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The interferon regulatory factors (IRFs) are a family of master transcription factors that

regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF

signaling pathways due to infection, genetic predisposition and/or mutation, which can

lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs),

and other pro-inflammatory cytokines/chemokines, has been linked to the development

of numerous diseases, including (but not limited to) autoimmune and cancer. What is

currently lacking in the field is an understanding of how best to therapeutically target

these transcription factors. Many IRFs are regulated by post-translational modifications

downstream of pattern recognition receptors (PRRs) and some of these modifications

lead to activation or inhibition. We and others have been able to utilize structural features

of the IRFs in order to generate dominant negative mutants that inhibit function. Here,

we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a

candidate targeting molecule.

Keywords: IRF5, inhibition, negative regulation, positive regulation, autoimmunity

INTRODUCTION

Interferon Regulatory Factors (IRFs) are a family of transcription factors that signal downstream
of multiple pathways, including Toll-like receptor (TLR), retinoic acid-inducible gene I (RIG-I),
melanoma differentiation associated gene 5 (MDA5), and B cell receptor (BCR) signaling pathways
to regulate gene expression involved in both innate and adaptive immunity (1–3). IRFs are also
known to play central roles in cell differentiation and development, cell proliferation, apoptosis,
DNA damage response and tumor suppression (2–9). There are currently 9 mammalian IRFs-IRF1,
IRF2, IRF3, IRF4/PIP/ICSAT, IRF5, IRF6, IRF7, IRF8/ICSBP, and IRF9/p48/ISGF3γ (3). This family
of transcription factors is generally localized to the cytoplasm of an unstimulated cell, in which
they exist in their inactive monomeric form. Induction of the different signaling cascades leads
to the recruitment of adaptor molecules that in turn regulate a cascade of signals to promote IRF
activation and nuclear translocation. This process ultimately leads to the downstream production
of cytokines, chemokines and other transcription factors that regulate innate and adaptive immune
responses (10, 11).

A key event prior to IRF activation and nuclear translocation is post-translational modification
that leads to conformational changes allowing for protein-protein interactions. In the case of IRFs
that contain a carboxyl (C)-terminal autoinhibitory domain (AID) (Figure 1), post-translational
modification leads to disruption of intramolecular association of the AID with the amino
(N)-terminal DNA binding domain (DBD) and IRF association domain (IAD) (12–14). Ultimately,
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these conformational changes enable the IRFs to homo- or
hetero-dimerize with each other or another molecule, thus
allowing them to translocate to the nucleus and bind to
DNA (with other co-factors), resulting in the regulation of
gene transcription (15, 16). As in most critical signaling
pathways that elicit an immune response, once the response has
been elicited and immune cells respond, an intrinsic negative
regulatory pathway is expected to be initiated to shut down the
originating signal. If activation persists, inflammatory molecules
will begin to damage tissues, and/or trigger the development of
autoimmunity.

Indeed, hyper-activation of IRFs (most notably IRF1,
IRF3, IRF5, IRF7, and IRF9) has been implicated in disease
pathogenesis as it leads to unrestricted production of IFNs, which
is linked to the development of numerous inflammatory and
autoimmune diseases (17, 18). Further, polymorphisms in IRF
genes show either protection from or increased susceptibility to
the development of such diseases (19–23). Thus, the development
of small molecules that directly bind to and inhibit IRF
function(s) would be extremely valuable to patients with a
variety of inflammatory and autoimmune diseases. To date,
there are no therapeutic inhibitors of the IRFs. In general,
transcription factors are thought to be notoriously difficult to
target (24). This certainly holds true for IRFs as we still do
not fully understand the physiologic mechanisms that control
IRF activation and inhibition in a cell. For many IRF family
members, the mechanism of activation depends on the cell type
and initiating signaling pathway. Last, crystal structures of full-
length IRFs have been difficult to resolve, which when done,
will lend valuable insight into the rational targeting of specific
structural features inherent to each family member (13, 14).
Thus, indirect strategies for inhibiting IRF function(s) have been
focused on by targeting molecules that regulate their activities,
such as kinases that phosphorylate the IRFs, rather than directly
targeting their structure.

Hence, in this review, we will discuss the critical events
involved in IRF activation, including mechanisms of post-
translational modification, classical IRF signaling pathways, and
negative regulatory pathways as methods to indirectly target
IRF activation and function. In addition, we will discuss new
insights into the direct targeting of IRFs through focused studies
on the IRF5 family member. Ultimately, understanding the
mechanisms of IRF-mediated inflammatory responses will aid in
the identification of new strategies to therapeutically target these
critical players.

IMPLICATIONS FOR IRFs IN DISEASE
PATHOGENESIS–WHY TARGET THE IRFs?

