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Abstract

sion-making regarding kidney diseases. With the development of
Machine learning shows enormous potential in facilitating deci
data preservation and processing, as well as the advancement of machine learning algorithms, machine learning is expected to make
remarkable breakthroughs in nephrology. Machine learning models have yielded many preliminaries to moderate and several
excellent achievements in the fields, including analysis of renal pathological images, diagnosis and prognosis of chronic kidney
diseases and acute kidney injury, as well as management of dialysis treatments. However, it is just scratching the surface of the field;
at the same time, machine learning and its applications in renal diseases are facing a number of challenges. In this review, we discuss
the application status, challenges and future prospects of machine learning in nephrology to help people further understand and
improve the capacity for prediction, detection, and care quality in kidney diseases.
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Introduction Overview of ML
Chronic kidney disease (CKD) is a major public health
problem worldwide. Although estimates of CKD preva-
lence vary widely within and between countries, it is
undeniable that CKD patients face the risk of serious
consequences such as end-stage renal disease (ESRD) or
cardiovascular disease, which is a growing global health
burden.[1,2] While significant progress has been made in
prevention and treatment in recent decades, more efforts
are needed to reverse the situation.

Machine learning (ML) is a kind of artificial intelligence
(AI). The core of it is algorithmic methods, which enable
the machine to solve problems without specific computer
programming. The wide application of ML in the medical
field helps to promote medical innovation, reduce medical
costs, and improve medical quality. However, related
research on solving clinical problems through ML in
nephrology still needs to increase. Understanding the
purpose and method of ML application and the current
situation of its application in nephrology is a prerequisite
for correctly addressing and overcoming these challenges.
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ML helps computers possess the same ability to learn,
identify, and judge as human beings.[2] It is mainly
about the development and deployment of algorithms
and usually uses statistical tools to determine
behavior. ML technology can be broadly divided
into supervised learning, unsupervised learning, and
reinforcement learning according to different modeling
needs.

Supervised learning
Supervised learning, such as logistic regression (LR),
naive Bayesian classification, support vector machine
(SVM), and random forest (RF), is the most common
form of ML used in medical research.[3] Each instance of
supervised learning consists of an input object (usually a
vector) and the desired output value (also known as a
supervised signal). The application of supervised learning
is very extensive. However, there are still limits in the
application of this method in complex optimal control
problems.
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Unsupervised learning Transfer learning
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If the learning sample given does not contain category
information, it is unsupervised learning. Similar to k-
means clustering, unsupervised learning optimally divides
samples into different categories based on the character-
istics of training data without corresponding labels.[4] In
addition, unsupervised learning can capture intrinsic
morphometric patterns in histology sections, which may
play a key role in pathological diagnosis.[5] In the future,
unsupervised learning is likely to narrow the gap between
human intelligence and AI.

Reinforcement learning
Reinforcement learning describes and solves the problem
of agents maximizing returns or achieving specific
goals through rewarding learning strategies in interaction
with the environment. The Markov decision process, a
common model of reinforcement learning, can capture
the uncertainty associated with treatment outcomes
and the randomness of the underlying processes,
particularly well-suited for modeling sequential deci-
sion-making issues such as optimal dosing strategies
for chronic diseases, to find the best drug dosage
sequence.

What is deep learning?
In machine learning, deep learning (DL) stands out. DL is a
specific type of ML method that is very suitable for
processing large quantities of data as input without the
need for a clear feature selection step. It can be trained to
find complex patterns in big data with a high degree of
precision.[6]

Deep neural networks
Deep neural networks (DNNs) are the basis of DL.
The signatures of high-dimensional DNNs capture
thousands of subtle properties of histologic images that
can be used to predict other endpoints, including disease
status and physiological outcomes. Recent work has
shown that DNNs have achieved human expert-level
performance in natural and biomedical image classifica-
tion tasks.[7,8] The ability to generate assumptions,
the adaptability to heterogeneous dataset analysis,
and the rapid-diffusion open-source DL programs allow
DL to play an important role in promoting medical
development.[9]

Convolutional neural networks
88
With the development of image processing, convolutional
neural networks (CNNs) have gained traction in
histology dataset classification.[10] Construction of CNNs
imitates the visual perception mechanism of organisms
and can conduct supervised and unsupervised learning.
These DL networks used in the diagnosis and treatment of
a variety of diseases can also be retrained through
population-specific datasets.[6,11-15] CNNs have been
proven to exceed human performance in visual target
recognition.[6]
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Transfer learning can be used to analyze smaller datasets
without significantly affecting the performance of the
model. The merit is that instead of designing and training a
new network, it is based on the trained network model. On
the basis of this model, the parameters and knowledge are
transferred. It takes only a small number of computing
resources and training time to finish new tasks. When there
are similar tasks to be completed, the relevant model of
pre-training can be used to carry out transfer learning.

ML in nephrology
Clinical big data are a valuable asset. With the continuous
expansion of digital data in all aspects of health care and
the development of AI technology, ML can be combined
with clinical big data for disease diagnosis, prognosis, and
other risk prediction.[16] In the past few years, many
different ML methods have been proposed and applied in
medicine and computational biology. In addition to the
diagnosis and treatment of clinical diseases by electronic
health records (EHRs), they have also performed well in
the field of medical image analysis and genomics.[7,17-19]

Unlike the relatively mature application of big data and
ML in the field of cardiovascular disease, the lack of
evidence and the limitation of the scope of research in
kidney disease have led to the fact that nephrology has not
yet benefited significantly from the clinical application of
big data and ML.[20] In recent years, the use of precision
medicine has made great progress in the field of
nephrology. The Nephrotic Syndrome Study Network
(NEPTUNE) is implementing the concept of precision
medicine to develop new disease definitions through a
comprehensive, multilevel analysis of disease processes in
observational cohort studies.[21] The combination of ML
and big data will be an important factor in promoting
precision medicine. Although it is only in its infancy, there
are bright prospects and a future in the study of renal
pathology and the risk prediction of kidney disease.

