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Abstract: In this study, a full organic and water-soluble material was synthesized by coupling low
molecular weight polyethylenimine (PEI-800) with cyclotriveratrilene (CTV). The water-soluble cross-
linked polymer contains hydrophobic holes with a high coordination capability towards different
organic drug molecules. The coordinating capability towards hydrophilic drugs (doxorubicin,
gatifloxacin and sinomenine) and hydrophobic drugs (camptothecin and celastrol) was analyzed in
an aqueous medium by using NMR, UV-Vis and emission spectroscopies. The coordination of drug
molecules with the armed CTV unit through hydrophobic interactions was observed. In particular,
celastrol exhibited more ionic interactions with the PEI moiety of the hosting system. In the case
of doxorubicin, the host–guest detachment was induced by the addition of ammonium chloride,
suggesting that the intracellular environment can facilitate the release of the drug molecules.

Keywords: polyethyleneimine; cyclotriveratrilene; polymer cross-linking; hydrophilic material;
hydrophobic interaction

1. Introduction

In the past 60 years, scientists have been inspired by biology concepts to prepare
artificial systems by assembling different molecules with physical forces [1–3]. The process
of replicating enzyme–substrate interactions, known as molecular recognition, entails the
production of large molecules or multimolecular entities, as well as the examination of the
hosting capability towards relatively tiny charged or neutral small molecules [4,5].

The requirement of limiting or rendering more discriminant drug toxicity interests
researchers in preparing and investigating different drug-coordinating platforms [6–8].
Polymers have been found to have intensive applications for coordination with therapeutic
agents due to their large molecular structures and functionalization [9].

Polyethyleneimine (PEI) consists of a mixture of primary, secondary and tertiary
amines that can be protonated over a wide pH range and modified by exploiting the
reactivity of the amino group [10,11]. Of note, the original or modified form of PEI mainly
concerned the gene coordination due to the positive charges that the polymer exhibits
in a water solution upon amino groups’ protonation [10,12,13]. Meanwhile, PEI is often
conjugated to small aromatic molecules, which improves the cell transfection efficiency or
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facilitates the fluorescent polymeric nanoparticles preparation [14,15]. For instance, dox-
orubicin (DOX) can be linked to PEI through covalent connection or coordinated through
supramolecular interactions for drug-delivery applications [16,17]. Our group previously
also reported the coordination of doxorubicin with PEI-25k cross-linked cyclotriveratrylene
(CTV) [18].

CTV is a cyclic trimer with a rigid conformation [19]. The most stable configuration
of CTV exhibits a distance between the centers of the rings of ~4.77 Å, and the cavity
dimension may vary depending on the length of appended side arm to the upper rim
(Figure 1) [20]. The concave-shaped cavity is responsible for the vast variety of supramolec-
ular interactions with ionic and neutral small molecules [21–33]. Moreover, armed CTV
can even coordinate large structures such as fullerenes, showing high flexibility towards
different sizes of molecules [32–42].

Figure 1. Illustration of the synthesized coordinating system and molecular structures of drug
molecules analyzed in this study.

Theoretically, the combination of CTV and PEI may provide a viable delivery platform
for medicines with varied characteristics. The choice of the small molecular weighted
polymer can induce drastic changes in the physical properties and coordinating capabil-
ity, and therefore we intend to combine cyclotriveratrilene with PEI-800 for developing
the platform.

The new cross-linked polymer (Cross-PEI-800) exhibited complete solubility in wa-
ter, which facilitated the examination of the polymer itself in terms of its interactions
with other compounds and cell viability. In addition, we also analyzed the coordination
of Cross-PEI-800 with five different selected drug molecules to improve their water sol-
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ubility: hydrophilic drugs—doxorubicin [43–45], gatifloxacin [46] and sinomenine [47];
hydrophobic drugs—camptothecin [48] and celastrol [49–51].

Formulations of the abovementioned drugs for selective targeting envisage two main
strategies: chemical modifications and supramolecular encapsulation [52–63]. Supramolec-
ular coordination is often preferable over other interactions due to its better external stimuli
response, which modulates the coordination and releasing processes [63,64].

Although the selected compounds possess different physical properties, they exhibit
similar structural features, including π-conjugated systems and heteroatoms. We herein
developed a drug delivery platform, as shown in Figure 1, by exploiting these features for
supramolecular coordination. The hydrophobic rigid CTV cup is suitable for interacting
with the π-conjugated system of those molecules, and meanwhile, polyethyleneimine
chains are more inclined to hydrogen bond coordination with the heteroatoms.