The role of IRFs and their importance in regulating immunity
have been increasingly conspicuous in the last decade.
Dysregulation of IRFs can lead to either suppression or hyper-
activation, both of which may contribute to disease development.
Hence, identifying methods to target the modulation of these
transcription factors will provide new avenues of treatment for
patients suffering from IRF-mediated diseases. In this section,

we will briefly discuss IRF family members and their role(s) in
disease pathogenesis.

IRF1 was the first family member to be identified and found
to regulate type I IFN gene expression. Recent data from genome
wide association studies (GWAS) identified IRF1 as a risk factor
for inflammatory bowel disease (25, 26). Inmice, IRF1 was shown
to promote the severity and incidence of autoimmune diseases
like collagen-induced arthritis (CIA) and experimental allergic
encephalomyelitis. The incidence and severity of CIA and EAE
were significantly reduced mice lacking Irf1 (27).

Conversely, IRF2 is a negative regulator of IFN-mediated gene
expression. IRF2 suppresses the activity of IRF1 by competing for
binding sites (28). An increase in the IRF1/IRF2 ratio has been
considered an important event needed for the transcriptional
activation of IFNα genes required for the development of cellular
responses to viruses (29). Limited and not very well-replicated
studies have reported an association of IRF2 polymorphism
with susceptibility to the autoimmune disease systemic lupus
erythematosus (SLE). The SLE risk haplotype was suggested to
be associated with activation of IRF2 (17, 30, 31).

Similarly, IRF3 polymorphisms were found to be associated
with SLE but controversy still exists regarding their role in
susceptibility and pathogenesis (17, 23, 32). Studies in a Mexican
mestizo cohort found that the rs2304206 gene variant associated
with increased IRF3 expression in plasmacytoid dendritic cells
(pDCs), with elevated type I IFN expression and dsDNA
autoantibodies (32). In a murine model of EAE, Irf3−/−

mice showed reduced disease severity due to attenuated Th1
and Th17 type responses (33). Further, IRF3 over-activation
was found to contribute to autoinflammatory conditions, such
as Aicardi-Goutières syndrome (34–36) and STING-associated
vasculopathy of infancy (SAVI) (34, 36). Last, over-active IRF3
in macrophages and enhanced production of type I IFN resulted
in fatal inflammatory response to myocardial infarction while
Irf3−/− mice were protected from myocardial infarction (36).

In contrast, dysregulated IRF4 has been implicate in multiple
myeloma where its expression was found to correlate with
malignancy-specific gene expression (37). IRF4 polymorphisms
were also found to contribute to elevated IRF4 expression in
cells from multiple myeloma patients (38, 39). Polymorphisms
in the IRF4 gene have also been detected in adult T cell
leukemia (40). Under the condition of chronic infection, IRF4
induces the exhaustion of CD8+ T cells and hinders the
development of memory T cells (41). More recent findings
suggest that IRF4 polymorphisms are associated with high
risk of rheumatoid arthritis (RA) (17, 42, 43) and systemic
sclerosis (17, 43).

Mutations in IRF6 have been shown to contribute to the
development of Van der Woude syndrome (VWS) and popliteal
pterygium syndrome (PPS). VWS is an autosomal dominant
form of cleft lip and PPS is a disorder with a similar orofacial
phenotype that includes skin and genital anomalies. Further,
increased IRF6 mRNA was found along the medial edge of the
fusing palate, tooth buds, hair follicles, genitalia and skin in
samples with IRF6 mutations (44, 45).

IRF7 polymorphisms, like IRF5, are associated with increased
risk of SLE (46–49). IRF7 has also been implicated in the
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FIGURE 1 | A schematic representation of full-length human IRFs showing different functional domains. All IRFs harbor a DNA binding domain that contains a

conserved tryptophan pentad (pink) in the N-terminus. They also contain an IRF activation domain termed either IAD1 (orange) or IAD2 (red). Other domains present

are a nuclear localization signal (NLS, purple), nuclear export signal (NES, blue-green), an autoinhibitory domain (black), and a regulatory domain (blue). In this scheme,

IRF activation (green triangles) is denoted as phosphorylation. The length of each IRF is indicated by the number of amino acids (aa), as found in Uniprot, with each

identifier listed. IRF, interferon regulatory factor; C, carboxy terminus; N, amino terminus.

pathogenesis of type 1 diabetes through the upregulation
of inflammatory gene networks (50). Most relevant to the
current review is the finding that reduction/inhibition of
mucosal IRF7 expression with liposomal Irf7 siRNA resulted
in protection of mice from bacterial infection and renal
tissue damage (51). Last, IRF7 expression was recently
found to be elevated in PBMC from patients with systemic
sclerosis, as compared to healthy donors, due to promoter
hypomethylation (52).