Renal pathology
The application of ML in biological image analysis is
powerful and rapid and has been proven to be a reliable
method for the analysis of malignant tumors such as
cancer.[22-27] In nephrology, biological image analysis by
ML can be used in the diagnosis of renal pathology, which
is the gold standard for the diagnosis of renal diseases. This
diagnostic process, in turn, affects a series of treatment
options and prognoses. Prevailing methods for glomerular
assessment remain manual, labor-intensive, and non-
standardized. Recently, to save manpower and time, and
especially to improve the accuracy of diagnosis without
bias, efforts have beenmade to automate the quantification
of glomerular injury.

Segmentation of glomeruli and tubules
Segmentation is the basis of automatic pathological
diagnosis that accurately identifies the structures of
glomeruli and tubules from renal pathological images.
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In the early days, an unsupervised semi-automated
workflow was depicted by Sarder et al[28] and Ginley

identifies changes in glomeruli and tubules in knock-out and
wild-type genotypic mice, and scores pathological changes
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et al[29] for localization and segmentation of glomerular
features. Although the localization accuracy reached 87%,
the degree of glomerular injury was not reported, and the
sample size was limited (15 fields with 148 glomeruli).
Marée et al[30] used a supervised learning method for the
identification of glomeruli and established a model with
95% precision and 81% recall.

With the continuous development of CNNs in the field of
image processing, Pedraza et al[31] first proposed the use of
CNNs for transfer learning to identify and segment the
glomerulus from the background. However, due to the
lack of consideration of the location of glomeruli in large
tissue areas where there are multiple glomeruli, their use in
automated workflows was limited. To speed up and
improve this process, Bukowy et al[32] proposed a new and
robust method for glomerular localization by CNNs.
Using color deconvoluted and normalized grayscale
images, a glomerular localizer composed of two serially
arranged ML classifiers for automatic identification of
glomeruli within whole kidney sections was developed.
The average precisions of used rat and human kidneys
were 96.94% and 80.20%, and the average recall rates
were 96.79% and 81.67%, respectively. The model laid
the foundation for the automatic scoring of glomerular
injury. Using this method, Kannan et al[33] demonstrated
the ability of DL to assess complex tissue structures from
digital human kidney biopsies. This CNN model can
accurately discriminate non-glomerular images from
normal or partially sclerosed and globally sclerosed images
(sensitivity, 0.558; specificity, 0.999).

Furthermore, it was proven that the usage of the ML
algorithm can not only clearly segment the glomeruli from
the kidney image but also distinguish the renal tubule.
Sheehan et al[34] used SVM classification to extract the
features of renal tubules in mice (true positive rate, 92%;
false-positive rate, 10%). Using 200 cores on the Vermont
Advanced Compute Cluster, the glomerular segmentation
pipeline can segment the full-sized mouse kidney section in
approximately 40min, allowing analysis of more glomeruli
than manual completion. Additionally, the usage of SVM

Table 1: Application of machine learning in renal pathology.
Purpose Author Year
Kidney
source Algorithm

Size of
training
dataset

Size of
testing dataset

Image
acquisition

Identification and
segmentation
of glomeruli

Bukowy
et al[32]

2018 Rat/human R-CNN,
CNN

23,540
glomeruli
(from 72
kidney of
rat)

5447
glomeruli
(from
additional
13 rat
kidneys,
six human
samples)

Nikon Ni-E
automated
microscope,
Nanozoomer

R

Identification and
segmentation
of NPS and
GS glomeruli

Kannan
et al[33]

2019 Human CNN 120 patients 51 patients Nikon Eclipse
TE-2000
microscope

R

Three distinctions:
1. Glomerulus
and tubule;
2. WT and
KO glomeruli;
3. WT and
KO tubuli

Sheehan
et al[34]

2019 Rat SVM 1. Eight
images; 2.
20
glomeruli;
3. Tubule:
1000
image
patches

1. One image;
2. 78
glomeruli;
3. Tubule:
21,500
image
patches

Nanozoomer R

NPS:Normal or partially sclerosed; GS: Globally sclerosed;WT:Wild-type; KO
machine; ROI: Region of interest; QIF: Quantitative image features; –: No r
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of mesangial matrix expansion and the degree of vacuola-
tion of tubules. The ability of ML to identify and quantify
the specific features of renal tissue structures, specifically, to
facilitate segmentation of renal tissue and accurate
pathological scoring and to help discover new histopatho-
logical features, has been demonstrated. Table 1 summa-
rizes the specific research contents and ML methods of
several recent articles mentioned above.

