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Glycogen synthase kinase 3b represses MYOGENIN
function in alveolar rhabdomyosarcoma

MG Dionyssiou1, S Ehyai1, E Avrutin2, MK Connor2 and JC McDermott*,1,3,4,5

MYOGENIN is a member of the muscle regulatory factor family that orchestrates an obligatory step in myogenesis,
the terminal differentiation of skeletal muscle cells. A paradoxical feature of alveolar rhabdomyosarcoma (ARMS),
a prevalent soft tissue sarcoma in children arising from cells with a myogenic phenotype, is the inability of these cells to
undergo terminal differentiation despite the expression of MYOGENIN. The chimeric PAX3-FOXO1 fusion protein
which results from a chromosomal translocation in ARMS has been implicated in blocking cell cycle arrest, preventing
myogenesis from occurring. We report here that PAX3-FOXO1 enhances glycogen synthase kinase 3b (GSK3b) activity which
in turn represses MYOGENIN activity. MYOGENIN is a GSK3b substrate in vitro on the basis of in vitro kinase assays and
MYOGENIN is phosphorylated in ARMS-derived RH30 cells. Constitutively active GSK3b(S9A) increased the level of a
phosphorylated form of MYOGENIN on the basis of western blot analysis and this effect was reversed by neutralization of the
single consensus GSK3b phosphoacceptor site by mutation (S160/164A). Congruently, GSK3b inhibited the trans-activation of
an E-box reporter gene by wild-type MYOGENIN, but not MYOGENIN with the S160/164A mutations. Functionally,
GSK3b repressed muscle creatine kinase (MCK) promoter activity, an effect which was reversed by the S160/164A mutated
MYOGENIN. Importantly, GSK3b inhibition or exogenous expression of the S160/164A mutated MYOGENIN in ARMS reduced
the anchorage independent growth of RH30 cells in colony-formation assays. Thus, sustained GSK3b activity represses a critical
regulatory step in the myogenic cascade, contributing to the undifferentiated, proliferative phenotype in alveolar
rhabdomyosarcoma (ARMS).
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Rhabdomyosarcoma (RMS) is the most common pediatric
soft tissue sarcoma, accounting for 5% of all childhood
cancers and approximately 50% of soft tissue sarcomas.1–3

There are two main subtypes: embryonal and alveolar RMS
and although embryonal RMS is more common, alveolar RMS
is considered to carry a worse prognosis. A gene fusion
resulting in the t(2;13)(q35;q14) somatic cell chromosomal
translocation fuses PAX3 and Foxo1 to create a potent
transcription factor (PAX3-FOXO1) which is a predominant
causative genetic lesion for the development of alveolar
rhabdomyosarcoma (ARMS).1 ARMS is a highly malignant
mesenchymal tumor that has properties of immature striated
muscle tissue resulting in dense aggregates of poorly
differentiated cells that are separated by fibrous membranes
resulting in a loss in cellular cohesion.2,3 PAX3 is a key
determinant of somatic myogenesis and, is involved in the
migration of progenitor cells to the dermomyotome region of
the somite where they grow and divide in the presence of
growth factors.4 PAX3 is also required to activate the
myogenic determination gene, MYOD.5 MYOD is one of four