2. Materials and Methods
2.1. General

Human lung adenocarcinoma (A549), immortalized normal human hepatocytes (LO2),
and human embryonic kidney cells (HEK293) were bought from ATCC (ATCC, Manassas,
VA, USA). Cells were incubated in RPMI-1640 (A549 cells) and DMEM (LO2 and HEK293
cells) media, which contain 10% fetal bovine serum and antibiotics (penicillin, 50 U/Ml,
and streptomycin, 50 mg/mL; Invitrogen, Paisley, Scotland, UK). All cells were cultured
at 37 ◦C in a 5% humidified CO2 incubator. Stock solutions of all tested compounds were
prepared by dissolving in DMSO and stored at −20 ◦C before use.

2.2. Cytotoxicity Assay

Cell viability was determined by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium
bromide (MTT) assay as reported previously [65]. Cells with a density of 5× 103 per well were
seeded in 96-well plates before treatment of drugs. After overnight culture, cells were treated
with different concentrations of each compound (0.191–100 µM) for 72 h. Cells without drug
treatment were used as controls. After that, 10 µL of MTT solution (5 mg/mL) was added
to the wells and incubated at 37 ◦C for another 4 h. Finally, 100 µL of solubilization buffer
(12 mM of HCl in 10% SDS) was added to each well and incubated overnight. The absorbance
of each well was then determined at 570 nm the next day. The percentage of cell viability was
calculated, and the cytotoxicity was presented as % Viability = Atreated/Acontrol × 100.

2.3. Materials

Vanillyl alcohol, 1,4-dibromobutane, scandium triflate Sc(OTf)3 and branched poly-
ethyleneimine (PEI-800) were purchased from Sigma-Aldrich (average Mw 800 by LS,
average Mn 600 by GPC, branched) and used without further purification. Unless specified
otherwise, acetone and acetonitrile (CH3CN) were used as acquired from commercial
sources. The dialysis bag for the purification of polymer was Spectra/Por®6 Dialysis
Membrane; MWCO: 1 kD. 1H and 13C NMR spectra were recorded on a Bruker Avance
III 400 MHz BBFO Probe and AVANCE NEO 400 NMR in CDCl3, D2O and DMSO-d6,
using the solvent residual proton signal as a reference. Flash column chromatography was
performed using Silicycle Silica gel 60 (7–230 Mesh, pH 7). UV-Vis absorption spectra of all
samples in H2O were obtained by Agilent Cary 60UV–Visible, Thermo Scientific Multiskan
G0 microplate and cuvette spectrophotometer over a range of 200–1000 nm. Fluorescence
spectra were acquired using Perkin Elmer, LS50B Luminescence Spectrometer equipped
with an SC-05 standard cuvette holder.

2.4. Synthesis

[4-(2-bromobutoxy)-3-methoxyphenyl]methanol (2a): To a solution of 3-methoxy-
4-hydroxybenzylalcohol 1a (2 g, 13 mmol, 1 equiv.) in acetone (24 mL), K2CO3 (8.97 g,
65 mmol, 5 equiv.) was added and stirred for 30 min at room temperature under argon.
After addition of 1,4-dibromobutane (15.5 mL, 130 mmol, 10 equiv) in one portion, the
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resulting mixture was heated at 55 ◦C overnight. The reaction mixture was quenched with
water (160 mL), extracted with ethyl acetate (3 × 80 mL) and concentrated in vacuo to
obtain a yellow oil as the crude product. The crude product was purified on silica gel
using ethyl acetate/hexane 4:6 as eluent to afford 2a (2.42 g, 8.40 mmol, 64%) as a white
solid. 1H-NMR (CDCl3, 400 MHz, 25 ◦C): δ 6.92 (m, 1H), 6.86 (m, 1H), 4.62 (m, 2 H), 4.05
(t, J = 6.3 Hz, 2H), 3.88 (s, 3H), 3.50 (t, J = 6.35 Hz, 2H), 2.07 (m, 2H), 2.00 (m, 2H); 13C-NMR
(CDCl3, 100 MHz, 25 ◦C): δ 149.5, 147.9, 134.0, 131.2, 119.9, 112.5, 110.5, 68.1, 65.2, 56.3, 33.5,
29.4, 27.8 ppm.