Combination with clinical indicators

Kolachalama et al[35] first applied the analytic technique
based on ML and renal pathological images in clinics.
Patient-specifific trichromatic images are trained and
modeled by CNNs as input, and clinical indicators,
including chronic kidney disease (CKD) stage, serum
creatinine and nephrotic-range proteinuria at the time of
biopsy, and1-, 3-, and5-year renal survival, are set as output
in the study. Six CNNmodels were trained. Comparing the
performance of CNN with that of an experienced renal
pathologist to predict theCKDstage, the kappa-valueswere
0.519 and 0.051, respectively. The area under curve (AUC)
was 0.912 (CNN) versus 0.840 (pathologist-estimated
fifibrosis score [PEFS]) for creatinine models and 0.867
(CNN) versus 0.702 (PEFS) For proteinuria models. AUC
values of theCNNmodels for 1-, 3-, and5-year renal survival
were 0.878, 0.875, and0.904, respectively,whereas theAUC
values for PEFS model were 0.811, 0.800, and 0.786,
respectively. All the results demonstrate the effectiveness
and clinical feasibility of using DN structures in renal
pathology. These predictions may provide added value for
biopsy results and, along with other clinical assessments,
provide more accurate care management and follow-up
strategies for biopsy patients. However, no prospective
validation has been performed yet.

Kidney diseases
With the introduction of the Economic and Clinical Health
Information Technology act of 2009, the use of EHRs has
increased dramatically.[36] EHR data contain important
information about the evolution of diseases. Processed by
Segmentation
Features
extracted Validation Accuracy

F1
score Precision Recall Specificity Sensitivity

OI:
glomeruli

Trichrome
image
features

Cross and
external
validation

99.22% – 96.94%
80.20%

96.79%
81.67%

– –

OI:
glomeruli

Trichrome
image
features

Cross
validation

95.06% 62.3% – – 99.9% 55.8%

OI:
glomeruli

DNN-based
abstract
QIFs

Cross
validation

– – – – 10%;
10%;
10%

92%;
87%;
95%

: Knock-out; CNN: Convolutional neural network; SVM: Support vector
elevant information mentioned in the article.
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ML and widely used for modeling, EHRs can potentially
help to diagnose and predict the progress of renal diseases

to process longitudinal clinical data and establish an
accurate predictive model for the progression of CKD

Table 2: Predicting the progression of ESRD by machine learning methods.

Purpose Author Year Journal Study type
Sample
size Algorithm Statistical analysis Validation

AUC
(C-statistic) NMAE

Prediction of ESRD
progression of CKD

Tangri et al[39] 2011 JAMA Retrospective 8391 COX ROC, AIC, C-statistics,
NRI, Nam and
D’Agostino x2 statistic

External 92.10% –

Prediction of ESRD
progression of CKD

Norouzi et al[41] 2016 Comput Math
Methods Med

Retrospective 465 ANFIS NMAE, MSE, PCC Cross – < 5%

Prediction of the progression
of CKD from stage III to
stage IV

Perotte et al[42] 2015 J Am Med Inform
Assoc

Retrospective 2908 LDA.COX ROC, C-statistic, t-test Cross 84.90% –

AUC: Area under curve; NMAE: Normalized mean absolute error; ESRD: End stage renal disease; CKD: Chronic kidney disease; ANFIS: Adaptive
neurofuzzy inference system; LDA: Latent dirichlet allocation; ROC: Receiver operating characteristic curve; AIC: Akaike information criterion; NRI:
Net reclassification improvement; PCC: Pearson correlation coefficients test; MSE: Mean-square error; –: No relevant information mentioned in the
article.
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and renal function damage. According to the data in
EHRs, it is possible to achieve a more comprehensive
understanding of the health status of patients and accurate
prediction of the risk of obtaining specific diseases. In
recent years, in the era of big data and technological
innovation, using various ML algorithms to analyze
standardized health data collected routinely and carrying
out large-scale observational research is crucial and
popular.[37] The prediction model established by EHR
data is expected to promote individualized diagnosis and
treatment of renal diseases and improve the quality of
medical treatment.

Diagnosis and prognosis of kidney diseases
DKD

90
CKD

It has long been found that ML is more likely to predict
eGFR accurately.[38] Table 2 lists the specific research
contents and results of the following articles. Early studies
found that taking advantage of AI is more likely to
accurately predict the progress of various CKD. Tangri
et al,[39] using routine laboratory data such as eGFR and
albuminuria in EHRs, established a highly accurate
proportional hazards model (COX) for CKD patients
with renal failure and implemented an external validation
(C-statistic, 0.921).

In addition, it has been proven that the use of temporal
information in the model improves the predictive ability of
renal deterioration.[40] The inclusion of temporal medical
history information better predicts the loss of renal
function and identifies high-risk patients with short-term
renal failure.

With the continuous advancement of AI technology,
various more complex and advanced ML algorithms have
been explored and applied in modeling. Norouzi et al[41]

used 10-year clinical records of newly diagnosed CKD
patients and the adaptive neurofuzzy inference system to
predict the renal failure timeframe of CKD. The model
accurately estimates eGFR changes for all sequential
periods (normalized mean absolute error< 5%). In
addition to using a variety of supervised learning
algorithms for modeling, Perott et al[42] used the
unsupervised learning method latent Dirichlet allocation

6

phase III to phase IV (C-statistic, 0.849).

