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Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by
mutations in the GBA1 gene, which produces the glucocerebrosidase (GCase) protein.
There are more than 500mutations reported inGBA1, among which L444P (p.Leu444Pro)
and F213I (p.Phe213Ile) are the most common in the Chinese population, while the
function of F213I mutation remains elusive. This study aims to establish the GD mouse
model of partially humanized Gba1 gene with F213I mutation. In vitro GCase activity
assays showed that the product of partially humanized Gba1 gene, in which the mouse
exons 5-7 were replace by the corresponding human exons, displayed similar activity with
the wild-type mouse Gba1, while the F213I mutation in the humanized Gba1 led to
significant decrease in enzyme activity. ES cell targeting was used to establish the mice
expressing the partially humanized Gba1-F213I. Gba1F213I/+ mice did not show obviously
abnormal phenotypes, but homozygous Gba1F213I/F213I mice died within 24 h after birth,
whose epidermal stratum corneum were abnormal from the wild-type. The GCase activity
in Gba1F213I/F213I mice greatly decreased. In conclusion, our results showed that the
partially humanized GD mouse model with the F213I mutation was developed and
homozygous F213I mutation is lethal for newborn mice.
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INTRODUCTION

Gaucher disease (GD) is one of the most common lysosomal storage diseases. GD is an autosomal
recessive hereditary disease caused by mutations in the gene encoding β- Glucocerebrosidase
(GBA1). Due to the deficiency of glucocerebrosidase (GCase) activity, glucosylceramide (GlcCer)
accumulates in the lysosomes and is metabolized to produce glucosylsphingosine, sphingosine and
then sphingosine-1-phosphate (S1P) (Stirnemann et al., 2017). GD is characterized by enlargement
of liver and spleen, lesions in the bones, and, in the most severe cases, neuropathology accompanied
by neuroinflammation (Dasgupta et al., 2015; Do et al., 2019; Oguri et al., 2020). According to the
impairment of central nervous system function, there are three GD types (Carubbi et al., 2020).
Gaucher disease type 1 (GD1) was regarded as the mildest form without obvious neurologic
involvement at an early stage, but some GD1 patients developed Parkinson disease phenotype at
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older age (Kartha et al., 2020). Type 2 is the most severe form and
appears as an early onset of neurologic disease with an acute
course. Type 3 disease is of intermediate severity with a later onset
of neurologic symptoms and a more chronic course (Kartha et al.,
2020).

GBA1 is located in human chromosome 1q21-22, 7.2 kb long,
composed of 11 exons and 10 introns. More than 500 types of
mutations linked to GD have been found in GBA1, including
splice site mutation, point mutation, coding frameshift mutation,
insertion or deletion mutation (Milenkovic et al., 2022). The
clinical features of GD are dictated to a large extent by mutation
patterns carried in the GBA1 gene. In China, the most common
mutations in GBA1 include L444P (p.Leu444Pro, 33.00%), F213I
(p.Phe213Ile, 5.33%) and N188S (p.Asn188Ser, 5.33%) (Zhang
et al., 2009). F213I mutation, the A-to-T transversion at nt 754 in
exon 6 (NM_000157.4: c.754T > A), is also named F252I
(p.Phe252Ile) according to the new nomenclature and is the
second common point mutant GBA1 allele in Chinese GD
patients (He et al., 1992; Zhang et al., 2009; Oto et al., 2021).
The F213I mutation was found in all three types of GD, and
F213I-associated types 2 GD and type 3 GD were more prevalent
in Asian populations (Koprivica et al., 2000; Tajima et al., 2009;
Zhang et al., 2009; Vieira and Schapira, 2021).

Mouse models are widely used in GD research. Several mouse
models with common Gba1 mutations in GD patients have been
established, such as L444P mice, D409V and N370S mice (Liu
et al., 1998; Xu et al., 2003; Jackson et al., 2019; Liou et al., 2019;
Migdalska-Richards et al., 2020). However, up to date, there have
been no investigation on the F213I mutation in mice.
Furthermore, researches on conserved genes have shown that
human-mouse chimeric gene can function normally and, based
on this finding, exons of mouse genes could be replaced by human
counterparts to generate partially humanized mouse model,
which will be suitable to detect effectiveness of human
genome-editing therapeutic methods in vivo in mice (Dong
et al., 2012; Takeuchi et al., 2019; Guo et al., 2021). In this
study, a GD mouse model with partially humanized F213I Gba1
was established.