2,7,12-Tris-(2-bromobutoxy)-3,8,13-trimethoxy-10,15-dihydro-2H-tribenzo[a,d,g]cy
clononene (Armed CTV): Sc(OTf)3 (0.114 g, 0.231 mmol, 0.030 equiv) was added to a
solution of 2a (2.22 g, 7.70 mmol, 1.0 equiv.) in dry CH3CN (50 mL) under nitrogen atmo-
sphere and heated under reflux for 2 days. The solvent was removed in vacuo. The resulting
mixture was redissolved in ethyl acetate (100 mL) and washed with water (2 × 200 mL).
The combined organic layers were concentrated in vacuo to obtain a yellow oil as the crude
product. The crude product was purified on silica gel using ethyl acetate/hexane 1:4 as
eluent to afford the pure product as a white solid (983 mg, 1.21 mmol, 47%). 1H-NMR
(CDCl3, 400 MHz, 25 ◦C): δ 6.85 (m, 6H), 4.76 (d, J = 14 Hz, 3H), 4.03 (m, 2H), 3.84 (s, 9H),
3.55 (d, J = 14 Hz, 3H), 3.49 (td, J1 = 6.24 Hz, J2 = 2.36 Hz, 6H), 2.07 (q, J = 5.84, 6H), 1.96
(q, J = 5.84, 6H); 13C-NMR (CDCl3, 100 MHz, 25 ◦C): δ 148.4, 147.1, 132.4, 131.9, 115.5, 113.9,
68.4, 56.3, 36.5, 33.5, 29.4, 27.9 ppm; MALDI-TOF mass [M]+ calc. 810.0766, exp. 810.0761,
[M + Na]+ calc. 833.0658, exp. 833.0658.

Synthesis of cross-linked polymer (Cross-PEI-800). Branched PEI-800 (200 mg) was
dissolved in 8 mL of dry DMSO and injected by a syringe in a dry round bottom flask
containing Armed CTV (200 mg). The reaction solution was stirred at 75 ◦C for 5 days.
After cooling to room temperature, the solution was transferred to dialysis bag 1000 Da
Mw cut off, which was immersed in methanol for 24 h under magnetic stirring. During
this time the methanol solution was changed three times. The solution in the bag was
evaporated, and 228 mg of yellow gel was collected.

2.5. Spectroscopic Studies

UV spectra of doxorubicin, gatifloxacin, sinomenine, camptothecin, pure and mixed
with Cross-PEI-800.

An amount of 1 mg of drug was dissolved in 10 mL of water, and the reported
concentrations were obtained by sample dilution. The mixed solutions were prepared by
the addition of Cross-PEI-800 to the solution of pure drug.

2.5.1. UV Spectra of Celastrol

Celastrol (1 mg, 2.2 × 10−3 mmol) was dissolved in water (1 mL) under argon. This
solution (1 mL) was transferred into a UV cuvette under argon.

2.5.2. UV Spectra Celastrol with Addiction of Solution of Cross-PEI-800 (1%)

Celastrol (1 mg, 2.2 × 10−3 mmol) was dissolved in water (1 mL) under argon. This
solution was added with 100 µL of solution to 10 mg/mL of Cross-PEI-800 (1% in weight of
solution). An amount of 1 mL of this solution was transferred into a UV cuvette under argon.

3. Results
3.1. Synthesis and Characterization

The cross-linked polymer Cross-PEI-800 was prepared as shown in Scheme 1. Pre-
cursor 2a was obtained by reacting vanillyl alcohol with 1,4-dibromobutane, as reported
in the literature [18,66–68]. The oligomerization of compound 2a with scandium triflate
in CH3CN afforded Armed-CTV [18]. The PEI-800 was cross-linked with Armed-CTV in
DMSO overnight to obtain the highly water-soluble product Cross-PEI-800.
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Scheme 1. Synthesis of Cross-PEI-800 by cross-linking PEI-800 with Armed-CTV.

The 1H-NMR spectrum of Cross-PEI-800 in D2O exhibited three broad peaks around
8 ppm, 7 ppm and 1–4 ppm, which were assigned (based on the NMR signals of the
precursors) to the –NH2

+-, aromatic –CH- and non-aromatic protons (aliphatic, -NH-,
-OCHn-), respectively (Figure 2).

Figure 2. 1H-NMR spectrum and peak assignments of Cross-PEI-800 in D2O.

Cross-PEI-800 displayed UV-Vis spectra with absorption maxima at 286 and 328 nm,
while PEI-800 exhibited no absorption maxima (Figure 3a,b). Notably, Cross-PEI-800
exhibited a better absorption band at 328 nm in a more concentrated solution.
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Figure 3. UV-Vis spectra in water of Cross-PEI-800 at concentrations 7.8 × 10−5 M (a), 7.8 × 10−4 M
(b) and emission spectrum at concentration 1.5 × 10−4 M (c). The concentration refers to the moles of
monomers, whose molecular weight calculations are shown in the Supplementary Materials in the
appendix of Figure S5.