Currently, numerous limitations remain. Although high
performing CKD risk prediction models have been
increasingly established, the actual effects of the models
still need further exploration. After modeling, it is
necessary to better calibrate and externally validate the
results and verify the impacts on the outcome assessment
before incorporating them into the guiding principles.[43]

The research progress of two kinds of specific CKDs,
diabetic kidney diseases (DKDs), and immunoglobulin
A nephropathy (IgAN), are discussed as follows.
The applications of ML in DKD and IgAN are listed in
Table 3.
In the field of diabetes research, many studies have used
various types of ML methods, such as artificial neural
networks (ANNs) or decision trees (DTs), to predict the
incidence of diabetes and determine the risk factors.[44-47]

Diabetic complications have a considerable impact on
quality of life and mortality, so many scientists are also
working on the application of ML in the diagnosis and
treatment of diabetic complications. Based on CNNs,
Gulshan et al[48] created a data-driven model for the
detection of diabetic retinopathy using more than 100,000
clinical images. The high sensitivity and specificity of the
model for the diagnosis of diabetic retinopathy make it a
milestone of AI application in medicine.

DKD is also one of the most serious microvascular
complications of diabetes and the most important cause
of ESRD. The early non-invasive diagnosis of diabetic
nephropathy (DN) is one of the current research hotspots.
However, AI technology has not been widely used in this
field.

Prediction of the onset of DKD: Scientists have modeled
the prediction of the occurrence of DKD. Cho et al[49]

collected the medical data of 4321 diabetic patients and
followed up for 10 years to develop a new visualization
system by SVM classification. The model predicts the onset
of DKD 2 to 3 months before the actual diagnosis with
high prediction performance (AUC, 0.969). The research

http://www.cmj.org


was the first to use data mining technology and an
advanced ML algorithm to predict DKD. Although the

In addition to using only EHR data, genotype was also a
crucial feature of patients for modeling. Leung et al[52]

Table 3: Application of machine learning in DKD and IgAN.

Purpose Author Year Journal Study type
Sample
size Algorithm

Statistical
analysis Validation

AUC
(C-statistic) Accuracy Sensitivity Specificity F1 score

DKD
Prediction of the onset
of DKD by EHRs

Cho et al[49] 2008 Artif Intell
Med

Retrospective 292 SVM, LR ROC, AUC,
x2-test, t-
test

Cross validation 96.9% – 94% 95% –

Prediction of the onset
of DKD by EHRs

Rodriguez-
Romero
et al[50]

2019 Clin Transl
Sci

Retrospective 10,251 1R, DT, RF,
SL,
SMO,
NB

ROC Cross validation – >95% >95% – –

Prediction of the onset
of DKD by EHRs

Ravizza
et al[51]

2019 Nat Med Retrospective 605,328 LR, RF ROC, AUC Cross validation
and External
validation

79.37% – – – –

Prediction of the onset
of DKD by genotype-
phenotype risk
patterns

Leung
et al[52]

2013 BMC Nephrol Prospective 673 SVM, NB,
RF, PLS,
NNet,
RPart,
DT

ROC, AUC Cross validation – >95% – – –

IgAN
Prediction of ESRD
progression in IgAN
patients by EHRs

Geddes
et al[56]

1998 Nephrol Dial
Transplant

Retrospective 54 ANN ROC – – – 86.40% 87.50% –

Prediction of ESRD
progression in IgAN
patients by EHRs

Pesce
et al[57]

2016 Nephrol Dial
Transplant

Retrospective 1040 ANN ROC, AUC Cross validation
and External
validation

>90% >90% – – >70.8%

Prediction of ESRD
progression in IgAN
patients by EHRs

Han
et al[58]

2019 Ann Transl
Med

Retrospective 1343 LR, ANN,
k-NN,
RF,
SVM,
DT

ROC, AUC,
x2-test, t-
test

Cross validation 95.50% 93.97% 80.60% 95.29% –

Prediction of ESRD
progression in IgAN
patients by EHRs

Liu
et al[59]

2018 Kidney Blood
Press Res

Retrospective 262 RF, LR ROC, AUC – 97.29% – – – 83%

Prediction of ESRD
progression in IgAN
patients by EHRs

Chen
et al[60]

2019 Am J Kidney
Dis

Retrospective 2047 GBM, COX ROC, C-
statistic,
H-L test,
K-M
analysis

External
validation

84% – – – –

DKD: Diabetic kidney disease; IgAN: Immunoglobulin A nephropathy; EHRs: Electronic health records; ESRD: End stage renal disease; SVM: Support
vectormachine; LR: Logistic regression; 1R:One rule; DT: Decision tree; RF: Random forest; SL: Simple logistic; SMO: Sequentialminimal optimization;
NB: Naïve Bayes; PLS: Partial least squares regression; NNet: Feed-forward neural networks; RPart: Recursive partitioning and regression trees; ANN:
Artificial neural network; k-NN: k-Nearest neighbor; GBM:Gradient boostingmachine; ROC: Receiver operating characteristic curve; AUC: Area under
curve; H-L test: Hosmer-Lemeshow test; K-M analysis: Kaplan-Meier analysis; –: No relevant information mentioned in the article.
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result was not accurate or complete enough, it provided
scientists with a new idea for achieving effective and
appropriate treatment strategies in the early stage of the
disease. Rodriguez-Romero et al[50] used the data of
10,251 patients screened from the Action to Control
Cardiovascular Risk in Diabetes (ACCORD) trial and six
kinds ofML algorithms tomodel DKD risk prediction. The
study found that the RF (sensitivity >0.72, accuracy
>0.73) and LR (sensitivity >0.76, accuracy >0.8) models
showed the best predictive performance in both the
training and testing databases, and among the included
features, the decline in eGFR was the most important
factor reflecting the development of DKD. However, a lack
of external validation may cause the model to be only
applicable to patients in the ACCORD trial. Recently,
Ravizza et al[51] used a LR-based Roche/IBM algorithm
and real-world data (RWD) model for the onset of CKD in
diabetic patients (AUC, 79.37%) and compared the
performance with the results of multiple published large
randomized controlled trials (RCTs). A total of 522,416
patients with diabetes from the IBM Explorys Database
were screened for modeling and cross-validation, and
82,912 diabetic patients’ data from the Indiana Network
for Patient Care database were screened for external
validation. This demonstrates that the Roche/IBM algo-
rithm based on RWD is consistent or even more accurate
with research using RCT data. This evidence may change
the current medical decision-making pattern that is mainly
based on clinical RCTs.

