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Improved understanding of geographical variation and inequity in health status,

wealth and access to resources within countries is increasingly being recognized

as central to meeting development goals. Development and health indicators

assessed at national or subnational scale can often conceal important inequities,

with the rural poor often least well represented. The ability to target limited

resources is fundamental, especially in an international context where funding

for health and development comes under pressure. This has recently prompted

the exploration of the potential of spatial interpolation methods based on geolo-

cated clusters from national household survey data for the high-resolution

mapping of features such as population age structures, vaccination coverage

and access to sanitation. It remains unclear, however, how predictable these differ-

ent factors are across different settings, variables and between demographic

groups. Here we test the accuracy of spatial interpolation methods in producing

gender-disaggregated high-resolution maps of the rates of literacy, stunting and

the use of modern contraceptive methods from a combination of geolocated

demographic and health surveys cluster data and geospatial covariates. Bayesian

geostatistical and machine learning modelling methods were tested across four

low-income countries and varying gridded environmental and socio-economic

covariate datasets to build 1�1 km spatial resolution maps with uncertainty esti-

mates. Results show the potential of the approach in producing high-resolution

maps of key gender-disaggregated socio-economic indicators, with explained

variance through cross-validation being as high as 74–75% for female literacy

in Nigeria and Kenya, and in the 50–70% range for many other variables. How-

ever, substantial variations by both country and variable were seen, with many

variables showing poor mapping accuracies in the range of 2–30% explained var-

iance using both geostatistical and machine learning approaches. The analyses

offer a robust basis for the construction of timely maps with levels of detail that

support geographicallystratified decision-making and the monitoring of progress

towards development goals. However, the great variability in results between

countries and variables highlights the challenges in applying these interpolation

methods universally across multiple countries, and the importance of validation

and quantifying uncertainty if this is undertaken.
1. Introduction
The UN sustainable development goals (SDGs), an intergovernmental set of 17

aspirational goals and 169 targets to be achieved by 2030 [1], were launched in

2015. These include ending poverty and malnutrition, improving health and
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education, and building resilience to natural disasters and cli-

mate change. A particular focus across the goals and targets is

achievement ‘everywhere’, ensuring that no one gets left

behind and that progress is monitored at subnational levels to

avoid national-level statistics masking local heterogeneities.

This requires consistent, comparable evaluation and monitor-

ing of key SDG indicators at high levels of subnational detail

across the 2015–2030 period of the goals.

The increasing focus on subnational assessments for the

SDGs, as well as for efficient targeting of resources, and the

improvement in accuracy for health and development metrics

has prompted an emphasis on subnational data collection and

the continued development of mapping approaches. Principal

among these approaches is small area estimation [2–4]

whereby survey data on the variable of interest mapped at

coarse spatial scales are integrated with census data at fine

spatial scales to infer fine resolution mapping of key develop-

ment metrics. This approach has seen widest application in

the field of poverty mapping [5,6], but it is limited due to its

reliance on census data. With national population censuses

undertaken typically only every 10 years, and sometimes

longer in many low-income countries [7], this makes the appli-

cation of such small area estimation approaches challenging

for the ongoing monitoring of SDG indicators.

National household surveys are undertaken in low- and

middle-income countries more regularly than censuses,

typically every 3–5 years, with the Demographic and Health

Surveys (DHS) (http://dhsprogram.com), Living Standard

Measurement Surveys (LSMS) [8,9] and Multiple Indicator

Cluster Surveys (MICS) (http://mics.unicef.org) being the lar-

gest international programmes. These are vital for providing

SDG, policy and operational relevant metrics; however,

the data are typically only summarized at national or large

subnational areas, which can be inappropriate for identifying

the significant heterogeneities that need to be captured for

the ‘leave no one behind’ agenda. The increasing use of

global positioning systems (GPS) for recording the locations

of survey clusters and the increasing availability of these

data provide more fine-grained information [10]. However,

these cluster-level data are drawn from small sample sizes

and only represent samples of small areas. Spatial interp-

olation approaches that exploit spatial relationships between

cluster-located survey data and geospatial covariates have,

therefore, been explored recently [11,12], with applications

seen in mapping age structures [13], malaria prevalence [14],

vaccination coverage [15] and poverty [16] among others.

Moreover, the DHS programme is now routinely providing

modelled surfaces with each new country survey produced

through spatial interpolation (http://spatialdata.dhspro

gram.com/modeled-surfaces/) [17].

While spatial interpolation approaches are growing in

popularity, due to advantages over small area estimation in

their ability to produce high spatial resolution maps in the

absence of census data, it remains unclear, however, how pre-

dictable different SDG-related variables are across different

settings and between demographic groups. Here we test the

accuracy of several spatial interpolation methods through

quantification of uncertainty and model fit by combining

DHS cluster data and geospatial covariates through a set of

case studies, producing gender-disaggregated maps of literacy

rates, stunting and the use of modern contraceptive methods.