myogenic regulatory factors (MRFs, which include MYF-5,
MRF4 and MYOGENIN) from the basic helix-loop-helix
superfamily of transcription factors which interact with
myocyte enhancer factor-2 (MEF2) proteins in the hierarchical
control of muscle-specific gene expression.6 Two kinases that
potently exert effects on this myogenic regulatory cascade are
p38 mitogen activated protein kinase (MAPK) and glycogen
synthase kinase 3b (GSK3b). p38 MAPK is a key regulator of
skeletal myogenesis that critically interacts with and activates
MEF2 in the somite myotome during development.7–9 Con-
versely, GSK3b activation leads to a repression in skeletal
and cardiac muscle differentiation, in part by antagonizing p38
MAPK-mediated activation of MEF2.10,11 GSK3b usually
targets proteins that have already been phosphorylated by
another kinase at a ‘priming’ serine or threonine residue
located four amino acids C-terminal to a consensus
(S/T)XXX(S/T)-PO4 motif.12,13 Regulation of MEF2 and the
MRFs leads to morphological changes including epithelial to
mesenchymal transition, cell alignment and fusion to form
multinucleated myotubes that eventually develop into
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functional, contractile muscle fibers. In particular, cells that
express MYOD and MYOGENIN are typically fusion compe-
tent14,15 with the exception of ARMS cell types. To date, lack
of myogenic differentiation of PAX3-FOXO1 expressing
ARMS cells has been attributed to their inability to upregulate
p57Kip2 activity, hence destabilizing the DNA binding affinity of
MYOD transcription complexes.16 Dysfunctional MYOD/E-
protein complex association and transcriptional control is a
common feature between ARMS and the non-PAX3-FOXO1
expressing embryonal rhabdomyosarcoma (ERMS). Sub-
sequent restoration of the MYOD/E12 complex has been
shown to switch ERMS cells from an arrested myofibroblast
phase to a more differentiated state.17 Similarly p38 MAPK
activity can potentiate myogenic differentiation in ERMS cells
by enhancing MYOD trans-activation properties.18 Therefore,
it is fairly clear that in both rhabdomyosarcoma subtypes the
ability of MYOD to potentiate transcription is compromised.
However, the role of MYOGENIN in RMS is more equivocal.
For normal myogenesis to occur, both in vitro and in vivo, an
absolute requirement for MYOGENIN is evident. Thus,
MYOGENIN activity constitutes a pivot point for irreversible
commitment to terminal differentiation.19,20 The combination
of data from gene targeting studies of the MRFs21,22 supports
the prevailing consensus that while the other three MRFs can
compensate each other’s functional roles,23–26 MYOGENIN is
absolutely essential for skeletal muscle fiber formation.20

Despite its expression in RMS, the paradox as to why
MYOGENIN cannot mediate competence for differentiation
is unknown.

Here, we examined the posttranslational regulation of
MYOGENIN in ARMS. On the basis of the in silico prediction
of a single consensus phosphorylation site for GSK3b on the
MYOGENIN protein and also high levels of GSK3b activity in
these cells, we determined that MYOGENIN function is
potently repressed by GSK3b activity in ARMS. Moreover,
pharmacological inhibition of GSK3b results in a profound
decrease in size and, to a certain extent, number of RMS
colonies in a colony-formation assay. This effect is mimicked
by introduction of MYOGENIN bearing neutralizing mutations
in the GSK3b consensus site. In combination, these data
reveal MYOGENIN as a key target of GSK3b activity in
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Figure 1 MYOGENIN protein expression and GSK3b activity are both
maintained in ARMS: (a) C2C12 myoblasts were transfected with HA-PAX3-
FOXO1 or pcDNA3.1 control plasmid for 1 day before extraction or serum
withdrawal and then extraction at 1 day increments for up to 4 days as indicated.
Protein levels were compared with protein extracts from PAX3-FOXO1 expressing
RH30 cells 1 day in growth media (GM) and 4 days in differentiation media (DM).
The results show that despite the expression of PAX3-FOXO1, RH30 cells also
express MYOGENIN. On the other hand, HA-PAX3-FOXO1 overexpression in
C2C12 inhibits MYOGENIN expression and subsequent myogenic differentiation.
(b) C2C12 myoblasts were transfected with CMV-dsRed2, MCK-eGFP and, either
HA-PAX3-FOXO1 or pcDNA3.1 control plasmid. HA-PAX3-FOXO1 overexpression
repressed the formation of multinucleated myotubes. (c) Endogenous GSK3b
protein levels and phosphorylation at serine 9 were compared in C2C12 myoblasts,
RH30 and ERMS RD cells. Although GSK3b is expressed in all three cell types, it is
predominantly phosphorylated and hence inactive in C2C12 myoblasts and RD cells
but not PAX3-FOXO1 expressing RH30 cells. (d) C2C12 myoblasts were
transfected with HA-PAX3-FOXO1 or pcDNA3.1 control plasmid for 1 day before
extraction. Overexpression of HA-PAX3-FOXO1 resulted in decreased phospho-
rylation of GSK3b at serine 9 indicating its activation
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ARMS, indicating that pharmacologic manipulation of this
signaling axis may provide an opportunity for therapeutic
intervention.