IRF8 was recently found to play an important role in the
differentiation of IL9-producing T helper cells (Th9). Th9 cells
are a subset of CD4+ T cells with pro-inflammatory function
(53). In the NZB/W F1 model of spontaneous murine lupus,
mice lacking Irf8 failed to produce anti-nuclear, -chromatin
and -erythrocyte autoantibodies and had reduced kidney disease
(54). Dual and opposing functions for IRF8 were found in
Autoimmune Uveitis. Deletion of IRF8 in T cells exacerbated
the disease, while loss of IRF8 in retinal cells had a protective
effect (55). Additionally, a meta- analysis detected association
of IRF8 genetic variants with susceptibility of Multiple Sclerosis
(MS) (56). Last, IRF8-expressing antigen presenting cells in
EAE led to disease development by facilitating the onset and
expansion of T effector cells and promoting microglial-based
neuro-inflammation. Thus, mice lacking Irf8 are protected from
EAE (57).

Although limited reports implicate a direct role for IRF9 in
disease pathogenesis that support its therapeutic targeting, IRF9

is well-known to regulate IFN signaling through formation of
the ISGF3 complex (58). A recent report by Nan and colleagues,
however, found that IRF9 contributes to STAT3 activation by
upregulating IL6 expression in cancer cells. IL6 is necessary for
some cancer cells to grow and thus inhibition of this pathway
could be therapeutic (59).

We have saved IRF5 to discuss last as it has become the
most widely implicated IRF in disease pathogenesis. In the last
10 years, numerous studies have reported the association of
IRF5 polymorphisms with autoimmune disease susceptibility.
Diseases include, but are not limited to–RA, systemic sclerosis,
MS, inflammatory bowel disease and SLE (17, 60–62). In the
case of SLE, GWAS across multiple ancestral backgrounds have
confirmed that IRF5 polymorphisms associate with SLE risk [(60,
63–66)]. In SLE patient blood, IRF5 expression and activation
were found to be significantly elevated (67–71). Prior to these
findings, IRF5 was identified as a critical mediator of MyD88-
dependent TLR signaling, leading to the expression/production
of multiple pro-inflammatory cytokines including type I IFNs,
IL6, TNFα, IL12, IL23, and others implicated in autoimmune
disease pathogenesis (62, 72–76).

IRF5 has also been shown to play critical roles during
viral infection. IRF5 was recently found to promote the
death of protective CD4+ T cells during chronic visceral
leishmaniasis resulting in the establishment of chronic infection
(77). Expression levels of IRF5 and its related downstream
inflammatory cytokines were also found to be associated with
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severity, prognosis, and the causative pathogen of community
acquired pneumonia in patients (10). Last, genetic variants
of IRF5 have been associated with chronic hepatitis B
infection (78).

In addition to its role(s) in autoimmune and viral disease
pathogenesis, the past 5–10 years has brought about a plethora of
new data implicating IRF5 in multiple other diseases, including
cancer, obesity, neuropathic pain, cardiovascular, and metabolic
dysfunction (79–82). For the purpose of this review, we will
not be discussing the role of IRF5 in cancer as it tends to act
as a tumor suppressor and thus its expression/activation are
downregulated (83–87). We instead focus on diseases where
IRF5 expression/activation are upregulated. For example, in
two distinct models of murine atherosclerosis, murine Irf5 was
recently found to contribute to the formation of atherosclerotic
lesions by impairing efferocytosis (88). This effect was due to
IRF5’s role in promoting the maintenance of pro-inflammatory
CD11c+ macrophages within lesions leading to the expansion of
the necrotic core. IRF5 also plays a role in liver fibrosis caused
by hepatitis C virus or in non-alcoholic fatty liver disease (89).
IRF5 expression was significantly higher in liver macrophages
from human subjects with liver fibrosis than healthy controls
and its expression positively correlated with clinical markers
of liver damage. Of note, mice lacking Irf5 in their myeloid
compartment were protected from hepatic fibrosis (89). In a
coronary ligation model, high levels of IRF5 expression were
detected during the early inflammatory stage (day 4) of wound
healing. This phase was then followed by a decrease in IRF5
expression in infarct macrophages skewing them toward an M2
phenotype that is involved in the resolution of inflammation (day
8). Accelerated cutaneous and infarct healing, and attenuated
development of post-myocardial infarct heart failure were
observed during the second phase of decreased IRF5 expression
(81, 90).

IRF5 dysfunction was also recently implicated in neuropathic
pain, which plays an important role in the pathogenesis of
tactile allodynia induced by nerve injury. IRF5 expression on M1
microglia is upregulated by spinal nerve injury, which in turn
induces the expression of ATP receptors to activate microglia
and signal neuropathic pain in the spinal cord (91). In spinal
cord injury (SCI) there is an acute, long-lasting inflammatory
response and macrophages play an important role in persistent
inflammation contributing to the pathogenesis of SCI. The first
phase after SCI is acute and is characterized by M2 macrophage
infiltration that is then followed by a long-lasting phase of
M1 macrophages, which slows healing and compromises organ
function. IRF5 was shown to play a critical role in this process
by up-regulating genes associated with the M1 macrophage
phenotype (92).