MATERIALS AND METHODS

Mice and Genotyping
The Institutional Animal Care and Use Committee of Fudan
University, China approved all protocols. Mice with partially
humanizedGba1 F213I allele (mhGba1-F213I) were generated by
using the ES-cell-based gene targeting technology at Shanghai
Model Organisms Center in Shanghai, China. Briefly, the ES cell
targeting vector was constructed by fusions, containing 3.0 kb 5′
homologous arm, hGBA1 exon 5-7 with F213I mutation, PGK-
Neo-poly A, 3.0 kb 3′ homologous arm and MC1-TK-polyA, a
negative screening marker. The vector was linearized and
transferred into JM8A3 ES cell by electroporation. After PCR
identification, the positive ES cell clones were amplified and
injected into the blastocysts of C57BL/6J mice to obtain
chimeric mice. The Neo-removed Gba1+/F213I mice were
obtained by mating chimeric mice with mice with Flp gene. In

this way, the exon 5-7 site of the mouse Gba1 gene was replaced
by the human GBA1 exon 5–7. The genotype of each mouse was
determined by PCR analysis of genomic DNA prepared from tail
biopsies. PCR was performed by using the forward primer
mGba1-F and the reverse primer mGba1-T for wild type or
the forward primer hGBA1-F and the reverse primer hGBA1-T
for mutants. The 5′ homology arm and the 3′ homology arm were
amplified for sequencing. Sequencing was performed by the
Tsingke Biotechnology Co., Ltd. in China. Primer mGba1-5F
and hGBA1-5T were designed for 5′ homology arm, while
hGBA1-3F and mGba1-3T were designed for 3’ homology
arm. The primers are listed in Supplementary Table S1.

mRNA Extraction and qRT-PCR
Total RNA was extracted from tissues using TRIzol reagent
(Thermo Fisher) according to the manufacturer’s protocol.
RNA degradation and contamination were assessed on 1%
agarose gels, and the RNA concentration was measured by
using a NanoDrop 1,000 spectrophotometer (Thermo
Scientific). cDNA was synthesized by using the Hifair III 1st
Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus;
Yeasen), and the integrity of the synthesized cDNA was
confirmed by using glyceraldehyde 3-phosphate dehydrogenase
(Gapdh) as the endogenous control. Real-time PCR was carried
out using SYBR Premix Ex Taq TM II (Perfect Real Time;
TaKaRa) and measured by using an ABI 7500 instrument.
qRT-PCR was performed by using the forward primer
mGapdh-RF and the reverse primer mGapdh-RT for Gapdh or
the forward primer mGba1-RF and the reverse primer mGba1-
RT for Gba1. The primers are listed in Supplementary Table S1.
PCR was performed as reported by Zhang et al. (Zhang et al.,
2019).

GCase Expression in vitro
Crispr/Cas9 system was used to reduce the interference of the
endogenous GCase activity, as we performed previously (Abbasi
et al., 2020). Briefly, HEK293 cells were infected with lentivirus
expressing CAS9 protein and sgRNA ofGBA1. Infected cells were
pooled by using puromycin selection (1ug/ml), and after 7 days,
the cells were conducted for other assays. Partially humanized
cDNA was constructed by Tsingke Biotechnology Co., Ltd. Single
mutagenesis was inserted by overlapping PCR. Wild type mouse
cDNA was synthesized by taking mRNA from wild type mice as
template. The sequences are listed in Supplementary Table S2.
All types of cDNA were subcloned into the PCDH- immediate
early enhancer and promoter (CMV)-HA plasmid. Plasmids were
transferred into HEK293 cells whoseGBA1was knocked down by
CRISPR-Cas9. Cells were harvested for following GCase activity
assays and western blotting forty-eight hours after the transient
transformation.

GCase Enzyme Activity Assay
The GCase enzyme activity assay on the homogenate samples
including sample preparation was performed according to the
manufacturer’s instructions of Glucosylceramidase Activity
Assay Kit (Fluorometric; BioVision). Fluorescence intensity
(Ex/Em = 360/445 nm) was detected in a Multimode Plate
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Reader (PerkinElmer, EnSpire). During the measurement, blank
controls without GCase were set to remove background value.
According to the manufacturer’s instructions, specific sample
Gucosylceramidase activity = B/(30 × V × P) × D = pmol/min. mg
≡ µU/mg, where B is 4-MU amount from the standard curve
(pmol), 30 is the reaction time (min), V is sample volume added
into the reaction well (ml), P is initial sample concentration in
mg-protein/ml (mg/ml), D is sample dilution factor. One unit of
Glucosylceramidase activity is the amount of enzyme that
generates 1.0 µmol of 4-Methylumbelliferone per min at pH 4.
5 at 37°C. The weight of each mouse tissue has been carefully
weighed, and the relative quantity of GCase per mg tissue was
calculated, respectively.

Western Blot Analysis
Protein extracts from cells were prepared using a lysis buffer
(200 mM Tris-HCl [pH 7.5], 1.5 M NaCl, 10 mM EDTA, 10 mM
EGTA, 25 mM sodium pyrophosphate, 10 mM β-
glycerophosphate, 1 mM Na3VO4, 50 mM NaF) supplied with
a protease inhibitor cocktail (Roche Diagnostics). Protein
samples of 20 ug each sample were separated on a 10%
polyacrylamide gel and analyzed by Western blot using anti-
HA (Proteintech, 51064-2-AP, 1:3,000) and anti-Gapdh
(Proteintech, 10494-1-AP, 1:1,000) antibodies. Peroxidase-
conjugated rabbit immunoglobulin G (IgG; Jackson
ImmunoResearch, 1:2,500) was used as the secondary
antibody. Western blots were developed using ImmobilonTM
Western Chemiluminescent HRP Substrate (Merck Millipore),
and analysis was performed with a Luminescent Image Analyzer
(GE, ImageQuant LAS 4000 mini). The results were quantified by
using the ImageJ software.