Results

MYOGENIN is expressed in PAX3-FOXO1 expressing
RH30 cells. Serum (10% FBS) contains growth factors that
repress the transcriptional activity of MRFs and also
stimulate cell cycle progression hence rendering C2C12
myoblasts proliferative. In tissue culture, serum withdrawal
(2% HS) results in activation of MEF2 and MRFs causing cell
alignment and fusion to form multinucleated myotubes.
Initially, in order to investigate the effect of PAX3-FOXO1
on this differentiation program, proliferating C2C12
myoblasts were transiently transfected with CMV-dsRed2,
MCK-eGFP, and either HA-PAX3-FOXO1 or pcDNA3.1
control vector. Growth media (GM) was replaced with
differentiation media (DM) 19 h after transfection and cells

were allowed to differentiate for 96 h. SDS-PAGE samples
were prepared from populations of myoblasts that either
expressed or did not express PAX3-FOXO1, (a) before
serum withdrawal (time¼ 0; GM¼ 10% FBS) and (b) at 24 h
increments upon serum withdrawal (days 1–4; DM¼ 2% HS).
Protein expression levels of these samples were then
compared with protein samples from PAX3-FOXO1 expres-
sing RH30 cells in GM and DM, by western blotting. These
data indicate that despite the expression of PAX3-FOXO1,
MYOGENIN protein expression is maintained in human
ARMS-derived RH30 cells (Figure 1a). In addition, PAX3-
FOXO1 repressed myotube formation in C2C12 myoblasts
(Figures 1a and b). Detection of myogenic differentiation
using an MCK promoter driving GFP expression27 revealed
GFP expressing, multinucleated myotubes in the controls but
not in cells expressing PAX3-FOXO1 (Figure 1b).

It is well documented that MRFs and MEF2 proteins are
highly sensitive to pro-myogenic kinases such as p38
MAPK9,28–30 and also kinases such as GSK3b which are
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Figure 2 Overexpressed, constitutively active GSK3b (S9A) represses MYOGENIN trans-activation of E-box. (a) C2C12 myoblasts were transfected with 4x E-box Luc
reporter and different combinations of HA-GSK3b(S9A) and MYOGENIN or pcDNA3.1 control plasmid as indicated. Overexpressed HA-GSK3b(S9A) repressed MYOGENIN
transcriptional activity (Po0.001). (b) GSK3b directly phosphorylates MYOGENIN in vitro: Purified GST-MYOGENIN was incubated in vitro with GST-GSK3b and (g-32P) ATP.
GST and MBP proteins were used as negative and positive control respectively as indicated. Bands were resolved using SDS-PAGE and visualized by Coomassie Blue staining.
Gels were dried and exposed to X-ray film for 21 h after the assay. (c) Calf-intestinal phosphatase (CIP) treatment of immunoprecipitated MYOGENIN that was obtained from
1000mg of RH30 protein extract. The data shows that CIP treatment causes a loss of a high-molecular weight, phosphorylated form of MYOGENIN. #ns, ***Po0.001
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repressive to myogenesis.10,31 Therefore we tested for
GSK3b activity under conditions when myogenesis is
supressed. As GSK3b is constitutively active until it is
repressed by phosphorylation at serine 9 (by PKB), we
assessed both total GSK3b protein expression levels and S9
phosphorylation levels using appropriate antibodies as
indicated. We document that GSK3b is expressed in
proliferative C2C12 myoblasts, PAX3-FOXO1 expressing
ARMS cells (RH30) and, non-PAX3-FOXO1 ERMS cells
(RD). However only in PAX3-FOXO1 expressing RH30 cells,
is GSK3b predominantly in its unphosphorylated form (at
serine 9) and, hence fully active state (Figure 1c). In addition,
ectopic expression of PAX3-FOXO1 resulted in reduced
phosphorylation of GSK3b at serine 9 in C2C12 myoblasts
(Figure 1d).

MYOGENIN trans-activation function is repressed by
GSK3b. To assess the effect of GSK3b activity on MYO-
GENIN function, trans-activation of a 4x E-box Luciferase
construct was measured in proliferating C2C12 myoblasts
that were transfected with different combinations of consti-
tutively active GSK3b(S9A) and MYOGENIN as indicated in
Figure 2a. The data indicate that MYOGENIN potentiates the
4x E-box Luc reporter gene and that GSK3b(S9A) abrogates
this effect (Po0.001) indicating repression of MYOGENIN by
active GSK3b (Figure 2a, left panel) without affecting the
MYOGENIN protein expression levels (Figure 2a, right
panel).