In the antigen-induced model of arthritis, a population
of Irf5-positive pro-inflammatory macrophages was found to
significantly increase in inflamed knees, suggesting that IRF5 can
be used as a marker of inflammatory macrophages in a disease
setting (93). Another report from the same group studied the
role of IRF5 in a model of acute inflammation and lung injury.
Neutrophil influx is known to play a major role in both diseases.
Mice lacking Irf5 had a significant reduction in the number of

neutrophils accumulating at the site of infection, and acute lung
injury was markedly reduced in Irf5-deficient mice (93).

Another important role for IRF5 was identified in patients
carrying IRF5 polymorphism rs3757385 that associates with
acute rejection and is considered a risk factor for transplant
rejection (94). IRF5 polymorphisms were also recently identified
that associate with asthma and its severity. Interestingly, IRF5
risk alleles that associate with asthma were found to be
almost completely opposite to those for autoimmune disorders,
supporting potentially distinct roles for IRF5 in the pathogenesis
of asthma and autoimmune disorders (95). Additional work in
both human and mouse models of asthma and allergic airway
inflammation suggests an important role for Irf5 in driving
disease severity (96, 97).

A final example of IRF5 dysregulation in disease comes
from the field of hematologic malignancies. Distinct from
the multitude of solid cancers and hematologic malignancies
that have been shown to have lost IRF5 expression (79,
83, 98), a tumor-promoting role for IRF5 was identified in
classical Hodgkin Lymphoma (HL) where IRF5 expression
was found to be elevated and over-activated in HL B cells
(84, 99).

Given the multitude of studies implicating IRF5 dysregulation
in a vast number of diseases, we use this IRF family member
as a candidate therapeutic target for drug discovery. Below, we
focus on the details of IRF5 structure-function, signaling, post-
translational modification and negative regulation that may be
used as molecular targets for therapeutic inhibition. Since there
is significant homology between IRF family members (Figure 1),
combined with distinct and overlapping functional roles in the
immune system, we anticipate that strategies developed to inhibit
IRF5 may be utilized to modulate the function/activity of other
IRF family members.

UNDERSTANDING THE MOLECULAR
STRUCTURE OF IRF5

IRF family members regulate IFNs and IFN-inducible genes
supporting their critical role(s) in the innate immune response
against pathogens. All IRFs have a homology of over 115 amino
acids in their N-terminal region that harbors the DBD (Figure 1).
The DBD contains a highly conserved tryptophan (W) repeat
forming a helix-turn-helix motif that recognizes DNA sequences
referred to as IFN-stimulated response elements (ISRE)
(A/GNGAAANNGAAACT) or IRF elements (IRF-E) (5, 9, 17).
The C-terminal region, on the other hand, exhibits diversity in
all IRFs, which supports their distinct function(s), and could be
potentially used for therapeutic inhibition that would provide
specificity to each family member. As summarized in Figure 1,
the IRFs contain a regulatory domain, nuclear localization
signal (NLS), nuclear export signal (NES), IRF-association
domains (IAD), and some family members (IRF3, IRF5, IRF7)
contain an autoinhibitory domain (AID) (48, 100). Each of these
regions defines or elicits cell type-specific functions, activation
via distinct signaling pathways, and interaction with other
proteins.
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FIGURE 2 | The Serine Rich Region (SRR) is conserved in all IRF5 isoforms.

The C-terminus contains conserved serine (S) residues that are targeted for

phosphorylation by kinases, such as IKKβ (blue-bolded serine). Red-bolded

serines are those originally identified as critical for IRF5 activation (13, 101).

Phosphorylation leads to structural changes, including removal of the AID,

liberation of the IAD and exposure of the C-terminus for further modification(s)

and/or protein interaction. Although IRF5 isoforms range in size, most contain

the SRR independent of its numerical amino acid location.

The AID suppresses IRF transcriptional activity. There are
two identified AIDs in IRF3 located in the N- and C-terminal
regions compared to one AID found in IRF5 and IRF7 (14, 101,
102). The IRF3 crystal structure in its latent (unstimulated or
autoinhibited monomer) form revealed the hydrophobic surface
and a region essential for CBP/p300 binding that is masked
by the AID (14). The presence of two AIDs provides a unique
activation conformation upon phosphorylation with the IAD
and AID forming a hydrophobic core and realignment of the
DBD. The pseudo-phosphorylated IRF5 crystal structure, on the
other hand, revealed the AID and key phosphorylation sites
(Figure 2) as being highly extended allowing for dimerization
and/or interaction with CBP/p300 in the hydrophobic region
(13).