6

selected genotypes based on published studies and
conducted structured clinical assessments of the included
patients and incorporated the selected genotypes and
phenotypic features into the ML program for modeling.
The results reveal that the accuracy of the model based on a
genotype-phenotype combination is higher than that of the
model with genotype or phenotype only. Among the
algorithms used, the SVM and RF algorithms show better
performance (accuracy >0.9). With the advancement of
technology and further research, the prediction of the onset
of DKD in advance and even its application in clinical
practice is no longer infeasible.

Identification of DN and non-diabetic renal disease: The
Kidney Disease Outcomes Quality Initiative published in
2007, proposed the diagnostic criteria of DN and non-
diabetic kidney disease (NDRD). However, further
evaluation found that the diagnostic efficacy of the
guidelines for Chinese patients was not satisfactory
enough.[53] Therefore, 929 patients with type 2 diabetes
who underwent renal biopsy from 2005 to 2017 were
screened by Liu et al [unpublished]. Based on the clinical
test and renal pathological diagnosis results, differential
diagnosis models of DN andNDRDbased on SVMandRF
were established. The sensitivity of the two models was
84.23% and 84.80%, respectively, and the specificity was
89.85% and 90.58%, respectively. Compared with other
studies using the binary LR method,[54,55] the efficiency of
the two models was higher.

http://www.cmj.org


Currently, only single-center retrospective studies in the
field have been carried out by the ML method. A

However, current studies only focus on the prediction of
ESRD in patients with IgAN, and there is no research

Chinese Medical Journal 2020;133(6) www.cmj.org
multicenter prospective study with large mass data needs
to be conducted and verified externally. Although it is only
the beginning of relevant studies, a new idea for the
diagnosis of DN by AI technology without renal biopsy is
provided.

IgAN
Early assessment of AKI

92
IgAN is a major cause of renal failure. Early identification
of patients with renal failure is useful for the prognosis and
treatment of the disease. Multiple types of ML algorithms
can effectively help predict the progression of ESRD in
patients with IgAN.

Prediction of ESRD progression based on ANN: As early
as 1998, a predictive model (sensitivity, 86.4%; specificity,
87.5%) was established based on ANN for the progression
of ESRD in patients with IgAN.[56] This proves that
modeling by ML algorithms more accurately predicts the
progression of renal function damage in patients with
IgAN than experienced renal specialists. However, the
model is based on the information of only 54 patients and
without validation. With the development of data
preservation, processing and ML technology, a well-
trained ANN model was developed into an online clinical
decision support system (CDSS) used for quantitative risk
assessment and time prediction of ESRD in IgAN patients
in 2016 (www.IgAN.net).[57] The model was trained and
tested based on the clinical data of 1040 IgAN patients
confirmed by biopsy from different population cohorts.
The performance of the model was satisfactory in different
races (AUC> 90%). However, due to the inclusion of few
Asians, further validation is necessary for its application.

Prediction of ESRD progression based on RF: Recently,
Han et al[58] predicted the progression of ESRD in IgAN
patients by six ML algorithms (LR, RF, SVM, DT, ANNs,
and k-nearest neighbor). Comparing the effectiveness of
six models, the RF model can best predict the progress of
ESRD (sensitivity, 80.6%; specificity, 95.29%). In the
study of Liu et al,[59] the AUC of the RF model reached
97.29% after considering the results of C3 staining
according to the contribution of predictors. The algorithm
is used in a variety of progressive diseases to help clinicians
stage and manage patients.

Prediction of ESRD progression based on gradient
boosting machine: In addition to using parallel integration
methods such as RF, the serial integration method is also
used for models such as gradient boosting machines
(GBMs). Chen et al[60] constructed an accurate model for
predicting the progression of ESRD in IgAN patients (C-
statistic, 0.84) by XGBoost. Additionally, based on
stepwise Cox regression, a scoring scale model (SSM)
for risk stratification was constructed to identify specific
patient groups with the same risk of progress. This
XGBoost prediction model and the SSM were incorporat-
ed into the Nanjing IgANRisk Stratification System, which
is available online. ML provides a more favorable tool for
strengthening the individualized treatment and manage-
ment of IgAN patients.

6

modeling for the risk prediction of suffering IgAN, which
may be the next direction of future efforts.