The irradiation of Cross-PEI-800 solution at 286 nm produced a sharp emission at
330 nm and a broad emission at 450 and 630 nm, while the irradiation at 328 nm produced
a broad emission at 450 nm (Figure 3c). Of note, the precursor Armed-CTV did not show
any signals because of its insolubility in water.

The cytotoxicity of Cross-PEI-800 was evaluated against the human normal cells (LO2
and HEK293) and human lung cancer cells (A549) using an MTT assay. Cross-PEI-800
showed higher IC50 values against A549 and HEK293 cells than against LO2 cells [65].

The optical properties and the cell viability values of Cross-PEI-800 are summarized
in Table 1.

Table 1. The spectroscopic and biological properties of Cross-PEI-800.

UV-Vis Frequency Maxima λ1 = 286 nm, λ2 = 328 nm

Emission frequency maxima (λ irradiation) 330 nm (λ1), 450 nm (λ2), 630 nm (λ1)
1H NMR chemical shifts 8.00 ppm, 6.82 ppm, 1–4 ppm

Cytotoxicity (µg/mL)
A549 cell line >500
LO2 cell line 59.314

HEK293 cell line 321.59

3.2. Drug Coordination Analysis
3.2.1. Doxorubicin (Hydrophilic Drug)

The 1H NMR spectra of DOX and the coordinating system (Cross-PEI-800) were
obtained in D2O, and their corresponding NMR signals were assigned as reported in the
literature (Figure 4a,b) [69]. After mixing Cross-PEI-800 with DOX in D2O, the aromatic
signals of the drug were broadened, and the aromatic signal of the polymer was shifted
upfield by ~0.2 ppm (Figure 4c), showing a weak π−π stacking interaction between the
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cross-linked polymer and DOX phenyl rings. The broadening and shifting of the 1′ proton
signal of DOX from 5.44 to 5.38 ppm were also observed (Figure 4c). After seven days, the
broadened proton signal at 5.38 ppm was further split into two peaks at 5.38 and 5.41 ppm
(Figure 4d). According to the NOESY spectrum, the peak at 5.41 ppm interacted with
the aliphatic protons of DOX, while the signal at 5.38 ppm did not show intramolecular
interactions except for the interaction with residual H2O (Figure 4e). Thus, the signal at
5.41 ppm corresponds to the 1′ proton of DOX, and the signal at 5.38 ppm corresponds to the
–OH linked to the aliphatic carbons of the drug molecule (Figure 4d). In the solution of pure
DOX, the –OH signal was not visible because of the proton exchange with D2O. Once the
polymer was added, the hydroxyl proton was shielded from the interactions with solvent
molecules and finally became detectable in 1H NMR spectrum. The 1H-NMR analysis (full
1HNMR spectra, Figures S6–S8 in the Supplementary Materials) unequivocally showed
the hydrophobic interactions between Cross-PEI-800 and DOX. In addition, the NOESY
spectrum also revealed that the aromatic signals of the cross-linked polymer and drug
molecules interacted with the signals at 3.8–4.1 ppm that correspond to –OMe and -OCH2-
signals (full NOESY spectrum, Figure S9, Supplementary Materials). This demonstrates
that the DOX located inside the hydrophobic environment of armed CTV is oriented with
the –OMe group pointing towards the aromatic rings of the CTV unit.

Figure 4. Cont.
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Figure 4. 1H-NMR spectra, range 4–9 ppm of (a) Doxorubicin, (b) Cross-PEI-800, (c) Cross-PEI-
800 + DOX, (d) Cross-PEI-800 + DOX after 7 days, and (e) NOESY spectrum of Cross-PEI-800 + DOX
after 7 days. The ppm full-range spectra shown in the Supplementary Materials (Figures S6–S9).

The UV-Vis spectrum of DOX after adding Cross-PEI-800 displayed absorption broad-
ening with a lowered absorbance (abs) maximum, while after adding PEI-800, it showed a
red shift of absorption (Figure S10 in the Supplementary Materials). The UV titration analy-
sis revealed that the coordination between Cross-PEI-800 and DOX followed stoichiometry
1:1, and the equilibrium constant of the complex was 107 (Figure S11 in the Supplementary
Materials). As shown in Figure 5 (red line), the irradiation of the DOX solution at 490 nm
exhibited a fluorescence maximum at 550 nm, whereas there was no absorption at 490 nm
or emission at 550 nm for Cross-PEI-800 (Figure 3). The addition of Cross-PEI-800 and
the irradiation at the same frequency (490 nm) showed two fluorescence maxima at 550
and 630 nm (blue dashed line, Figure 5). The irradiation at the absorption maxima of the
cross-linked polymer (286 and 328 nm) produced only the fluorescence maxima of the
polymer (Figure S12 in the Supplementary Materials).