Insights from the crystal structures, along with data from
functional mutagenesis, provides key structural information that
can be used to directly target each IRF family member. These
models also allow for the further testing of different mechanisms
that may lead to IRF activation and conformational changes
that liberate the AID and expose critical residues essential
for homo- or hetero-dimerization and other protein-protein
interactions. Specific phosphorylated residues in the C-terminus,
referred to as the serine rich region (SRR, Figure 2), contribute
to the stabilization of IRF dimers and interaction with DNA.
Mutational analysis of the SRR originally identified S425, S427,
and S430 of the identical isoform encoded by IRF5 variants
3 and 4 (Figure 2, red-bolded residues) as the critical sites of
phosphorylation that are necessary for Newcastle disease virus
(NDV)-induced IRF5 activation (101, 103). Later studies from
multiple groups confirmed the functional importance of these
three residues (13). While protein length and numerical amino
acid location varies between IRF5 isoforms (104), the SRR is
conserved (Figure 2). Given that we still do not know all of
the pathways and mechanisms leading to IRF5 activation or
inhibition of activation, further studies focused on identifying
mutations that lead to either of these outcomes will be essential
to our understanding of how better to target these molecules.
An example of this was the finding years ago by others and us
of dominant negative IRF mutants that lead to the inhibition of
IRF transactivation function (104–110). These types of studies

suggest that the utilization of small peptides that mimic the
IRFs may lead to inhibition. Indeed, two examples of this
currently exist for IRF5 that will be discussed in the last section
[(111); U.S. Patent No US20160009772A1; (112); U.S. Patent No
WO2017044855A2], but are depicted in Figure 3.

IRF5 SIGNALING PATHWAYS: THE
POSITIVE AND NEGATIVE PARADIGM

The combination of protein-protein interaction, signaling co-
factors, adaptor proteins, and cell type specificity will all
contribute to determining which IRF family member will be
“turned on” in response to stimulation. For instance, IRF3 is
ubiquitously expressed in all immune cells while IRF7 is more
restricted in cells of lymphoid origin (101). IRF5, on the other
hand, is expressed in monocytes, macrophages (Mϕ), B cells and
dendritic cells (DC) (16, 114).

Innate pattern recognition receptors (PRRs), which include
TLRs, C-type lectin receptors (CLRs), RIG-I-like receptors
(RLRs), and NOD-like receptors (NLRs), all recognize various
pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs). In response to these
PAMPs and DAMPs, intracellular signaling cascades are
differentially triggered that induce the expression and/or
activation of IRFs (115). In the case of TLR signaling,
activation occurs via binding of ligand to receptor, leading
to a conformational change that immediately recruits adaptor
proteins. MyD88 is a proximal adaptor protein responsible
for the propagation of the innate immune signal transduction
downstream of TLR7 and upstream of IRF5 (9, 116). In the
MyD88-dependent pathway, MyD88 recruits TNFR-associated
factor 6 (TRAF6) and IL-1R-associated kinase 4 (IRAK4)
followed by recruitment of IRAK1, IRAK2 or IRAK3 to form
a complex called the Myddosome (117). IRF5 activation occurs
downstream of this TLR7/8 pathway and has recently been shown
to be phosphorylated by IKKβ (Figure 4), leading to downstream
cytokine and chemokine expression (105, 118, 119). Additional
reviews are available that cover in more detail the TLR-IRF
signaling pathways (3, 11, 120, 121).

In human primary monocytes and macrophages, induction
of IFNβ following infection of Staphylococcus aureus (RNA)
was found to require two key signaling molecules in the TLR8-
MyD88 pathway–TAK1 and IKKβ (122). Use of an IRAK4
inhibitor revealed that IRAK4 regulates TAK1 and IKKβ activity
(123). Inhibition of IRAK4 autophosphorylation led to the
inhibition of TAK1 activation, which resulted in the inhibition of
IKKβ phosphorylation at S177, and inhibition of IRF5 activation
and downstream proinflammatory cytokine production (123).
IKKβ was previously identified as a kinase for IRF5 (Figure 2,
blue-bolded serine) (118, 119).

As for negative regulators of IRF5 function, IRF4 was shown
to act as an antagonist of IRF5 in Epstein-Barr Virus (EBV)-
transformed cells (124). IRF4 knockdown resulted in elevated
IRF5 expression. IRF4 was found to bind to similar IRF5 target
genes and compete for binding with IRF5 (124). Further, a few
studies reported that IRF4 also competes with IRF5 for MyD88
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FIGURE 3 | Modified crystal structures of IRF5. (A) Homology model of the inactive IRF5 C-terminal domain (variant 5) generated using the monomeric autoinhibited

IRF3 C-terminal domain (PDB: 1QWT) as a template (113). Representative image from docking of an inhibitor (112) to the C-terminal SRR of the inactive IRF5

monomer, which results in maintenance of a closed, non-phosphorylated conformation. Orange balls represent phosphorylation sites at the C-terminal SRR.