Acute kidney injury
Regardless of whether it is in high-income or low-income
countries, the seven-day mortality rate for acute kidney
injury (AKI) is 10% to 12%.[61] Efforts to improve the
clinical outcomes of AKI have focused on early diagnosis
and customized treatment. Early evaluation of AKI reduces
mortality and improves renal prognosis. The model
established by ML methods can not only realize early
dynamic monitoring based on the real objective data of all
patients but also save the time and energy of physicians.[62]

With the determination of AKI clinical practice guidelines
and the significant growth of the application of EHRs in the
field of big data, a large quantity of EHR data and ML
algorithms have begun to play an important role in the
clinical research of AKI. It is now an important tool for AKI
diagnosis and prediction.[63] The establishment of a CDSS
based on a self-learning predictive model may be used in in-
hospital AKI monitoring in future clinical practice.[64] The
application of ML in AKI is listed in Table 4.
Early assessment of AKI can reduce mortality and improve
renal prognosis. GBM is a common method for predicting
the onset of AKI at present.[65-68] Lee et al[66,67] modeled the
prediction of AKI after liver transplantation and cardiac
surgery by several ML algorithms. GBM showed the best
performance in both studies, and the AUC of liver
transplantation-related research was 90%, while the other
was 78%.Additionally, Huang et al[68] established a hazard
prediction model for AKI after percutaneous coronary
intervention (PCI) based on GBM. The study included a
largequantityof data from947,091patientswhounderwent
PCI surgery to establish a baseline model. In addition,
temporal validation was conducted with data from 970,869
hospitalized patients. The AUC of the GBM model was
78.5% better than that of the baseline LR model (AUC,
75.3%). Therefore, advanced algorithms and massive data
have the potential to provide accurate risk estimation.

With the cooperation of the University College London and
DeepMind,[69] the era of early prediction of AKI and
practical application in clinical diagnosis and treatment by
theMLmethod is coming.Usingdata from703,782patients
frommultiple centers and stratified by a time window every
six hours, a recurrent neural network-based AKI risk
predictionmodel (AUC, 0.921) was established. AKI events
were predicted within a 48-h window. However, the area
under the precision-recall curve was just 29.7%, which
represents a ratio of two false alerts for every true alert.

Prediction of AKI death risk

The prediction of the death risk in patients with AKI was
also modeled. Using the medical information mart for
intensive care III database, Lin et al[70] developed a
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mortality prediction model (AUC, 0.866, accuracy, 0.728)
for AKI patients based on RF. However, the model slightly

hemodialysis. Direct dialysate quantification (DDQ) is
the most direct and accurate method for determining the

Table 4: Application of machine learning in AKI.

Purpose Author Year Journal Study type Sample size Algorithm
Statistical
analysis Validation

AUC
(C-statistic) Accuracy Sensitivity Specificity

F1
score

Prediction of AKI by
EHR Koyner

et al[65]

2018 Crit Care
Med

Retrospective 121,158 GBM ROC, AUC,
x2-test, t-
test

Cross
validation

90% – 84% 85% –

Prediction of AKI
after liver
transplantation
by EHR

Lee
et al[66]

2018 J Clin
Med

Retrospective 1211 DT, RF,
GBM,
SVM,
NB,
MLP,
DBN,
LR

ROC, AUC Cross
validation

90% 84% – – –

Prediction of AKI
after Cardiac
Surgery by EHR

Lee
et al[67]

2018 J Clin
Med

Retrospective 2010 DT, RF,
GBM,
SVM,
DBN,
NNet,
LR

ROC, AUC Cross
validation

78% – – – –

Prediction of AKI
after PCI by EHR

Huang
et al[68]

2018 PLoS
Med

Retrospective 1,917,960 GBM, LR ROC, AUC,
one-sided t
test

Cross
validation

78.50% – – – –

Prediction of future
AKI by EHR

Tomasev
et al[69]

2019 Nature Retrospective 703,782 RNN, LR,
GBM

ROC, PR,
AUC,
Mann-
Whitney U-
test

Cross
validation

Area under
ROC: 92.1%
PR: 29.7%

– – – –

Prediction of in-
hospital mortality
of patients with
AKI by EHR

Lin
et al[70]

2019 Int J Med
Inform

Retrospective 19,044 RF, SVM,
ANN

ROC, AUC Cross
validation

86.60% 72.80% – – 45.90%

AKI: Acute kidney injury; EHRs: Electronic health records; PCI: Percutaneous coronary intervention; GBM: Gradient boosting machine; DT: Decision
tree; RF: Random forest; SVM: Support vector machine; LR: Logistic regression; NB: Naïve Bayes; MLP: Multilayer perceptron; DBN: Deep belief
networks; NNet: Feed-forward neural networks; RNN: Recurrent neural network; ANN: Artificial neural network; ROC: Receiver operating
characteristic curve; AUC: Area under curve; PR: Precision-recall; –: No relevant information mentioned in the article.
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overestimates the mortality of patients with a low risk of
death and underestimates the mortality of patients with
high mortality.

With the further deepening of the research, ML-assisted
monitoring may bring useful results to AKI and reduce the
resulting morbidity and mortality. This inspiring prospect
should be tested in further research.

Dialytic treatments
ML can be widely used in dialysis prescription and
monitoring, complication management, death prediction,
and so on.[71-73] There is also great potential for
application in child dialysis.[74] The application of ML
in dialysis is listed in Table 5. There have been several
positive research results in dialytic treatments. Scientists
organized the first scientific conference on the application
status and future development of AI in dialysis at the
Hospital Universitari Bellvitge (L’Hospitalet, Barcelona).
In the conference, the experience of AI in dialysis was
reviewed, and the obstacles, challenges, and future
applications in this field were discussed.[75] All the results
indicate a wide application and good prospect for AI in
renal dialysis. In the future, AI may significantly change
clinical practice in terms of hemodialysis.