GSK3b directly phosphorylates MYOGENIN in vitro. In
order to determine whether MYOGENIN is a substrate for
GSK3b, an in vitro kinase assay was performed using GST-
MYOGENIN (1–225), purified GST-GSK3b and g-32P ATP.
Bands were resolved using SDS-PAGE and subsequent
autoradiography showed 32P labeled bands for MYOGENIN,
autophosphorylated GSK3b and MyBP (positive control,
Figure 2b). In addition, Coomassie Blue staining revealed a
lower mobility band indicative of phosphorylation (Figure 2b).
To further test the idea that the lower mobility band is
hyperphosphorylated, we used calf-intestinal phosphatases
on RH30 cell lysates and found that the low mobility band
was eradicated (Figure 2c). Collectively these data suggest
that MYOGENIN is a GSK3b substrate in vitro.

Pharmacologic manipulation of GSK3b activity alters
MYOGENIN properties. To further investigate the effect of
GSK3b on MYOGENIN, COS7 cells were co-transfected with
MYOGENIN and GSK3b(S9A) and, then treated with or
without 10 mM GSK3b inhibitor, AR-A014418, as indicated in
Figures 3a and b. Western blot analysis revealed two
predominant forms of MYOGENIN, a low mobility hyper-
phosphorylated isoform and a high mobility, hypophosphory-
lated isoform (Figure 3a, lane 2). The lower mobility,
hyperphosphorylated band is reduced upon pharmacological
treatment with AR-A014418 as indicated (Figure 3a, lane 3).
This corresponded with a significant increase in trans-
activation of an E-box cis element driven reporter gene
(Po0.001, Figure 3b). In contrast, constitutively active
GSK3b(S9A) without pharmacological inhibition resulted in
an increase in the low mobility, hyperphosphorylated band

(Figure 3a, lane 4) which corresponded to a decrease in
E-box luciferase activity in reporter gene assays (Po0.05,
Figure 3b).

Mutation of a consensus GSK3b phosphoacceptor site
on MYOGENIN (S160/164A) prevents GSK3b-mediated
repression. By in silico analysis, MYOGENIN contains a
highly conserved putative GSK3b consensus phospho-
acceptor site (Table 1), which we targeted by neutralizing
site-directed mutagenesis. We observed that although
wild-type MYOGENIN is sensitive to the repressive
effects of constitutively active GSK3b(S9A), MYOGENIN
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Figure 3 GSK3b increases MYOGENIN protein, possibly through phosphor-
ylation and this corresponds with decreased transcriptional activity. (a) Cos7 cells
were transiently transfected with or without MYOGENIN and/or GSK3b(S9A) and
then treated for 19 h with either 10mM GSK3b inhibitor or DMSO 24 h after
transfection as indicated. Protein samples were extracted and western blot analysis
revealed an increase in a slower migrating, hyperphosphorylated MYOGENIN band
(lane 4) in the presence of overexpressed HA-GSK3b(S9A), which was reduced in
the presence of GSK3b inhibitor (lane 3). (b) E-box Luc reporter gene was
co-transfected in Cos7 cells using the same conditions that were described above.
Overexpressed MYOGENIN significantly enhanced transcriptional activity of the
E-box promoter (***Po0.001) and, this effect was further increased in the presence
of GSK3b inhibitor despite overexpression of GSK3b(S9A) (Po0.001).
Overexpression of GSK3b(S9A) repressed MYOGENIN transcriptional activity
(**Po0.05)

Table 1 GSK3b consensus sequence within Myogenin

Myogenin sequence: Species:

158 VPSECSSHSASCSP 171 Human
158 VPSECNSHSASCSP 171 Mouse
158 VPSECNSHSASCSP 171 Rat
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(S160/164A) was not (Figure 4a). Western blot analysis
revealed that MYOGENIN (S160/164A) mutations corre-
spond with a decrease in the low mobility, hyper-
phosphorylated upper band (Figure 4b, lane 2) and that
this effect was not altered by ectopically expressed HA-
GSK3b(S9A). Together these data indicate that S160/164A
mutations in MYOGENIN render it insensitive to the
repressive effect of GSK3b. GSK3b(S9A) expression
resulted in an increase in the low mobility, hyper-
phosphorylated form of wild-type MYOGENIN (Figure 4b,
lane 3) and this corresponded with decreased E-box luciferase
activity (Po0.001, Figure 4a). Although trans-activation of the
skeletal muscle gene E-box cis-element by mutated MYO-
GENIN (S160/164A) is marginally less potent than wild-type
MYOGENIN (Po0.05, Figure 4c); it is resistant to inhibition
by activated GSK3b (Po0.001, Figure 4c).