(B) Representative image generated from IRF5 crystal structure coordinates (13) showing formation of an IRF5 homodimer. Arrows show critical regions that are being

therapeutically targeted to inhibit homodimerization between Helix 2 and Helix 5 (111).

FIGURE 4 | The canonical IRF5 signaling pathway and its negative regulation. (A) Upon ligand binding to TLR7/8, MyD88 gets recruited in, along with IRAK1/4 and

TRAF6, which leads to the autophosphorylation of IRAK4 and ubiquitination of IRF5 by TRAF6. IRAK4 then activates TAK1, which then phosphorylates IKKβ. The

ubiquitinated IRF5 is then phosphorylated by IKKβ (or other kinases). This action results in homodimerization and translocation of the IRF5 homodimer to the nucleus,

leading to the production of downstream cytokines. Lyn kinase, IKKα and IRF4, on the other hand, were found to negatively regulate IRF5 activity. TRIM21 is a

molecule that targets IRF5 for proteasomal- or lysosomal-mediated degradation. (B) A negative feedback loop may also be involved in the suppression of

IRF5-mediated inflammatory gene transcription. TAK1 initiates a series of phosphorylation events on different kinases, including MMK3/MKK6, P38α/MAPK,

MSK1/MSK2, and CREB, which leads to the upregulation of IL10. SIK2, on the other hand, inhibits CRTC3 activity by phosphorylation leading to its cytosolic

localization and inhibition of IL10 expression. SIK2 also inhibits inflammatory molecules, such as TNF and IL12 by unknown mechanisms that may involve inhibition of

IRF5 (shown by ?).

interaction, resulting in the negative regulation of downstream
IRF5 targets (125, 126). While these are not direct effects on
IRF5 itself, subsequent studies identified Lyn kinase as a direct

regulator of IRF5 activity. Lyn kinase was found to bind to IRF5
and even phosphorylate it; however, phosphorylation did not
alter protein activity (116). Instead, inhibition of IRF5 activity

Frontiers in Immunology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 2622

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Thompson et al. Therapeutic Strategies Targeting IRFs

was due to the direct interaction of Lyn with IRF5 resulting in
allosteric interaction. Further discussion of Lyn-IRF5 interaction
is included below in the section on IRF5 post-translational
modification.

Results from independent studies also allow us to speculate
on other negative regulatory pathways of inflammatory cytokine
expression that may regulate IRF5 (127, 128). For instance,
SIK2 was reported to phosphorylate CRTC3, which results in
its cytoplasmic localization and inhibition of IL10 expression.
SIK2 has also been reported to downregulate TNF and IL12
production via an unknown mechanism. We speculate that
components of this pathway may serve as a negative feedback
loop that inhibits IRF5 activity (Figure 4). TRIM21-mediated
dose-dependent degradation of IRF5was also found to contribute
to reduced IRF5 activity and may lead to a mechanism of
inhibition (129).

IRF5 POST-TRANSLATIONAL
MODIFICATIONS AND KEY MODIFIERS

Post-translational modifications (PTMs) are essential to protein
stability and function. A single protein may undergo single
or multiple reversible or irreversible PTM(s). Phosphorylation
(of serine, threonine or tyrosine) is an important modification
required by most IRFs for their activation and/or inhibition. IRFs
also undergo either K48- (targeted for proteosomal degradation)
or K63-ubiquitination (for intracellular trafficking). Here, we
will discuss some of the most important modifiers and PTMs
essential for IRF5 activation that could be potential targets for
inhibition.

IRF5 can be phosphorylated by IKKβ which leads to homo-
dimerization and nuclear translocation to induce IFN activation
following viral infection (Figure 4) (118, 119). Phosphorylation
is required not just for homo- and hetero-dimerization but also
for the interaction with histone acetyltransferases (HATs) (70, 71,
130). Two independent studies identified IKKβ as a kinase that
phosphorylates a single C-terminal Ser residue in IRF5 (Figure 2,
blue-bolded serine) (118, 119). Mutation of this residue
abrogated IRF5 homodimerization and nuclear translocation.
Three additional Ser residues that were previously identified
as being important for IRF5 activation (Figure 2, red-bolded
serines) (101), may also be important for dimerization, based on
crystal structure analysis (14, 15, 101, 103). These Ser residues,
however, also appear to be essential to the liberation of the
AID (13).