Figure 5. Fluorescence spectra upon irradiation at 490 nm of DOX 5.7 × 10−6 M (red line) and DOX
5.7 × 10−6 M mixed with Cross-PEI-800 1.5 × 10−4 M (blue dashed line).
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Based on the fluorescence profile of Cross-PEI-800 incorporated with DOX, the excited
electrons of DOX are proposed to migrate to the LUMO orbital of Cross-PEI-800 and
subsequently generate the emission maximum of the cross-linked polymer at 630 nm.
Accordingly, this provides further evidence of the molecular interactions between DOX
and Cross-PEI-800.

3.2.2. Gatifloxacin (Hydrophilic Drug)

The NMR assignment of gatifloxacin in D2O was carried out as reported in the
literature [70]. The proton signal of –CH- linked to the secondary amine of gatifloxacine
was shifted from 4.12 ppm to 4.07 ppm after the addition of Cross-PEI-800 (Figure 6a,b, full
spectra shown in Figures S13–S15 in the Supplementary Materials). At the same time, the
proton signals of Cross-PEI-800 were overlapped with the –CH2- signals of the piperazine
moiety of gatifloxacine. In the NOESY spectrum, the signal at 4.07 ppm was found to
interact with the aromatic signals of Cross-PEI-800 (Figure 6c, full spectrum shown in
Figure S16 in the Supplementary Materials). NMR data clearly indicated the interaction of
the gatifloxacin’s piperazine ring with the CTV moiety of Cross-PEI-800.

Figure 6. (a) 1H NMR spectrum, D2O, 3–9 ppm, of gatifloxacine mixed with Cross-PEI-800, (b) 1H
NMR spectrum D2O, 3–9 ppm, of gatifloxacin, (c) NOESY spectrum in D2O, 2–9 ppm of gatifloxacine
mixed with Cross-PEI-800. The 1HNMR signal marked with * refers to the hydrogen linked to the
tertiary carbon of gatifloxacine piperazine group.
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After mixing gatifloxacin with the cross-linked polymer, the UV-Vis spectrum of
gatifloxacin remained unchanged (Figure S17 in the Supplementary Materials). Upon
irradiation at the absorption maxima (232, 286 and 330 nm), gatifloxacin produced a blue
emission at 430 nm. In the presence of Cross-PEI-800, this emission was also observed
upon irradiation at 286 and 330 nm. However, irradiation at 232 nm exhibited the emission
of the cross-linked polymer (Figure S18 in the Supplementary Materials). According to
the previous studies, the absorption of quinolone derivatives at 230 nm is attributed to
the fluorophenyl piperazine unit [71]. The irradiation at 230 nm in the presence of the
polymer illustrated the disappearance of the drug emission, showing the interaction of
fluorophenyl piperazine moiety with Cross-PEI-800 (Figure S18 in the Supplementary
Materials). Accordingly, NMR and UV analyses conclude that Cross-PEI-800, with gat-
ifloxacin, exhibits hydrophobic interaction between the piperazine substituent and the
proximity of the armed CTV.

3.2.3. Sinomenine (Hydrophilic Drug)

After the addition of Cross-PEI-800 to sinomenine in the D2O solution, the aromatic
proton signals of sinomenine were shifted upfield, and a new signal at 5.43 ppm was
observed. In accordance with the 1H NMR assignment of sinomenine in DMSO-d6 [72],
the new peak corresponds to the proton at position a (Figure 7, full spectra shown in
Figures S19–S21 in the Supplementary Materials) that was absent in the pure drug due to
deuterium exchange. Therefore, NMR data demonstrated that the cross-linked polymer
partially shielded sinomenine from the interactions with the solvent. Moreover, the upfield
shift of the aromatic proton signals proved the existence of π−π interactions between
sinomenine and Cross-PEI-800. The shifting of b signal and its NOE correlations with the
–OMe signal of polymer indicated the hydrophobic and p-p interaction between sinomenine
and armed CTV unit.

Figure 7. 1H-NMR spectrum in D2O, 5–7 ppm of (a) pure sinomenine and (b) sinomenine
mixed with Cross-PEI-800. The full-range 1H-NMR and NOESY spectra were provided in the
Supplementary Materials.

Besides, the UV-Vis spectrum of sinomenine showed an absorption band at 264 nm,
and its intensity was enhanced after treatment with Cross-PEI-800 (Figure S22a). Similar to
other drug molecules, the emission spectra can also identify the associated intermolecular
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interactions. The irradiation of sinomenine at 264 nm (abs maximum) showed no emission.
Upon treatment with Cross-PEI-800, the emission maxima of the cross-linked polymer
(320 and 630 nm upon irradiation at 286 nm) along with an additional maximum at 430 nm
were found (Figure S22b). Irradiations of the mixture at 286 and 324 nm generated the
same absorption maxima as pure Cross-PEI-800 (Figure S22c,d).