Bayesian geostatistical (BGS) and machine learning modelling

methods were implemented across four low-income countries
and gridded environmental and socio-economic covariate

datasets to predict 1 � 1 km spatial resolution maps with

uncertainty estimates, and tested through validation.
2. Material and methods
The study focused on three countries in sub-Saharan Africa

(Nigeria, Kenya and Tanzania) and one country in south Asia

(Bangladesh). Development indicators that underlie key SDGs,

and for which significant gender differences often exist, were

chosen for testing: literacy, stunting and the use of modern

contraceptive methods.

Empirical estimates of literacy levels at national level among

women of childbearing age are low in all four countries [18–21]

with marked differences between men and women. For example,

around 14% of Kenyan women age 15–49 cannot read at all,

compared with 7% of men in the same age interval. Estimates

from latest surveys show that children whose mother has no edu-

cation are more than twice as likely to be short for their age

(stunted) when compared with children of mothers who have

completed secondary or higher education [20].

In Nigeria, Kenya and Bangladesh a relatively high pro-

portion of children under the age of five (35–41%) are stunted.

Even in Kenya where the rate of illiteracy is relatively low, the

numbers of malnourished children remain high (35% of children

under five are stunted with a 14% of severely stunted) [18].

In Nigeria, only 11% of the women aged 15–49 reported

using a modern method of contraception [19], and just 24%

in Tanzania [21].

2.1. Geolocated household surveys
The gender-disaggregated indicators investigated in these

analyses were collected through the DHS programme, which

collects and analyses data on populations through more than

300 surveys in over 90 countries. DHS household surveys

adopt a multistage cluster sampling design [17–21]. Sampl-

ing clusters are usually the primary sampling units, which are

pre-existing geographical areas known as census enumeration

areas (EAs).

The boundaries of the EAs are defined by the country’s

census bureau, as are the urban and rural status of each cluster.

The georeferenced datasets can be linked to individual and

household records in DHS household surveys through unique

cluster identifiers. To protect the confidentiality of respondents,

cluster locations are displaced up to 5 km in rural areas and up

to 2 km in urban areas at the processing stage. A further 1% of

the rural clusters can be displaced up to 10 km [22–24]. Because

displacement affects the physical location of the data, it is necess-

ary to account for displacement when undertaking spatial

modelling with DHS surveys [10].

Gender-disaggregated maps of stunting, literacy and use of

modern contraceptive methods were constructed, with a subset

of these indicators analysed in each country (with the exception

of Nigeria, where all indicators were modelled). These indicators

are clearly defined by the DHS programme and were constructed

following their instructions contained in individual country final

reports [18–21] as well as in [25]. Details of each are outlined below.

2.1.1. Stunting in children
Indicators of nutritional status in children from DHS surveys are

calculated using growth standards published by WHO [26] in

2006. Stunting is a measure of chronic malnutrition, and in some

countries may be environmentally linked where the combination

of poverty and low agricultural productivity limit calorific intake

in children [27]. Using DHS data, children whose height-for-age

Z-score was below minus two standard deviations (22 s.d.) from
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Table 1. List of geospatial covariates assembled for mapping literacy, stunting and the use of modern contraception methods.

category covariates data source

travel time accessibility European Commission Joint Research Centre (http://forobs.jrc.ec.europa.eu/

products/gam)

distances distance to settlements, roads, rivers,

conflicts, schools and health facility

input data from the WorldPop Project (www.worldpop.org), Open Street map

(www.openstreetmap.org), ACLED (http://www.acleddata.com/data/acled-

versions-1 – 5-data-1997 – 2014/)

climate temperature, precipitation, aridity index,

potential evapotranspiration

MODIS (http://modis.gsfc.nasa.gov/), Consortium for Spatial Information

(CGIAR-CSI) (www.cgiar-csi.org), WorldClim (www.worldclim.org)

satellite indices MODIS EVI, mid-infrared index, nightlights MODIS, NOAA VIIRS (ngdc.noaa.gov/eog)

demographic population, births, pregnancies, ethnicity WorldPop Project, ETH Zurich (http://www.icr.ethz.ch/data/geoepr)

topography elevation US Geological Survey (USGS) (http://eros.usgs.gov/elevation-products), CGIAR-CSI

environment protected areas, percentage of urban areas WDPA (http://protectedplanet.net/), input data from WorldPop Project

livestock densities small ruminant, cattle, goats, pigs,

poultry, sheep

FAO in collaboration with the Environmental Research Group Oxford (ERGO)

(http://livestock.geo-wiki.org)

economic gross cell product Yale GEcon Research Project (http://gecon.yale.edu/)

land/agriculture land cover, rainfed crop suitability NASA/USGS (https://lpdaac.usgs.gov/dataset_-discovery/modis/modis_products_

table/mcd12q1), FAO FGGD (http://geonetwork3.fao.org/fggd/), ESA Globcover

(http://due.esrin.esa.int/page_globcover.php)
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the median of the WHO reference population are considered

stunted and chronically malnourished.