PAX3-FOXO1 activation of GSK3b antagonizes muscle
creatine kinase promoter activation. To further examine
the functional significance of our findings, we used MCK
promoter activity, as a key indicator of the activation of
myogenic differentiation, in C2C12 myoblasts that were
transfected with or without the PAX3-FOXO1 oncogene
(Figure 5a). These data depict that PAX3-FOXO1 represses
MCK promoter activation in myoblasts that have been
co-transfected with MYOGENIN (Po0.01) and this effect is
not only abrogated by pharmacological inhibition of GSK3b,
but further activated (Po0.001, Figure 5a). Interestingly, in
PAX3-FOXO1 expressing, human ARMS-derived RH30
cells, ectopically expressed MYOGENIN had no effect on
MCK promoter activity unless it was coupled with pharma-
cological inhibition of GSK3b using AR-A014418 (Po0.001,
Figure 5b). Conversely, mutated MYOGENIN (S160/164A)

Myogenin
Myogenin
(S160/164A)    
HA-GSK3β

Myogenin
Myogenin
(S160/164A)
HA-GSK3β

0

2

4

6

8

10

12

14

F
o

ld
 A

ct
iv

at
io

n

0

2

4

6

8

10

12

F
o

ld
 A

ct
iv

at
io

n

#

#

***

**

#

**

***

1 2 3 4

+

+
+

+ + +
+++

+ + +

+

+ +

+
+ +

+

MyoG

GSK3β

HA

Actin

*

pGL3 4x E-box -Luc

Figure 4 MYOGENIN neutralizing phosphomutant (S160/164A) is resistant to GSK3b repression of transcription activity as well as an increased slower migrating,
hyperphosphorylated MYOGENIN band. (a) 4x E-box Luc activity was assessed in C2C12 myoblasts that were transfected with either wild-type MYOGENIN or MYOGENIN
(S160/164A) and, co-transfected with HA-GSK3b(S9A) or pcDNA3.1 control plasmid as indicated. HA-GSK3b(S9A) repressed MYOGENIN trans-activation of the 4x E-box
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was able to potentiate MCK promoter activity regardless of
GSK3b inhibition (Po0.05, Figure 5b). Taken together, these
data provide evidence that S160/164 on MYOGENIN are
likely key targets of GSK3b signaling in alveolar rhabdo-
myosarcoma resulting in a diminution of the critical E-box
dependent gene activation that is necessary and sufficient for
differentiation.

Manipulation of GSK3b and MYOGENIN activity reduces
tumorigenic properties of ARMS-derived RH30 cells.
Colony-formation assays were performed as previously
described using RH30 cells32 which can grow in an

anchorage independent manner. Equal numbers of RH30
cells that have been transiently transfected with or without
MYOGENIN containing the S160/164A mutations were
seeded in growth media with or without 10 mM AR-A014418
(GSK3b inhibitor) and allowed to form colonies for 21 days
(Figure 6). The addition of 10 mM AR-A014418 significantly
impaired the ability of RH30 cells to form colonies
(Po0.05) and remarkably reduced the size of the colonies
(Po0.0001). A similar reduction in colony numbers and size
were also evident in RH30 cells that were transfected with
MYOGENIN (S160/164A) mutations (Figures 6a and b).
In addition, we confirmed that pharmacological inhibition of
GSK3b significantly reduced cell proliferation of PAX3-
FOXO1 expressing cells (Figure 6c). Collectively these
findings strongly indicate that GSK3b activity promotes the
tumorigenicity of RH30 cells and that this effect is neutralized
by expression of MYOGENIN bearing mutations that render it
insensitive to GSK3b.