Prior to phosphorylation, IRF5 has been shown to undergo
ubiquitination which is catalyzed by TRAF6 (98, 131). A few
studies mentioned that ubiquitination is not required for IRF5
activation but it appears to be required for phosphorylation
(116, 132). In particular, K410 and K411 are essential
for IRF5 activation, nuclear translocation and the IFNα

promoter-inducing activity (131). TRIM21 has been shown
to ubiquitinate IRF5 which reduces or dose-dependently
inhibits its activity via proteasomal- or lysosomal-mediated
degradation (129).

Lyn kinase phosphorylates IRF5 at Y313 and Y335 but this
modification was dispensable as transactivation ability of the
double mutant IRF5 (YY313, 335FF) was still inhibited by
Lyn (116). Further, a kinase-dead Lyn point mutant (K275D)
inhibited IRF5 transcriptional activity. These data show that
Lyn negatively regulates IRF5 transcriptional activity via a
mechanism independent of its kinase activity and possibly via
a direct interaction of Lyn with IRF5. IKKα also inhibits IRF5
function through phosphorylation which can be circumvented
by the action of alkaline phosphatase causing it to undergo
dephosphorylation (133).

Last, we previously reported that IRF5 activity may also be
regulated by acetylation. We found that histone deacetylases
(HDACs) and HATs CREB-binding protein (CBP)/p300 interact
with IRF5 in response to virus infection, and this was required for
IRF5 transactivation (15, 70, 130).

CURRENT THERAPEUTIC STRATEGIES TO
INHIBIT IRF5

IRF5 was identified as a key regulatory factor for macrophage
polarization. The activation of IRF5 expression in macrophages
decides their fate to either be M1 or M2 macrophages. Higher
expression of IRF5 leads to M1 polarization whereas reduced
or downregulated expression leads to M2 polarization (76).
In a SCI mouse model, macrophage activation along with
persistent inflammation was found to contribute to severity.
After injury, there is an immediate influx of M2-activated
macrophages; however, following this, there is a long-lasting
phase characterized by an influx of activated M1 macrophages
to the site of injury. This long-lasting phase of M1 macrophages
causes derailed healing and compromises organ function(s)
(92). Since up-regulated IRF5 expression induces the M1
macrophage phenotype, IRF5 siRNA was delivered in vivo
by lipidoid nanoparticle to silence IRF5 in the macrophages
that infiltrated the spinal cord injury wound. Nanoparticle-
mediated IRF5 siRNA delivery to the wound resulted in a
dramatic change in macrophage phenotype changing from
M1 to M2 in the long-lasting phase. Decreased inflammation,
attenuation of demyelination and neurofilament loss, and a
significant improvement in locomotor function were found
(92). A similar study using nanoparticle-mediated IRF5 siRNA
delivery in vivo into macrophages residing in myocardial infarcts
(MI) and in surgically induced skin wounds in mice showed
resolution of inflammation and infarct healing. Furthermore,
treatment led to the attenuation of post-MI heart failure after
coronary ligation (81). Likewise, in the severe acute pancreatitis
mouse model there is pancreatitis-induced activation of lung
M1 macrophages with high expression of IRF5, TNFα, iNOS
and IL10. These macrophages were polarized toward the M2
phenotype after treatment with IRF5 siRNA in vitro. Moreover,
in vivo, treatment with IRF5 siRNA reversed the pancreatitis-
induced activation of lung macrophages from M1 phenotype
to M2 phenotype (134). Last, selective suppression of IRF5
in microglia cells using gene therapy with homing peptide-
siRNA-IRF5 complexes in a mouse model of neuropathic
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pain resulted in a significant reduction in neuropathic pain
(91).

An alternative method of targeting IRF5 was demonstrated
using an AAG-rich microsatellite DNA mimicking
oligodeoxynucleotide designated as MS19 to inhibit IRF5
activation. LPS stimulated RAW264.7 cells, when cultured along
with MS19, resulted in reduced expression of iNOS, IL6, and
TNFα along with inhibiting the nuclear translocation of IRF5
in vitro detected by western blot of nuclear and cytoplasmic
extracts. Bioinformatics analysis revealed the mechanism of
action of MS19 to be competition with IRF5 at regulatory
consensus sequences in the promoter of target genes. MS19
was further studied in a murine model of septic peritonitis
revealing that MS19 prolonged the survival of the mice and
down-regulated the expression of iNOS, IRF5, IL6, and TNFα
(135). Another interesting study using the natural polyphenol
Mangiferin that is a component of Mangifera indica Linn. leaves
found a marked reduction in IRF5 expression in macrophages
stimulated with LPS/IFNγ. This translated into a significant
reduction in pro-inflammatory cytokine expression (136). How
Mangiferin down-regulates IRF5 expression is not currently
known.