A measure of stunting for children under the age of 5 who

slept in the household the night before the survey was extracted

for the countries of interest using height-for-age Z-scores.

The cluster-level proportions of stunted children disaggregated

by gender were used in the analyses.

2.1.2. Literacy
In the DHS surveys, literacy status is determined by assessing the

respondent’s ability to read a sentence during the interview,

when surveyors ask respondents to read sentences written in

their native language or English. Those who attended at least sec-

ondary school or were able to read at least part of a sentence

were defined as literate. In Bangladesh, the female literacy rate

regards only ever married women. Cluster-level proportions of

literate people aged 15–49 were used, disaggregated by gender.

2.1.3. Use of modern contraception methods
Within the DHS surveys, all women aged between 15 and 49

years old were asked about their use of family planning at the

time of the survey. Information about the current use of any

modern method of contraception (defined in the DHS as being,

e.g. pill, male condom and sterilization) was reported for each

women interviewed. In Bangladesh, this information was only

collected from ever married women. Cluster-level proportions

of women using a modern method of contraception were derived

and used in these analyses.

2.2. Defining a suite of covariates for predicting health
and demographic indicators at fine spatial
resolution

Many indices of population health and well-being are correla-

ted with variables describing the surrounding environmental,

geographical, socio-economic and infrastructure conditions.

Spatial interpolation approaches have been developed to

exploit these correlative relationships, along with the spatial
autocorrelation present [13,14,28] to predict the indicators at

locations where survey data are not available. Key to this

approach is the availability of high-resolution geographical

data that can be used to describe conditions at survey locations,

as well as to predict across the rest of the area of interest.

Following previous work [13–16], a suite of physical (topogra-

phy, climate, land cover, etc.) and some social (population density,

ethnicity) covariate grids were selected from existing publicly

available libraries and assembled, focusing on factors that have

previously been shown to correlate with the modelled indicators

and completely covering the selected countries (table 1). For

each country, differing sets of covariate data were available, and

due to the different spatial resolution, projection system, format

and extent of the datasets, algorithms were developed and applied

for converting all the layers to common 1 � 1 km gridded datasets

suitable to be used in map production. Further information is

available in the electronic supplementary material.

Owing to the displacement affecting DHS data, the mean

value of each variable in a buffer of 2 km from the cluster

location for urban areas and 5 km for rural areas was used,

following published recommendations [10], in applying a

linear modelling approach. For nonlinear modelling architectures

(e.g. artificial neural networks (ANNs)), the values came from a

Monte Carlo analysis on the same buffers. Further details of

modelling methods are provided below.

2.3. Selection of geospatial covariates
Selecting an optimal set of covariates is fundamental to maxi-

mize the predictive accuracy of a model. Including too few

informative covariates could result in loss of explanatory

power, while the inclusion of too many could cause the resulting

high-dimensional multivariate model to overfit the data,

especially when an ANN is applied. In statistical modelling,

selection of the better performing covariates within the chosen

modelling architecture is a common, widely accepted, exercise

[29]. For obtaining the most appropriate combination of covari-

ates to predict high-resolution maps for each of the modelled

indicators, a sensitivity analysis using a jackknife approach [30]

was carried out.
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Table 2. Comparison of five different models (logistic regression (LR), ANN
and BGS) for calculating the proportions of literate ever married women in
Bangladesh based on validation statistics (mean square error (MSE),
explained variance).

model MSE (valid) exp. var. (valid)

INLA 0.025 0.18

INLA (SPDE) 0.023 0.24

LR 0.025 0.19

ANN (R) 0.023 0.24

ANN (Octave) 0.022 0.27
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Another challenge to modelling is multicollinearity, which

can have significant impact on the quality and stability of a

model. There are a number of methods for detecting multicollinear-

ity [31]. The approach selected here was to compute the variance

inflation factor (VIF)—the larger the VIF, the bigger is the multicol-

linearity. Multicollinearity was tested here among independent

variables. Though some authors suggest excluding variables with

a VIF greater than 4 [32] or 5 [33], here it was decided to safely

keep only variables with a VIF lower than 3. Further information

is available in the electronic supplementary material.