Electrical stimulation of ARMS-derived RH30 cells
reduces GSK3b activity through Akt (PKB). Electrical
stimulation of skeletal muscle cells in cell culture has been
shown to induce phenotype alterations and differentiation.33

Given that rhabdomyosarcoma shares properties of the
skeletal muscle lineage, we electrically stimulated cultured
RH30 cells for 4 h/day (5 Hz) for up to 4 days with the idea
that it might promote differentiation by affecting the
Akt/GSK3b signaling pathway.34 Stimulation of these cells
resulted in an increase in pAktT308 to levels that were
3.00±0.72-fold higher than those in non-stimulated cells
after 4 days of stimulation (Figures 7a and b). Concomitantly,
pGSKbS9 was also increased 2.25±0.37 fold following 4
days of stimulation (Figures 7a and c). These increases in
pAktT308 and pGSKbS9 were not a result of increases in
total protein (Figure 7a) as indicated by the 3.76±1.32 and
2.05±0.55 increases in relative phosphorylation, respec-
tively (Figures 7d and e). These changes in kinase activity
corresponded with increased E-box promoter activity in
stimulated cells compared with controls (Figure 7f). Collec-
tively, these data indicate that electrical stimulation
suppresses GSK3b activity and correspondingly activates
MRF activity supporting our previous findings and also
highlighting the possibility of using electrical stimulation as
a therapeutic intervention in ARMS patients.

Discussion

ARMS, unlike ERMS, has a well-characterized cytogenetic
basis in the majority of patients resulting from chromosomal
translocations between chromosomes 1 and 13 and also 2
and 13 that result in fusion of the DNA binding domains of
either Pax7 or PAX3 with the trans-activation domain of the
Forkhead (FKHR) transcription factor family member
Foxo1.1,2,35 In view of the well-substantiated crucial role of
PAX3 and 7 in the development of skeletal muscle4,5 it is
therefore not surprising that the signature of ARMS tumor
cells is a muscle-like phenotype and the expression of a
variety of structural muscle marker genes such as myosin
heavy chain and desmin.36 What is surprising is the sustained
expression of MYOD and MYOGENIN in ARMS,37,38
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Figure 5 Pharmacological inhibition of GSK3b rescues PAX3-FOXO1
repression of MYOGENIN’s transcriptional activation of MCK promoter in both
C2C12 myoblasts and RH30 human ARMS cells. (a) MCK-Luc promoter activity
was assessed in C2C12 myoblasts that were transfected with different
combinations of MYOGENIN, PAX3-FOXO1 and pcDNA3.1 control plasmid as
indicated and then treated with either 10 mM AR-A014418 or DMSO solvent.
MYOGENIN enhanced MCK-Luc activity as expected (Po0.001) and this effect
was repressed by co-expression of PAX3-FOXO1 (Po0.01). Pharmacological
inhibition of GSK3b not only reversed the effect of PAX3-FOXO1 but resulted in a
super-activation (Po0.001). (b) To assess the importance of these findings in
human-derived ARMS, RH30 cells were transfected with either MYOGENIN or
mutated MYOGENIN(S160/164A) and MCK-Luc promoter activity was assessed.
The data shows that wild-type MYOGENIN could not trans-activate the MCK
promoter region unless it was coupled with pharmacological inhibition of GSK3b
(Po0.001). This was in contrast to mutated MYOGENIN (S160/164A), which could
potentiate MCK promoter activity (Po0.001) regardless of GSK3b inhibition.
(c) Summary of our findings: GSK3b activity in ARMS represses the activation of
muscle-specific genes by repressing the transcriptional activity of MYOGENIN. #ns,
*Po0.01, **Po0.001
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which are transcription factors that are intimately associated
with the terminally differentiated, non- proliferative phenotype
of normal myogenic cells, begging the question as to why they
cannot exert this effect in ARMS. In particular, the function of
MYOGENIN in the myogenic regulatory hierarchy places it at

a pivotal and required step in the terminal commitment of
myogenic progenitors to the differentiation program.19,20,34

Thus, our observations reported here, that MYOGENIN
function in ARMS is repressed by inappropriate sustained
signaling by the kinase GSK3b, may be of considerable
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significance for understanding the etiology of this disease.
Moreover, as repression of kinase activity is, in many cases, a
tractable pharmacologic approach, we now propose targeting
GSK3b activity as a tangible therapeutic strategy for ARMS.