3.2.4. Camptothecin (Hydrophobic Drug)

Camptothecin in D2O alone did not exhibit any NMR signals. In the presence of
a large amount of Cross-PEI-800, some proton peaks of camptothecin were found and
assigned as a, b and c (Figure 8b) based on the reported NMR assignments of camptothecin
in DMSO-d6, Trifluoroacetic acid-d and modified camptothecin inD2O solutions [73–75].
By reducing the amount of Cross-PEI-800, the aromatic proton signals of camptothecin
became overlapped with those of the cross-linked polymer, and they were assigned as d in
Figure 8c (enlarged spectra shown in Figures S23–S25).

Figure 8. (a) 1H-NMR in D2O spectrum of Cross-PEI-800 range 0–9 ppm, (b) 1H-NMR spectrum in
D2O of camptothecin (5 mg) in the presence of Cross-PEI-800 (5 mg), range 0–9 ppm, (c) 1H-NMR
spectrum in D2O of camptothecin (7 mg) in the presence of Cross-PEI-800 (2 mg), range 0–9 ppm.

Regarding the NOESY spectrum of camptothecin in the presence of the cross-linked
polymer, the aromatic signal at 7.15 ppm interacted with the –OMe signals at 3.82 ppm
of Cross-PEI-800 (Figure S26 in the Supplementary Materials). On the other hand, camp-
tothecin in H2O exhibited weak UV absorption, which increased the intensity after the
addition of Cross-PEI-800 (Figure S27 in the Supplementary Materials). When switching
to PEI-800, the intensity also increased with a red shift. These results further prove the
drug’s tendency to coordinate the hydrophobic armed CTV unit of Cross-PEI-800. Pure
camptothecin upon irradiation generated emission at 430 nm that was also visible in the
presence of Cross-PEI-800 (Figure S28 in the Supplementary Materials). The titration exper-
iments of the drug with the polymer revealed that two units of armed CTV were involved
in the coordination with camptothecin (Figure S29 in the Supplementary Materials).
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3.2.5. Celastrol (Hydrophobic Drug)

In the D2O solution, no proton signal of pure celastrol was observed, whereas only
the polymer’s signals were found after adding Cross-PEI-800, owing to the overlapping
by intense proton signals of the polymer (Figures S30–32 in the Supplementary Materials).
In the solution with fewer polymers, there was a very weak additional signal at 7.15 ppm,
similar to the case of camptothecin. This was due to the poor water solubility of the
drug. This signal was more distinguishable in the NOESY spectrum (Figure S33 in the
Supplementary Materials).

Other studies have reported that the UV-Visible spectroscopy method was employed
for the reversibility studies of celastrol [76]. The spectra of celastrol in phosphate-buffered
saline (pH 7.4) were reported to exhibit a peak at 440 nm [77]. Further studies revealed
that quinone methide rapidly reacted with thiol groups under physiological conditions
and subsequently caused a decrease in the UV-Visible absorption, indicating the formation
of covalent adducts.

In our experiments, the UV-Vis absorption spectrum of celastrol in water only dis-
played a weak absorption at 280 nm (Figure 9a). The addition of 1% (in weight) of
Cross-PEI-800 formed a new absorption band at 435 nm and resulted in a color change in
the solution (Figure 9a,b, as detailed by the UV-Vis analysis shown in Figure S34 in the
Supplementary Materials).

Figure 9. (a) UV-Vis spectrum of pure celastrol, pure Cross-PEI-800, celastrol mixed with Cross-PEI-800 (1% of cross-linked
polymer), (b) Chromatic solution variation after addition of polymer to celastrol.

In addition, the irradiation of the mixture at 435 nm displayed the emission peaks
of Cross-PEI-800. In other words, the new absorption at 435 nm cannot be ascribed to a
modification of celastrol but to a complex formation between the drug and the cross-linked
polymer (Figure S35 in the Supplementary Materials).