2.4. Modelling architecture
The BGS [34,35], generalized linear models [36] (simple or with

mixed effect) and machine learning (ANN in this case) [37,38]

techniques based on geolocated surveys and gridded spatial

covariate layers were applied and tested to construct high-

resolution gender-disaggregated maps of stunting, literacy and

use of modern contraceptive methods. The applied modelling

architecture has its basis in the geospatial semantic array

programming paradigm (GeoSemAP) [39,40] with efforts

focused towards computational reproducibility and semantic

modularization of the many data-transformation components.

A data-transformation module (D-TM) may be considered as

a handy portable formulation for applying a mathematical

function to a set of input data and parameters.

GeoSemAP is the geospatial application of the semantic array

programming (SemAP) paradigm [41,42]. SemAP allows the

multidimensional structure of a mathematical and computational

model to be exploited. The modelling architecture relies on a

modular structure where each D-TM is subject to semantic con-

sistency checks in order for the input/output processed

information to be compliant with the semantics underpinning

the variables manipulated within the module. In an effort

towards increasing reproducibility in geostatistical modelling,

free scientific software tools and libraries, and freely available

datasets were used, and reproducible techniques for applying

the models and sub-models that are part of the modelling archi-

tecture were developed. Owing to the generally better

performance we observed for BGS and ANN compared with

generalized linear models in preliminary tests, all of the maps

produced were based on these modelling architectures.

2.4.1. Artificial neural networks
An ANN is a D-TM able to derive from a set of input data a

corresponding set of outputs. Neural networks resemble the

human brain because of knowledge acquisition through learning,

and storage of acquired knowledge within inter-neuron connec-

tion strengths. An ANN is implemented through a system of

interconnected nodes. Information propagates through nodes, trans-

forming the inputs in intermediate derived signals up to generate the

final outputs. The internal nodes are called neurons and define the

ANN hidden layers. Each of the processing neurons calculates the

weighted sum of all interconnected signals from the previous layer

plus a bias term and then produces an output through the activation

function. The effective incoming signal sj to node j is

Sj ¼
Xn0

i¼0

Wijxi þ bj,

where Wij is the connection weight, xi is the input to the network and

bj is the bias term.

The activation function associating individual nodes typi-

cally has a sigmoid shape. The sigmoid function most often

used for ANNs is the logistic function:

yj ¼ f ðsjÞ ¼
1

1þ expð�sjÞ
,

in which sj can vary in the range +1 but y is bounded between

0 and 1.
The power and main advantage of using ANNs lie in their

capacity to model both linear and nonlinear relationships and

to learn these relations directly from the data. Because many

complex problems are characterized by their intrinsic nonlinear

behaviour, traditional linear models are often inadequate.

Two different feed-forward neural networks were selected

among the main network architectures. In a feed-forward

network, the information moves in only one direction, from the

input nodes to the output nodes without cycles or loops.

The first was created using the R language according to the struc-

ture established by the ‘AMORE’ package (A MORE flexible

neural network) [43] of the GNU R [44] free software. The

second is a feed-forward ANN implemented in Matlab language

using the Neural Network Package [45] available in GNU

Octave [46]. Additional information is available in the electronic

supplementary material.

The setting of the parameters for running the applied ANNs

comes from a repeated random sub-sampling validation using

70% of the DHS data, keeping the remaining 30% for the final

validation of the models.
2.4.2. Bayesian generalized linear models
A Bayesian modelling approach is a statistical technique that uses

the Bayesian method [47,48] to estimate the parameters of the pos-

terior distribution. Because it incorporates a hierarchical analysis in

the observation data model, prior distributions and data likelihood

with associated uncertainty for parameters specified [48], the Baye-

sian approach is a valid contribution for modelling large datasets

that also include spatial information. Bayesian predictions are

accompanied by measures of uncertainty and these have been

used in many applications focused on the spatial modelling of

development and health indicators [14,49].

The integrated nested Laplace approximations (INLA)

approach, available as package implemented in GNU R, was

applied here [50]. It is a powerful and computationally effective

alternative to classic simulation methods such as the Markov

chain Monte Carlo, that can become computationally intensive

for large datasets. This is an approach to statistical inference

for latent Gaussian Markov random field models as described

in [50]. Latent Gaussian models are a wide, flexible class of

models that include (generalized) linear, mixed, spatial and

spatio-temporal models. Combined with the stochastic partial

differential equation approach (SPDE) [51], it is possible to

model all kinds of geographically referenced data.

To produce continuous maps of the estimated proportion

of gender-disaggregated literacy, stunting and use of modern

contraception methods, Bayesian hierarchical spatial models,

implemented through a SPDE approach, were created using

the R INLA package.