Prescription management
93
The adequacy of dialysis is difficult to determine, and its
definition is constantly changing. Urea concentration in
blood is a key factor in determining the dose for
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removal rate of urea nitrogen (UN) in dialysis, but it is
difficult to collect all the dialysate used for quantitative
analysis.[71] With the progress of AI technology, neural
networks (NNs) can be used to predict changes in solute
concentration during and after hemodialysis. The NN
model predicted the total UN removal rate with the
measured DDQ value, Akl et al[71] found no significant
difference between them (prediction error, 10.9%). There
was also no significant difference between the predicted
time and the actual time interval (the prediction error,
8.3%). This proves that the NNmodel is sensitive enough.
However, due to the few patients included in this model,
the available database needs to be further expanded.
Fernandez et al[76,77] compared the ANN model with the
follow-up methods of hemodialysis (such as Smye,
Daugirdas, and urea removal ratio), and the ANN method
is better for the estimation of equilibrated urea and can be
used as a useful tool for dialysis data analysis of kidney
diseases. This approach can be easily extended to other
solutions, taking the NN model a step forward.

Anemia management
CKD anemia is one of the most common complications in
dialyzed ESRD patients. The use of erythropoiesis-
stimulating agents (ESAs) improves the treatment of
CKD anemia, but owing to the risk of death and serious
cardiovascular events, the treatment dose should vary from
person to person.[78] However, there are still many
difficulties in choosing the best therapeutic dose. Patient
status, pharmacokinetics, and pharmacodynamics of ESA
are key factors for correct long-term dose-response
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prediction to avoid long-term sustained elevation and
decreased hemoglobin (Hb) levels. Based on the clinical

et al[73] used the RF algorithm to construct four different
mortality prediction models with 27,615 patients with-

Table 5: Application of machine learning in dialysis.

Purpose Author Year Journal Study type
Sample
size

Assessing
methods

Statistical
analysis Validation

AUC
(C-statistic) Error

Prescription management
Prediction of the
changes in solute
concentration
during and after
HD

Akl
et al[71]

2001 Am J Kidney
Dis

Prospective 30 ANN, DDQ ANOVA, x2-
test, t-test

Cross validation – Kt/V:
ER< 10.9%

Comparison of the
estimators of HD
dose and finding
decision
thresholds

Fernandez
et al[76]

2005 Clin Nephrol Prospective 113 ANN, Std,
mURR,
Smye

ROC, AUC – >90.20% Kt/V:
ER< 12.7%

Prediction of the
Equilibrated post-
dialysis Blood
urea
concentration

Fernandez
et al[77]

2001 Blood Purif Prospective 133 ANN, Smye,
Daugirdas

BAM, MSE,
MDE

Cross validation – eqU:
MDE= 0.22
± 7.71 mg/
ml; eqKt/V:
MDE= –

0.01± 0.15
mg/ml

Anemia management
Prediction of
treatment
response to
anemia in
patients with
ESRD

Barbieri
et al[79]

2015 Comput Biol
Med

Retrospective 4135 ANN ME, MAE,
RMSE

Cross validation – Hb: MAE< 0.6
g/dl

Death prediction
Prediction of the
short-term
mortality of post-
dialysis

Akbilgic
et al[73]

2019 Kidney Int
Rep

Retrospective 27,615 RF, LR,
ANN,
SVM,
k-NN

ROC, AUC,
C-statistic,
Mann-
Whitney U,
t-test

Cross validation >71.8% –

Prediction of SCD
after HD

Goldstein
et al[82]

2014 Clin J Am Soc
Nephrol

Retrospective 3394 RF, LR,
LASSO,
CART

ROC, C-
statistic,
Wilcoxon,
x2-test

Cross validation 79.90% –

HD: Hemodialysis; ESRD: End stage renal disease; SCD: Sudden cardiac death; ANN: Artificial neural network; DDQ: Direct dialysate quantification;
Std: Standard urea removal ratio; mURR: Modified urea removal ratio; RF: Random forest; SVM: Support vector machine; LR: Logistic regression; k-
NN: k-Nearest neighbor; LASSO: Least absolute shrinkage and selection operator; CART: Classification and regression tree; ANOVA: Analysis of
variance; ROC: Receiver operating characteristic curve; AUC: Area under curve; BAM: Bland-Altman agreement method;ME:Mean error;MSE:Mean-
square error; MAE: Mean absolute error; RMSE: Root mean square error; MDE: Mean difference error; ER: Error; –: No relevant information
mentioned in the article.
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data of darbepoetin treatment from multicenter dialysis
patients, Barbieri et al[79] established an anemia control
model (ACM) based on ANNs. It was also deployed to
three pilot clinics for clinical testing to determine the
impact of ACM on anemia management in daily clinical
practice.[80] After the introduction of ACM, the dosage of
darbepoetin decreased by 27%, the fluctuation of Hb
decreased significantly, and the rate of blood transfusion
decreased. This model is helpful for improving the anemia
outcome of hemodialysis patients and the positive effect of
individualized ESA dose on Hb variability. However, this
method mainly focuses on response prediction and does
not clearly solve the problem of dose selection, and the
dose selection process is more challenging than commonly
recognized.[72] Anemia management tools should not only
be used to predict the occurrence and development of
disease but also be used to better identify the cause of
anemia in patients, benefiting doctors in choosing the most
appropriate treatment path for patients.