Subsequently, titration experiments found that the coordination between celastrol
and Cross-PEI-800 was stoichiometric, in a ratio of 1:1 (Figure S36 in the Supplementary
Materials). The drug solubility in water increased 100 times after adding 1% of Cross-
PEI-800; more importantly, the solubility further increased after 10 days (Figure S37 in
the Supplementary Materials). Furthermore, the absorption band of the mixture was
shifted from 435 to 360 nm after 10 days, as shown in the UV-Vis spectra (Figure S38
in the Supplementary Materials). This absorption change was postulated to involve a
change of interactions between celastrol and Cross-PEI-800. The absorption of the drug-
polymer mixture at 435 nm (blue line, Figure 9) was similar to that of celastrol in phosphate
buffer at pH 7. This suggested a similar interaction due to the buffering power of the
polyethylenimine group. Meanwhile, the blue shift of the absorption band after 10 days is
attributed to a hydrophobic or π−π stacking interaction.
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3.3. Guest Molecule Releasing Preliminary Analysis

To understand the capability of releasing the guest molecule from the hosting system,
DOX (hydrophilic) and celastrol (hydrophobic), which interacted with Cross-PEI-800, were
subjected to a pH change using NH4Cl. With the addition of NH4Cl to the solutions, the pH
of the solution was maintained at 7, and the recovery of DOX absorption was found except
for celastrol (Figure S39 in the Supplementary Materials). The results suggested that the
DOX can be easily released from Cross-PEI-800 under an acidic intracellular environment.
In the case of celastrol, the releasing process requires different conditions, for example, the
addition of a competitive guest compound.

4. Discussion

The 1H-NMR spectrum of Cross-PEI-800 in D2O revealed that the PEI moiety assisted
in the water dissolution of the hydrophobic armed CTV functional group. In the 1H-NMR
spectrum of Cross-PEI-800 (Figure 2), the assignment of all proton signals of armed CTV
unit can be achieved by comparison with the spectrum of Armed-CTV in CDCl3 (Figure S3
in the Supplementary Materials). The same information was obtained by comparing the UV
spectra of Armed-CTV (spectrum in MeOH, Figure S40 in the Supplementary Materials)
with Cross-PEI-800 (Figure 3). The two compounds displayed the same absorption band
at ~290 nm with similar coefficients. The irradiation at this frequency exhibited emission
(dashed line, Figure 4c), and this indicated that the CTV unit generated the emission.

The 1H-NMR and NOESY spectra showed that the aromatic groups of DOX, sinome-
nine and camptothecin, interacted with the armed CTV unit, respectively. On the contrary,
the piperazine group of gatifloxacin was involved in the major interaction with the cross-
linked polymer. Furthermore, the interaction of celastrol was detectable from UV-Vis
spectra, where the coordination involves the amino and CTV groups of Cross-PEI-800 and
the heteroatoms of the drug.

The emission spectra analysis further proves the drug-CTV unit interaction. Irradia-
tion of the solution mixtures at the drugs’ absorption maxima, the photoluminescence (PL)
spectra generated the emission of the cross-linked polymer upon irradiation at 290 nm.

Finally, the addition of NH4Cl to the DOX-Cross-PEI-800 conjugate induced the
recovery of the drug’s UV-absorption, owing to the detachment of the drug from the cross-
linked polymer by acidic proton. This shows that Cross-PEI-800 is a viable and potential
platform for drug delivery.

5. Conclusions

A full-organic, water-soluble material, Cross-PEI-800, was prepared by combining
two molecular units (CTV and PEI-800) often used in supramolecular chemistry that exhibit
different coordinating features. CTV is a concave macrocycle that interacts with guest
molecules through Van der Waals, π-π stacking and hydrophobic interactions. PEI-800 is a
polyethylenimine that is highly soluble in water and coordinates other molecules through
hydrogen bonding or electrostatic interactions. Cross-PEI-800 consists of a water-soluble
gel that contains hydrophobic holes with a high coordinating power towards organic
molecules. This material has been demonstrated to encapsulate molecules with different
characteristics via various interaction modalities.

Owing to the water solubility and optical properties of the prepared coordinating
systems, various spectroscopic methods were employed to examine the host–guest com-
plexes in water under normal conditions. Of note, other research groups also reported
coordinating materials, including synthetic organic macrocycles that coordinate drugs in
organic solvents and subcritical water [78,79], and the assembly of an organic macrocycle
and inorganic nanoparticle that coordinates drugs in water [80].

The synthesized system was found to coordinate both hydrophilic and hydropho-
bic molecules. Both CTV and PEI-800 moieties were involved in all drugs’ coordination.
The results show that the armed CTV unit works as a hole trap for small aromatic or-
ganic molecules. Only celastrol exhibited different coordination induced by the buffering
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power of the polyethyleneimine unit. The main feature of Cross-PEI-800 consists of its
complexity or multifunctionality, which contributes to various physical properties and
coordinating modalities.