A summarized form of these models can be represented as

yðsÞ ¼ XTðsÞbþ nðsÞ þ 1ðsÞ,



Table 3. Modelling results related to different gender-disaggregated development indicators in Nigeria. RMSE, MAE, explained variance, MSE and MSE of a
trivial model (mean) were calculated.

country modelled parameter modelling technique MSE RMSE MAE exp. var. MSE (mean)

Nigeria female literacy INLA 0.03 0.18 0.133 0.74 0.12

Nigeria male literacy INLA 0.04 0.20 0.145 0.57 0.096

Nigeria female stunting INLA 0.020 0.143 0.112 0.61 0.052

Nigeria male stunting INLA 0.021 0.146 0.117 0.60 0.053

Nigeria modern cont. met. INLA 0.005 0.073 0.057 0.58 0.012
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where y(s) was the realization of the overall process at the cluster

location si, i ¼ 1, . . . , n. The mean structure m(s) ¼ XT(s)b is driven

by the covariates. The residual structure is then partitioned

into v(s) arising from zero-centred stationary Gaussian process cap-

turing the spatial association at cluster level and the e(s) � N(0, se)

as the uncorrelated error terms. This spatial association is

implemented through a solution to the SPDE expressed as

(k2 � D)a=2(txðsÞ) ¼ wðsÞ,

where (k2 2 D)a/2 is a differential operator, k is a scaling

parameter, D is the Laplacian, a controls the smoothness of realiz-

ation, t controls the variance and x(s) is the spatial field/domain

for s (s1, . . . , sn) locations.

Because of the time necessary to properly calibrate the

applied models, after an initial test where the results of many

different modelling architectures were compared, the decision

was made to initially apply only the models implemented in

INLA. These models are considerably less time demanding

than ANNs but have a similar predictive capacity (table 2).

ANNs were additionally tested against the BGS models only

when poor results in prediction were obtained and, in particular,

to overcome the problem of unusual data distributions.
2.5. Model validation
Both the ANN models and those implemented in INLA use a cross-

validation (repeated random sub-sampling) to set the model par-

ameters. Owing to the size of the Nigeria datasets, here we split

the data into training, validation and test sets, using the validation

dataset (20% of the data) for building the final model.

The validation process was implemented in two steps. First,

the cross-validation approach (with the exception of Nigeria) was

applied to the training dataset for selecting the best model for

each of the applied modelling architectures (ANN, BGS). The

relationship between predicted and observed values (the accu-

racy of the model) was quantified using the root mean square

error (RMSE) and the mean absolute error (MAE). Although

some authors suggest inter-comparisons of average model

performance should be based on MAE [52], RMSE was also

calculated here because of its greater sensitivity to occasional

large error compared to other measures. The remaining 30% of

the data (20% in Nigeria) were used for measuring the modelling

performance by calculating MAE, RMSE and the explained

variance of the model (expressed in proportional terms).

The model with the highest explained variance and lowest

RMSE and MAE was selected to be applied for producing

the final map at 1 � 1 km resolution. For calculating the

explained variance the pseudo-R2 reported in equation (2.1)

was used:

pseudo-R2 ¼ 1� MSE

varðobsÞ , ð2:1Þ

where var(obs) is the variance of the observed data and MSE

is the mean square error.
A comparison of RMSE and MAE of different models based

on different datasets may only capture part of the relevant stat-

istical information. For example, both RMSE and MAE indices

cannot directly preserve the information concerning the sign of

the modelling errors. In particular, a model with given RMSE

and MAE may locally display errors both negative (underestima-

tion) and positive (overestimation) so as for the overall bias to be

mitigated by the compensating local under/over-estimations.

Another model with the same RMSE and MAE may instead

systematically underestimate the modelled quantity. In order

for these modelling situations to be better discriminated, we

introduced a new parameter for calculating the general bias of

the models (equation (2.2)):

general bias ¼ jobs� predj
sobs

, ð2:2Þ

where sobs and obs are the standard deviation and mean of

observed data and pred is the mean of predicted values.
3. Results
The following sections document the performance of the

applied modelling architectures in each of the investigated

countries. Example maps and graphs for selected indicators

are presented, with further results provided in the electronic

supplementary material information. The results highlight

that relatively accurate high-resolution maps of key gender-

disaggregated socio-economic indicators can be produced,

with explained variance through validation being as high

as 74–75% for female literacy in Nigeria and Kenya, and in

the 50–70% range for many other variables. However, sub-

stantial variations between countries and variables were

seen, with many variables showing poor mapping accura-

cies in the range of 2–30% explained variance using both

geostatistical and machine learning approaches.