In support of the above, a recent study showed that ARMS-
associated PAX3/7-Foxo1 fusion proteins inhibit MYOD

target genes.39 It was also reported that forced MYOD/E-
protein dimer expression could not rescue PAX3/7-Foxo1
repression of myogenic factors.39 Here, we also report that
ectopically expressed PAX3-FOXO1 represses the induction
of muscle genes, even when MRFs are expressed. We
propose that the posttranslational repression of MYOGENIN
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activity is due to sustained GSK3b activity and, through a
cross-talk mechanism, subsequent repression of p38 MAPK
(Supplementary Figure 1) as we have previously described.10

p38 MAPK and PKB/Akt are both required for activation
of MEF2/MYOD transcriptional control and chromatin
remodeling events at crucial myogenic loci for the differentia-
tion program.11,40

In other systems, GSK3b phosphorylation of its protein
substrates results in subsequent targeting for proteasomal
degradation.12,13 However, GSK3b does not appear to affect
MYOGENIN protein stability in our experiments as we
observe an increase in a slow migrating, hyperphosphorylated
form of MYOGENIN in response to GSK3b signaling that is
not reduced in terms of its level of expression suggesting that
proteasomal degradation of MYOGENIN is not enhanced by
GSK3b. Conversely, neutralizing mutations of the GSK3b
consensus enhanced MYOGENIN trans-activation of the
muscle creatine kinase promoter, and also reduced the
tumorigenic properties of ARMS cells (RH30) in a
colony-formation assay. These findings suggest that
GSK3b-mediated inhibition of MYOGENIN trans-activation
properties impairs MYOGENIN’s ability to promote terminal
differentiation in tumorigenic RH30 cells.

Cell cycle control is an essential component of normal
growth control and development which goes awry in
tumorigenesis. To date several growth-promoting PAX3-
FOXO1 target genes have been implicated in RMS such as
the IGF-R and c-Met although, while their contribution to
proliferation is likely, the extent of their precise involvement in
ARMS is still not clear.41 During normal skeletal myogenesis,
upregulation of a cyclin-dependent kinase inhibitor, p21, stalls
myoblasts in the G2/M phase of the cell cycle thus
priming them for differentiation by promoting cell cycle exit,
which is a requirement for subsequent muscle-specific gene
expression.42 Consistent with the idea that GSK3b activation
may contribute to the oncogenic properties resulting from
PAX3-FOXO1 expression in ARMS, we observed that the
number of proliferative RH30 cells is approximately halved by
pharmacological inhibition of GSK3b. So far, the exact
mechanism by which GSK3b regulates cell proliferation in
ARMS is unknown. However, GSK3b has recently been
shown to activate KLF643 and we recently identified
that KLF6 enhances cell proliferation in myogenic
cells through a TGFb/Smad3 dependent pathway.44 We
therefore speculate that PAX3-FOXO1/GSK3b enhance-
ment of cell proliferation may involve KLF6 as a downstream
effector as it is also highly expressed in various RMS
cell types.

In summary, MYOGENIN normally activates genes that
regulate cell fusion and terminal differentiation of skeletal
muscle. In PAX3-FOXO1 expressing ARMS cells, our data
indicate that sustained GSK3b activity represses MYOGENIN
function, contributing to the transformed, proliferative pheno-
type of these cells. On the basis of this evidence, we propose
that pharmacologic targeting of GSK3b kinase activity may
constitute a tractable therapeutic strategy for ARMS.

Materials and Methods
Plasmids. E-box, MYOGENIN and MCK reporter constructs in pGL3 and
expression vectors for MYOGENIN in EMSV were used in reporter gene assays.

HA-tagged PAX3-FOXO1 was cloned into pcDNA3.1 and kindly donated by
Dr. Malkin at MaRS, Toronto. HA-tagged GSK3b(S9A) was cloned in pcDNA3
ORF 995–2305.

Antibodies. Anti-MYOGENIN and anti-HA mouse monoclonal antibodies as
well as anti-MEF2A rabbit polyclonal antibody were produced with the assistance
of the York University Animal Care Facility; anti-PAX3 (1 : 250; Cell Signaling,
Whitby, ON, Canada) GSK3b, phospho-GSK3b (1 : 1000; Cell Signaling);
actin, MYOD, Myf-5, GFP, dsRed2 (1 : 2000; SantaCruz, Santa Cruz, CA, USA)
were used for immunoblotting experiments.