NEW THERAPEUTIC STRATEGIES FOR
TARGETING IRF5

Given its role in both innate and adaptive immune signaling,
constitutive activation of IRF5, like other IRF family members,
can create havoc on immune homeostasis leading to detrimental
effects on cellular phenotypic plasticity and the development
of autoimmune and inflammatory diseases. In this section,
we discuss recent new methods that have been developed by
our lab and others that directly target IRF5 activation and
speculate on other possible avenues that may lead to IRF5
inhibition.

Some IRF family members regulate the expression and
activity of other IRFs. Examples of this are seen with IRF1-
IRF2 and IRF4-IRF5 (5, 104, 124, 137–139). These positive
and negative feedback mechanisms show vulnerability in the
signaling system that could be used for targeting. However,
because of these mechanisms of co-regulation, altering the
expression of individual IRF family members may lead to non-
specific effects on other IRF family members. This may be
cell type-dependent since not all IRFs are expressed in every
cell type. An example of this methodology was used in cancer
cells where inhibition of IRF2 expression/function was induced
by upregulation of its antagonist, IRF1 (140). Similarly, IRF4
was identified as a negative regulator of IRF5 transactivation
ability (106, 124, 126). Upregulation of these negative regulators
would lead to a respective switch from pro-tumorigenic to
anti-tumorigenic and pro-inflammatory to anti-inflammatory.
Unfortunately, upregulation of these negative regulators may
also impact other signaling pathways that could promote the
development of other diseases depending on cell type. Another
challenge to targeting the IRFs is targeting them in a cell type-
specific manner.

Additional negative regulatory pathways of IRF5 are being
discovered (127). SIK2 has been implicated as a negative
regulator of TNF and IL12 production and CRTC3. Inhibition
of CRTC3 prevents it from undergoing nuclear translocation and
reduces IL10 expression. These data suggest that SIK2 plays a role
in the regulation of pro- and anti-inflammatory signaling and
may be a candidate to target therapeutically for the inhibition
of autoimmune and inflammatory diseases. We are currently
examining whether SIK2 may be a negative regulator of IRF5
(Figure 4).

IKKβ, IRAK1/4, and TRAF6 are activators of latent IRF5
that can also be targeted to inhibit its activity. Certainly,
these have been the more common strategies in the Pharma
industry since enzymes have catalytically active sites that are
more readily accessible by small molecular weight compounds.
Another possibility is the targeting of phosphatases that lead
to the deactivation or inhibition of IRF5. These include A20
(132) and alkaline phosphatase (133). Again, similar to targeting
kinases, phosphatases and ligases are not specific for one protein
and therefore targeting them would be expected to lead to
global changes in gene expression and protein activation. The
same is true for other co-activators identified to interact with
IRF5, such as CBP/p300 and GCN/PCAF; they are not specific
to IRF5.

A number of viruses have now been shown to encode viral
IRF (vIRF) homologs, including Kaposi’s sarcoma-associated
herpesvirus and rhesus monkey rhadinovirus, which function as
dominant negative mutants by antagonizing IRF activity (110,
124, 141). Some of these dominant negative mutants lack the
IRF DBD that do not allow them to bind to the host DNA,
instead they form homo- and hetero-dimers with the IRFs
leading to inhibition. Alternatively, C-terminal deletion mutants
have been shown to inhibit IRF function by binding directly
to host DNA, thus competing out wild-type IRFs (106–108).
Although the mechanisms of dominant negative function have
not been entirely worked out, given that most IRFs require
homo- or hetero-dimerization for function, and/or interaction
with other proteins, targeting these types of interactions would
be expected to provide enhanced specificity. Additionally,
other viral proteins have been found to inhibit IRF function
through targeted degradation (142). These viral proteins, and/or
sequences within them, may be further developed to inhibit IRF
function.

In this regard, we and others have developed novel peptide
inhibitors that utilize specific sequences within the IRF5 gene
to inhibit activation. In collaboration with colleagues at Roche,
a series of peptide inhibitors were developed based on crystal
structure data predicting regions in the IRF5 protein that are
critical for homo- and hetero-dimerization [(111); U.S. Patent
No US20160009772A1]. We found that these inhibitors directly
bind to the IRF5 protein, inhibit TLR-induced IRF5 homo-
dimerization, nuclear translocation and downstream cytokine
production. Independently, we developed another series of
peptide inhibitors that are cell permeable, directly bind to full-
length endogenous IRF5, and inhibit the development of murine
lupus in vivo [(112); U.S. Patent No WO2017044855A2]. Results
from these two studies support the specific targeting of IRF5 with
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inhibitors that directly bind to the protein. The value of targeting
IRF5 directly rather than mediators of its activation is that
specificity will be enhanced and inhibition will be independent
of cell type and pathway of activation.

CONCLUSIONS

Given the similarities in IRF crystal structures, mechanisms
of activation and necessity of protein-protein interactions for
activity, we expect that similar methodologies as those identified
to inhibit IRF5 activation can be used to target other IRF family
members.
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