Death prediction
94
Hemodialysis patients may die as a result of many
complications during or after hemodialysis. The mortality
rate is high in the first year of dialysis.[76,81] Accurate
estimation of post-dialysis mortality can help patients
and clinicians make decisions as early as possible. Akbilgic
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in 30, 90, 180, and 365 days after dialysis transition. The
C-statistics of the models were 0.7185, 0.7446, 0.7504,
and 0.7488, respectively, which shows good internal
effectiveness and replication. The model accurately
predicted the short-term post-dialysis mortality of patients
after ESRD events, but there is still a lack of external
verification.

Of the causes of death, sudden cardiac death is a serious
cardiovascular complication in dialysis patients. The ML
method has been revealed to be helpful in the prediction of
sudden cardiac death.[82] Based on the information of
patients before and after dialysis, the RF prediction model
was constructed byGoldstein et al.[82] The C-statistic of the
model is 0.799. Because the ability to predict sudden death
decreases with the increase in the predicted time range, the
data collected were more conducive to assessing short-term
risks than long-term risks.

Challenges and future prospects
The remaining challenges

While the application of ML in health care and other areas
is surprising, it is still in its infancy in the field of kidney
disease. Challenges face both ML and its application in
nephrology.
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Challenges for ML basically from pathological sections of the kidneys of
mice.[32,34] Although AI has developed rapidly, due to the
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In the development of machine learning, it is still necessary
to constantly improve ML algorithms to meet the
challenges in conventional clinical practice. Due to the
limitations of the development of ML, the inherent logic
behind most ML models is similar to a black box, which is
still difficult to explain to doctors.

Additionally, the ethics ofMLmust be considered. Although
some guidelines have emerged, such as Singapore Model
Artificial Intelligence Governance Framework,[83] to guide
private sector organizations on how to use AI on an ethical
basis, the development of clear clinical guidelines still lags far
behind the progress of AI technology. It is necessary to
develop clear guidelines as soon as possible to standardize its
clinical application. AlthoughMLmodels perform well with
more training data, a balance needs to be found between
privacy and regulatory requirementswith the use of large and
diverse datasets to improve the accuracy ofMLmodels.[84,85]

Challenges for nephrology

In addition to the limitation of the development of the ML
algorithm, there are also many challenges in the applica-
tion of ML in nephrology.

Challenges for clinical data collection and processing
95
In the process of data collection, it may be difficult to collect
enough electronic medical record information, and different
medical institutions lack unified standards and irregular,
incomplete, or missing data, result in low data quality and
difficulty in extractingmeaningful information from thedata.
It is necessary to ensure the asmuch integrity and authenticity
of the data as possible.[86] The most commonly mentioned
limitation invarious studies is the lackof external verification.
Onlya fewstudies have carriedout external verificationof the
model to prove the accuracy and practicability of the model.
This is also related to the difficulty of data acquisition. At
present, the data of each unit are basically non-shared, and
the data are very scattered.

Medical data are large, confusing and complex. Data must
be properly mapped and pre-processed before they are used
formodeling. This step is the basis for themodel because the
accuracy is highly dependent on the reliability of the data in
terms of clinical reflection.[87] Regardless of how much
effort is invested in improving the algorithm, any inaccuracy
in the label will seriously limit the accuracy that the ML
algorithms can achieve. Therefore, it is a very considerable
challenge to obtain high-quality data andmake it available.

Additionally, we have to consider the cost in the modeling
process. It takes considerable manpower and material
resources to collect datamanually, to store data by computers,
or to process data by large-scale computing power. Before
modeling, the investment of funds is not a small challenge.

Challenge for renal pathological diagnosis

The published research is only at the stage of accurate
identification of glomeruli. The sample size of the study is
generally small, and the pictures used for modeling are
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complexity of pathological manifestations of various renal
diseases and their close relationship with clinical indica-
tors, the automated pathological diagnosis of specific renal
diseases based on images has not yet been published. It is
not possible to completely replace pathologists for the
renal pathological diagnosis of all kinds of kidney diseases
through comprehensive patient information. This needs to
be supported by a large quantity of data and confirmed by
prospective studies. The DN framework and image
processing operations across different clinical practices
and image datasets need to be further validated to verify
this technique in the distribution and spectrum of all
lesions encountered in typical renal pathology services.

Future directions
Although most nephrologists are not familiar with the
basic principles of medical AI now, in the future, through
the collaboration of nephrologists and AI researchers, it is
possible to use AI technology to build a big database for
CKD research and establish a high-efficiency model that
can be widely used in the diagnosis and treatment of CKD.

Objective and accurate AI techniques may be truly used in
clinical renal pathological diagnosis to assist pathologists
in discovering subtle differences between diseases that are
indistinguishable to the naked eye. Even on this basis, an
appmay be developed to help patients identify renal biopsy
results and predict renal prognosis.

Through the improvement of clinical data preservation,
processing technology and the establishment of a resource
sharing platform, kidney disease risk models based on
multicenter massive data will be more reliable. When the
performance of the model is high enough, it may one day
be able to replace renal biopsy to achieve non-invasive
diagnosis. The future is full of unknowns, but everything
seems to be inevitable.

Conclusions
AI is playing an increasingly important role in many
medical fields, helping doctors in most steps of patient
management. In nephrology, AI has been used to predict
the risk and progression of disease, as well as for
hemodialysis prescriptions and follow-up. Although it is
just scratching the surface now, with the progress of
technology, the accumulation of data and the increase in
investment, ML technology will make a major break-
through in precision medicine in the field of nephrology.
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