Cell culture and transfection. C2C12, Cos7 and RH30 cells were
maintained in DMEM supplemented with 10% fetal bovine serum (HyClone,
Burlington, ON, Canada), 1% L-glutamine and 1% penicillin-streptomycin. Cells
were maintained in a humidified, 37 1C incubator with a 5% CO2 atmosphere. For
transfections, cells were seeded 1 day before transfection and transfected
according to the standard calcium phosphate method previously described.
A mixture of 50ml 2.5 M CaCl2 per 25mg DNA with an equal volume of 2x HeBS
(2.8 M NaCl, 15 mM Na2HPO4, 50 mM HEPES, pH¼ 7.15) was used and the cells
were incubated overnight followed by washing and addition of fresh media. The
cells were counted and transferred to pre-gelatin-coated plates.

Protein extractions, immunoblotting and reporter gene assays.
Cells were collected using an NP-40 lysis buffer (0.5% NP-40, 50 mM Tris-HCl
(pH 8.0), 150 mM NaCl, 10 mM sodium pyrophosphate, 1 mM EDTA (pH 8.0),
0.1 M NaF) containing 10mg/ml leupetin and aprotinin, 5mg/ml pepstatin A,
0.2 mM phenylmethylsulfonyl fluoride and 0.5 mM sodium orthovanadate. Protein
concentrations were determined using the Bradford method (Bio-Rad,
Mississauga, ON, Canada) with bovine serum albumin (BSA) as a standard. An
amount 20mg of total protein extracts were used for immunoblotting, diluted in
sample buffer containing 5% b-mercaptoethanol and boiled.

Transcriptional assays were done using luciferase reporter plasmids. The cells
were collected for these assays using 20 mM Tris, (pH 7.4) and 0.1% Triton-X 100
and the values obtained were normalized to b-galactosidase activity expressed from
a constitutive SV40 driven expression vector and represented as relative light units
(RLU) or in some cases corrected Luciferase values for control, reporter alone
transfections were arbitrarily set to 1.0, and fold activation values were calculated.
Bars represent the mean (n¼ 3) and error bars represent the standard error of the
mean (n¼ 3). Independent two sample t-tests of all quantitative data were
conducted using R software. P-values are indicated with respect to controls where
appropriate.

In vitro kinase assay. A total of 3 mg of purified recombinant
GST-MYOGENIN was mixed with either 0.5mg purified recombinant GST-GSK3b
(1–433; Cell Signaling) and with (g-32P) ATP and incubated for 30 min at 30 1C.
Samples were denatured for 5 min at 95 1C in SDS sample buffer. Protein samples
were then separated by 10% SDS-PAGE and exposed on X-ray film
(Kodak X-Omat, Toronto, ON, Canada) for 21 h to detect 32P incorporation. The
lanes containing GST-MYOGENIN are elongated because two lanes were pooled
to fit a higher total reaction volume to accommodate for the low concentration of
purified GST-MYOGENIN (0.06mg/ml). All lanes contain equal total amounts of
proteins (3mg).

Electrical stimulation. Cells were plated onto 0.1% gelatin-coated 6-well
plates. The lids of the plates were fitted with two parallel platinum wire electrodes,
placed at the opposite ends of each well and extending into the media. The wires
from all wells were arranged in parallel and connected to an electrical stimulator
(Harvard Apparatus Canada, Saint-Laurent, Quebec, Canada). Cells were
stimulated at 5 V and a frequency of 5 Hz for 4 hours/day and allowed a
subsequent 20 h recovery period. Cells were collected following the recovery
period throughout the 4 days of the protocol.

Soft agarose colony-formation assay. Materials: 0.7% (w/v) DNA
grade Agarose, 1% (w/v) DNA grade Agar, 0.005% Crystal Violet (Sigma-Aldrich,
Oakville, ON, Canada), 2X Mediaþ 20% (v/v) FBS. After 48 h of transfection with
MYOGENIN containing the S160/164A mutations or empty vector, RH30 cells
were assayed for their capacity to form colonies as previously described.45 A total
of 1� 104 cells were suspended on a layer of 0.35% agarose in DMEM (10%
FBS) with or without 10mM AR-A014418, in 6-well plates. Medium was refreshed
every 3–5 days as needed and on the 22nd day, the amount of colonies were
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counted using a contrast phase microscope. The relative colony sizes were
calculated using ImageJ software (Scion Corporation, Frederick, MD, USA). Four
independent experiments were carried out in triplicate.
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