Both Bayesian modelling techniques and ANNs were able

to extract the information present within the available covari-

ates to predict development indicators in different areas. Mid-

infrared reflectance (the surface reflectance in the middle

infrared part of the electromagnetic spectrum), elevation,

accessibility, the distance to settlements and roads and the

distance to conflicts (Nigeria) emerged as important covari-

ates for mapping different indicators. For example, the

mid-infrared reflectance shows a correlation of 0.58, 0.63

and 0.7 with stunting of females in Nigeria and female

literacy in Kenya and Nigeria, respectively. However, not

all countries and not all modelling outputs produced such

a high correlation between the dependent variable and avail-

able covariates. Modelling the proportion of stunted girls

under the age of 5 in Kenya, the distance to roads was

found to have the highest correlation, but this was only 0.13.
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Figure 1. (a) The distribution of cluster-level data from the DHS household survey in Nigeria showing the proportion of women aged 15 – 49 that were classified as
literate. (b,c) Map of the mean predicted proportion of literacy in Nigeria for women age 15 – 49 at 1 km2 resolution (b) and related uncertainty map (c) showing its
standard deviation. (d ) Scatter plot of the estimated proportions of female literacy in Nigeria ( y-axis) by observed data (x-axis) for the training (i) and validation
(ii) subset of data. (Online version in colour.)
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3.1. Nigeria
Table 3 shows the statistics produced for all Nigeria models,

with consistently high levels of explained variance—all with a

proportion above 0.57 and as high as 0.74 for female literacy.

Figures 1 and 2 show input data, scatterplots and output

maps for female literacy and stunting in boys, with substantial

geographical heterogeneity present and relatively consistent

and low levels of uncertainty in the predictions across the

country. For example, in the female literacy map more than

73% of the pixels have a standard deviation lower than 0.1

and less than 0.1% of the cells show a value higher than 0.2.

Key covariates across the different variables modelled

were the distance from conflicts, the mid-infrared reflectance

values, the gross cell product and elevation.
3.2. Kenya
Table 4 presents the statistics related to all the models applied

in Kenya. The results are heterogeneous with high levels of

explained variance in modelling female literacy (0.75) and

low levels for all other indicators. Figure 3 shows input data,

scatterplots and output maps for female literacy. The related

standard deviation is always lower than 0.3 with more than

80% of the pixels having a value of less than 0.2. Key covariates

across the different variables modelled were the distance from

settlements and roads, the accessibility, the mid-infrared index

values and the potential evapotranspiration.
3.3. Tanzania
Table 5 shows the statistics produced for all the models applied

in Tanzania, with a medium-to-low proportion of explained

variance ranging from 0.1 to 0.42. Figure 4 shows input data,

scatterplots and output maps related to the use of modern con-

traception methods in women, with low levels of uncertainty in

the predictions across the country. Key covariates across the

different variables modelled were the distance from roads,

accessibility, aridity index and precipitation.

3.4. Bangladesh
Table 6 shows the statistics related to all the models applied

in Bangladesh. The level of variance explained by the

models is low, with some of the models having performance

similar to a trivial model based on the mean of the data.

Figure 5 shows input data, scatterplots and output maps

related to female literacy. Some of the key covariates across

the different variables modelled were the distance from

waterways, and the accessibility and urbanization of the area.
4. Discussion
The focus of the SDGs on reaching the furthest behind first

creates a need for approaches that can identify who and

where these people are to be able to reach them. Moreover,

regular updates to such information are required to be able
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Figure 2. (a) The distribution of cluster-level data from the DHS household survey in Nigeria showing the proportion of male children under age 5 that were classified as
stunted. (b,c) Map of the mean predicted proportion of stunting at 1 km2 resolution (b) and related uncertainty map (c) showing its interdecile range. (d ) Scatter plot of
the predicted proportion of stunted male children ( y-axis) by observed data (x-axis) for the training (i) and validation (ii) subset of data. (Online version in colour.)

Table 4. Modelling results related to different gender-disaggregated development indicators in Kenya. RMSE, MAE, explained variance, MSE and MSE of a trivial
model (mean) were calculated.

country modelled parameter modelling technique MSE RMSE MAE exp. var. MSE (mean)

Kenya female literacy INLA 0.016 0.127 0.09 0.75 0.065

Kenya male literacy INLA 0.021 0.144 0.10 0.32 0.030

Kenya female stunting INLA 0.054 0.23 0.186 0.04 0.056

Kenya female stunting ANN (Octave) 0.054 0.23 0.186 0.04 0.056

Kenya male stunting INLA 0.062 0.25 0.20 0.02 0.0628
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to track progress towards meeting the goals. Traditional data

sources, such as census data on their own or integrated with

survey data, can provide detailed data on some indicators for

specific snapshots in time, but are limited by the irregularity

of population censuses. Here we have explored the potential

of spatial interpolation methods built on geolocated survey

data, which are growing in popularity and application [13–

17] to meet these needs through a series of case studies.

The results show the potential of the approaches, and also

reveal challenges in constructing consistently accurate layers

across regions and variables.