In this work, the molecular structure and the coordinating capability of Cross-PEI-800
were examined. Cross-PEI-800 not only showed its capability to coordinate the drugs in
water but also exhibited relatively low cytotoxicity. Two drug molecules, DOX and celastrol,
were selected for the preliminary analysis of the drug-releasing capability of Cross-PEI-800
using ammonium chloride. The material has shown its capability to slowly release DOX
under a simulated intracellular acidic environment, possibly due to the contribution of H+

ions to the separation of the guest–host complex.
The presented data demonstrate that the system, along with some modifications,

merits further studies about the drug-delivery capability. An in-depth study on the delivery
selectivity of Cross-PEI-800 would be needed. The presented study could be of interest to
medical applications. Due to the capability of PEI-800 in coordinating nucleic acids, the
prepared material Cross-PEI-800 could find application as a gene-drug co-delivery system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13234133/s1, Figure S1: 1H-NMR spectrum compound 1a. Figure S2: 13C-NMR
spectrum compound 1a. Figure S3: 1H-NMR second reaction. Figure S4: 13C-NMR second reaction.
Figure S5: 1H-NMR spectrum CossPEI-800, Evaluation of monomer weight from the integration
of the NMR signals. Figure S6: 1H-NMR spectrum in D2O of Cross-PEI-800 mixed with doxoru-
bicin. Figure S7: 1H-NMR spectrum in D2O of Cross-PEI-800 mixed with doxorubicin after 1 week.
Figure S8: 1H-NMR spectrum in D2O of doxorubicin with peak assignment. Figure S9: NOESY spec-
trum of doxorubicin mixed with Cross-PEI-800. Figure S10: UV-Vis spectra of doxorubicin (DOX),
PEI-800, Cross-PEI-800 in pure form and in mixed solutions. Figure S11: Titration of doxorubicin
(DOX) with Cross-PEI-800. Figure S12: Fluorescence spectra of the doxorubicin mixed with Cross-PEI
800. Figure S13: 1H-NMR spectrum of Gatifloxacin. Figure S14: 1H-NMR spectrum of Cross-PEI-
800 mixed with Gatifloxacin (5 mg + 5 mg). Figure S15: Comparation between 1H-NMR spectra
of gatifloxacine, Cross-PEI-800, gatifloxacine + Cross-PEI-800. Figure S16: NOESY spectrum of
Gatifloxacin mixed with Cross-PEI-800. Figure S17: UV-Vis spectra of Gatifloxacin with and without
crosslinked polymer. Figure S18: Fluorescence spectra of gatifloxacine and gatifloxacine mixed with
Cross-PEI-800. Figure S19: 1H-NMR spectrum in D2O of sinomenine. Figure S20: 1H-NMR spectrum
of sinomenine in the presence of Cross-PEI-800 (5mg + 5mg). Figure S21: NOESY spectrum of sinome-
nine in the presence of Cross-PEI-800 (5mg + 5mg). Figure S22: UV-Vis and emission spectra of SIN
pure and in the presence of Cross-PEI-800. Figure S23: 1H-NMR spectrum of Camptothecine in the
presence of Cross-PEI-800. Figure S24: 1H-NMR spectrum of Camptothecine in the presence of Cross-
PEI-800 enlarged. Figure S25: 1H-NMR spectrum of Camptothecine in the presence of Cross-PEI-800.
Figure S26: NOESY spectrum of Camptothecine in the presence of Cross-PEI-800. Figure S27: UV-Vis
spectra of Camptothecin pure and in the presence of Cross-PEI-800, PEI-800. Figure S28: Emission
spectra of Camptothecin. Figure S29: Titration of Camptothecin with Cross-PEI-800. Figure S30: 1H-
NMR spectra of Cross-PEI-800 and celastrol in the presence of Cross-PEI-800. Figure S31: 1H-NMR
spectrum of celastrol in the presence of Cross-PEI-800. Figure S32: 1H-NMR of celastrol in the pres-
ence of Cross-PEI-800 (second dosage of polymer). Figure S33: NOESY spectrum of celastrol in the
presence of Cross-PEI-800. Figure S34: UV-Vis spectra of celastrol solution, pure and in the presence
of Polymer Cross-PEI-800. Figure S35: Emission spectra of celastrol pure and in the presence of Cross-
PEI-800, PEI-800. Figure S36: UV-Vis titration of celastrol with Cross-PEI-800, PEI-800. Figure S37:
Water solubility measures of celastrol pure and in the presence of Cross-PEI-800. Figure S38: UV-Vis
spectra of celastrol mixed with Cross-PEI-800 after 10 days. Figure S39: UV-Vis spectra of doxorubicin
and celastrol in the presence of Cross-PEI-800 and addition of NH4Cl. Figure S40: UV-Vis spectrum
of Armed-CTV in methanol. Table S1: Cytotoxicity of polymer Cross-PEI-800 against normal and
cancer cell lines.
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