and country

of interest, with the work described here providing a framework from which to build. Local
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knowledge can still be useful in the design and implementation of this approach, potentially

when identifying changes in accessibility (such as the creation or disuse of roads), or through

refinement of selected sites. The application of the methods used here to the context of inter-

vention monitoring and assessment is novel, and the refinement of results has several cost-

effective implications as vector control expands to other areas within the region.

The distribution and abundance of disease vectors dynamically change in response to varia-

tions in biotic and abiotic conditions [46, 47]. The methodology described here is receptive to

new surfaces detailing expanding or decreasing species ranges, however our approach is

focused on identifying static monitoring sites based off conditions at the time of implementa-

tion of the intervention. Periodic updates to OSM data may be used to generate contemporary

geographic accessibility surfaces reflecting the creation of new road networks or the disuse of

others. Although this methodology has the potential for dynamic updates, we are aware that

our approach requires a technical understanding of GIS and remote sensing, factors which

may prevent uptake and application in developing countries outside of the framework of inter-

nationally supported programs. These factors may be addressed through capacity strengthen-

ing programmes, where GIS skills can be integrated as part of the curriculum.

Several important vector-borne NTDs have been targeted for elimination as a public-health

problem by 2020 within the WHO NTD roadmap [4]. Unfortunately, however, the burden of

numerous VBDs will continue beyond the ambitious 2020 target [48–50]. As evident within

the WHO roadmap, both disease and vector surveillance form large components of most elim-

ination strategies; however, the Strategic and Technical Advisory Group (STAG) for NTDs

also recognise the need for a better understanding of the economic aspects of NTD control. By

providing methods to ensure that vector control programmes operate at maximum efficiency,

we can ensure that the limited funding associated with some of these NTDs has the largest

impact.

Although this analysis does not serve as an economic evaluation of methods to assess con-

trol programme efficacy, previous work has shown that vehicle running and travel costs are

within the top five associated costs of running a tsetse control programme [51, 52], with staff

salaries being the most expensive element. By strategically placing sentinel-monitoring sites in

locations that are associated with a low accessibility cost, programmes can reduce costs associ-

ated with travel (e.g., fuel, maintenance) and staff expenses, with current costs of tsetse moni-

toring being ~9.0$/km2/year (10.6% of tsetse control programme budgets) [52]. The

accessibility surface may also contribute toward cost-effective planning of pre-intervention

surveys, which are responsible for roughly 6% of control program budgets [52]. Furthermore,

by informing the positioning of these sites by additional metrics, such as pre-intervention

abundance, we identify locations that may provide more accurate evaluations of control effi-

cacy. Further research should be performed to evaluate the precise economic gains of this

approach.

Accessibility, in general, is a very sought-after metric and the methodology applied here,

although currently restricted to one district in Northern Uganda and limited to the purpose of

identifying accessible tsetse monitoring sites, could inform other accessibility analyses within

the area such as access to HAT diagnostic centres, and may be applied to a range of vector-

borne diseases.

Supporting information

S1 Fig. Existing and planned intervention areas. Blue areas identify both current and

planned Tiny Target intervention areas within the West Nile Region of Northern Uganda.

(TIF)
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S2 Fig. Distribution of 5 × 5 km sampling strata across Koboko district.

(TIF)

S3 Fig. Spatial distribution of ground truth data. Left: Tracks used to inform speeds along

select roads (training data). Right: Tracks used to validate the generated cost-distance surfaces

(validation data).

(TIF)

S4 Fig. Composite images of digitised road networks within Koboko district. Purple roads

represent roads visible in 0.5m imagery; black roads represent roads visible in 3m imagery,

and light blue roads represent roads available within the OSM dataset. The overlap of all three

colours indicate areas of consistency across sources.

(TIF)

S5 Fig. Regression plots. Plots from a linear regression using observed travel time data with

predicted travel time as the only covariate. Top Left: Regression using 3m within-sample

(training) data. Top Right: Regression using 3m out-of-sample (validation) data. Bottom Left:

Regression using 0.5m within-sample (training) data. Bottom Right: Regression using 0.5m

out-of-sample (validation) data.

(TIF)

S1 Table. Results of OpenStreetMap data validation.

(PDF)

S1 File. 3 meter resolution resistance surface. Available via FigShare: 10.6084/m9.fig-

share.11837019.

(TIF)

S2 File. 0.5 meter resolution resistance surface. Available via FigShare: 10.6084/m9.fig-

share.11837070.

(DOCX)

S3 File. Code used for the analysis.

(ZIP)
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