The results highlight clearly that producing high-

resolution maps of development indicators using spatial

interpolation approaches is a challenge in some cases. There

are many obstacles, starting from the lack of input data and

the difficulty in selecting and setting the most appropriate
modelling architecture, to the difficulties in selecting the

right modelling proxy. Here we modelled 16 different indi-

cators in four countries. In six of the 16 maps we produced,

the value of the variance explained by the model was around

0.6 or higher (tables 3–6), but other models did not perform

well, with values of explained variance around 0.1 or lower.

In some countries very different results were produced

in modelling the same gender-disaggregated indicator.

In modelling literacy (figures 1, 3 and 5), the predictive

capacity of our models was lower for males than for females

(tables 3–6). For Nigeria, the proportion of variance explained

by the model for male literacy was satisfactory (0.57), but in

Kenya even the best of the models explained only 0.32 of the

variance, whereas 0.75 was achieved for female literacy. Com-

parison of the results of ANN and BGS when used to model

the same indicators shows they have similar performance.
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Figure 3. (a) The distribution of cluster-level data from the DHS household survey in Kenya showing the proportion of women aged 15 – 49 that were classified as
literate. (b,c) Map of the mean predicted proportion of female literacy at 1 km2 resolution (b) and related uncertainty map (c) showing its standard deviation. (d ) Scatter
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Table 5. Comparison of different modelling results related to gender-disaggregated development indicators in Tanzania. RMSE, MAE, explained variance, MSE
and MSE of a trivial model (mean) were calculated.

country modelled parameter modelling technique MSE RMSE MAE exp. var. MSE (mean)

Tanzania female literacy INLA 0.023 0.15 0.1159 0.42 0.040

Tanzania male literacy INLA 0.045 0.21 0.16 0.08 0.050

Tanzania male literacy ANN (R) 0.044 0.21 0.15 0.10 0.050

Tanzania modern cont. met. INLA 0.015 0.12 0.096 0.35 0.024

Tanzania modern cont. met. ANN (R) 0.0157 0.125 0.10 0.33 0.024
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The ANN results were better for modelling female literacy

in Bangladesh, and male literacy in Tanzania, but in modell-

ing modern use of contraception methods in Tanzania, the

Bayesian architecture performed better (tables 5 and 6).

If the distribution of the modelled variable is substantially

different from Gaussian, the ANN approach generally appears

to perform slightly better than BGS.

A number of factors underlie the differences seen in model-

ling performance between countries and variables, principally

driven by the amount and spatial scale of variation displayed

by each indicator, and the extent to which the indictor was

associated with and/or driven by the available geospatial

covariates. If limited or no information is present within the

covariates, the models unsurprisingly fail to predict the

phenomena well, but good performance was obtained where
strong correlations existed. Some covariates showed strong cor-

relations with the development indicators being modelled. For

example, the correlation of travel times with literacy in Kenya

was between 0.5 and 0.6 for males and females; however, this

was only between 0.2 and 0.27 in Nigeria. By contrast, middle

infrared reflectance in Nigeria showed a high correlation

with both female stunting and literacy, but showed a correlation

of only 0.1 for stunting in girls in Kenya. In some cases, therefore,

the covariates likely did not relate to the driving factors

behind the spatial heterogeneity seen, and additional geospatial

covariates that encompass factors relating to socio-economic

differences are required to capture these country-specific

sociological dynamics in the models.

Precipitation, temperature and vegetation cover [53,54]

have been found to be important correlates of malnutrition.
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Figure 4. (a) The distribution of cluster-level data from the DHS household survey in Tanzania showing the proportion of women aged 15 – 49 using modern
contraceptive methods. (b,c) Map of the mean predicted proportion of women using modern contraceptive methods at 1 km2 resolution (b) and related uncertainty
map (c) showing its standard deviation. (d ) Scatter plot of the predicted proportion of women using modern contraceptive methods ( y-axis) by observed data
(x-axis) for the training (i) and validation (ii) subset of data. (Online version in colour.)

Table 6. Comparison of neural networks and Bayesian models for different gender-disaggregated development indicators in Bangladesh. RMSE, MAE, explained
variance, MSE and MSE of a trivial model (mean) were calculated.

country modelled parameter modelling technique MSE RMSE MAE exp. var. MSE (mean)

Bangladesh female literacy ANN (Octave) 0.022 0.15 0.12 0.27 0.032

Bangladesh female literacy INLA 0.024 0.15 0.12 0.24 0.032

Bangladesh male literacy INLA 0.056 0.24 0.19 0.11 0.064

Bangladesh female stunting ANN (R) 0.061 0.25 0.2 0.04 0.064

Bangladesh female stunting INLA 0.060 0.246 0.20 0.04 0.064

Bangladesh male stunting INLA 0.048 0.22 0.17 0.02 0.049
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Temperature, for example, is directly linked to aridity, which

in turn has an impact on malnutrition [54], and the enhanced

vegetation index (EVI) was found to be a significant common

factor in describing rates of stunting [54]. Other examples of

biophysical and geographical factors often cited in the litera-

ture include evapotranspiration, productivity of agricultural

lands, distance to urban areas, topography and access to mar-

kets through road networks [55,56]. Unfortunately, the

literature on this subject remains sparse because survey

data rarely include metrics of these factors [56].

Correlations between literacy and urbanization have been

shown previously [57], and use of contraception methods is

also known to be strongly associated with levels of education,
socio-economic status and access to health facilities [58,59].

In some previous work [60], it has been also shown that

there exists a possible correlation between road networks

and literacy, which is likely related to ease of access to schools

and market. Other covariates have been tested to explore

their possible indirect links with the selected health and

development indicators. For example, middle infrared reflec-

tance has previously been used to exploit its link with

vegetation (vegetation spectral signatures are characterized

by low reflectance in middle infrared). Nevertheless, our

study shows that the same covariates can have different beha-

viours in different countries and occasionally also within the

same country. For example, literacy rates in Nigeria have a
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Figure 5. (a) The distribution of cluster-level data from the DHS household survey in Bangladesh showing the proportion of women aged 15 – 49 that were classified as
literate. (b,c) Map of the mean predicted proportion of female literacy at 1 km2 resolution (b) and related uncertainty (c) showing its standard deviation. (d ) Scatter plot of
the predicted proportion of female literacy ( y-axis) by observed data (x-axis) for the training (i) and validation (ii) subset of data. (Online version in colour.)
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relatively high correlation with urbanization (0.53 and 0.42

for female and male literacy, respectively), whereas female lit-

eracy rate in Kenya, despite good modelling performance,

shows urbanization and literacy to be poorly correlated

(0.17). Many reasons are likely behind this and further studies

are necessary to better understand these differences.

Even when model performance was satisfactory here,

some sources of errors contributed to the uncertainty of the

model. The introduction of cluster location random dis-

placement for protecting the anonymity of the respondent

population can introduce further uncertainty to the modelled

relationships [12,22]. This potential error was mitigated by
extracting mean values through a defined buffer around the

survey points [10]. The extent of the impact of the displace-

ment can vary between indicators and different survey

datasets but, in general, its impact on modelling performance

should be modest [12]. In addition to the displacement issues,

in urban areas the covariates used do not capture well the

local spatial scales of variation. In general, urban areas

were predicted with the same homogeneous values, not cap-

turing any intra-city variation. Upcoming datasets (e.g. the

global human settlement layer [61] and global urban foot-

print [62]) could lead to a future better representation of

within-city variation [12].
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The work presented should be considered as a preliminary

study to test the strength and limits of spatial interpolation

approaches. Future work should, therefore, focus on refine-

ments of methods. This may, for example, include updating

accessibility layers to include more recent and detailed road

networks and settlement layers. Moreover, it could also

involve modelling key driving factors of the phenomena

under study, such as poverty or access to sanitation, and then

using these as covariates themselves. The effect that a

country-specific focus, tailored as much as possible to a specific

indicator, can have on mapping accuracies rather than using

globally consistent covariates should be explored. In addition,

many socio-economic factors, not captured by the suite of

covariates we used, and often available at aggregate levels

such as administrative units, could be obtained and their abil-

ity to improve mapping accuracy tested. A challenging, but

potentially very fruitful next step, could also come from

integrating community based household surveys (e.g. DHS),

data from governmental monitoring systems and data

from different civic systems (schools, health facilities) and

comparing different predictive surfaces.

The rising international focus on inequalities in the SDG era

requires a detailed and strong evidence base with an explicit

quantification of uncertainties. Some of the maps produced in

this study have a sufficiently accurate prediction capacity to

be summarized to a level of administrative unit that is relevant

for policy-making and the allocation of resources. In particular,

the maps of female literacy in Nigeria and Kenya, use of modern

contraception methods in Nigeria or male and female stunting

in Nigeria have reasonable levels of accuracy to be used for

planning purposes.

The work undertaken here shows the value of combin-

ing data from geolocated household surveys with spatial
covariates within advanced modelling architectures, and

such approaches are growing in popularity and impact

[13–16] with provision of surfaces now being a regular

output accompanying new surveys [17]. However, limitations

and warnings about extending such approaches across varying

geographies and indicators are clear. The variability in model

performance between countries and variables highlights the

need for tailored approaches and robust methods with full

quantification of model uncertainty to communicate where

poor model fits exist. With geolocated household surveys

being undertaken regularly, the potential exists for the continu-

ous update and monitoring of SDG-relevant indicators across

wide areas, but results here highlight that caution is needed.
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