Histological Analysis
Tissues were immersion fixed with 4% neutral-buffered
paraformaldehyde, embedded tissues in paraffin blocks and
prepared 5 µm sections. Sections of the different tissues were
stained with hematoxylin and eosin as reported previously (Xiao
et al., 2017; Du et al., 2019). Sections of skin were also stained with
period acid-Schiff as reported (Sun et al., 2020).

Statistical Analysis
Statistical significance was assessed using Student’s t-test, as
reported in the figure legends. The results were significant at p
values under 0.05. All statistical tests were performed using Prism
software (GraphPad, version 8.0).

RESULTS

F213I Point Mutation in Partially Humanized
GBA1 Gene Led to Decreased GCase
Activity
The GBA1 gene is highly conserved in mice and humans. Both of
them have 11 exons and exonsmatched one-to-one (had the same
boundaries in both genomes), and matching encoding exons are
highly similar (84% sequence identity). F213I, the second popular

point mutant GBA1 allele in Chinese GD patients, lies in the exon
6 of human and mouse GBA1 genes. In order to establish the GD
mouse model with partially humanized Gba1 gene carrying F213I
mutation, we planned to replace mouse Gba1 exons 5-7 with
human exons 5-7 carrying the F213I (Figure 1A). First, we
detected the effects of the partial humanization on the activity
of GCase. In order to exclude the interference of the endogenous
GCase activity, the GBA1 gene of human HEK293 cells was
knocked down by using Crispr/Cas9 system (Figure 1B). The
GBA1-knocked downHEK293 cells were transfected, respectively
with the plasmids expressing mouse Gba1 (mGba1), partially
humanized Gba1 (mhGba1) and mhGba1 with F213I (mhGba1-
F213I). GCase activity assays showed that there was no significant
difference in GCase activity between mGba1 and mhGba1 while
the activity of mhGba1-F213I was greatly reduced (Figure 1C).
Western botting was carried out to detect the expression of the
different types of HA-tagged GCase (Figure 1D). Considering the
relative values of GCase activity to protein amount, the activity of
the mhGba-F213I protein production was about 19% of the
mGBA, while the activity of. mhGBA was similar to the mGba.

Establishment of GD Mouse Model With
Partially Humanized Gba1 Gene and F213I
Point Mutation
By using gene targeting technology, the mouse Gba1 genomic
DNA fragment containing exons 5 to 7 were substituted by the
human counterparts carrying the F213I mutation. The upstream
and downstream recombination boundaries were validated by
DNA sequencing, revealing that the mouse Gba1 DNA fragment
from exon 5 to 7 was correctly replaced with the humanized
fragment (Figure 2A). Genomic PCR was used for genotyping
(Figure 2B).Gba1+/F213I mice were obtained by crossing chimeric
mice with wild-type mice and displayed no obvious abnormality.
Up to now, we have not observed the symptoms of Parkinson
disease in 6-month-old F213I heterozygotes. A lifespan
observation of the F213I mice may be needed in future research.

Early Postnatal Lethality in Mice With the
Homozygous F213I Mutation
Genotype and survival statistics on offspring of Gba1+/F213I mice
were collected (Figure 3A). Homozygous mhGba1-F213I mutant
mice were severely affected with small body size and turgor, red,
and wrinkled appearance (Figure 3B). Sprinkling water to
increase the humidity of the cage can prolong their survival
time, and H&E staining of brain, liver and skin showed that no
obvious Gaucher cells were found in available living
Gba1F213I/F213I mice at P0, which was similar to the L444P
mice (Liu et al., 1998). In the skin of Gba1F213I/F213I mice and
inbred controls, all the four layers—basal (stratum basal), spinous
(stratum spinosum), granular (stratum granulosum), and
cornified (stratum corneum)—were identified in the epidermis.
The Gba1F213I/F213I cornified layer appeared abnormal
organization. Compared with wildtype littermate controls, the
stratum corneum of newborn Gba1F213I/F213I mice was more
compact between layers and more basophilic (Figure 3C). The
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Periodic Acid–Schiff (PAS) carbohydrate stain is a method that can
detect glycolipids accumulation including glucosylceramide (Bogoeva
and Petrusevska, 2001; Farfel-Becker et al., 2014), and the result
showed that PAS-positive granules in the granular and spinous
layers were more prominent in Gba1F213I/F213I mice (Figure 3D).

GCase Activity Decreased in F213I Mutation
Mice
cDNA from Gba1F213I/F213I mice was sequenced to confirm the
correct splicing of the partially humanized Gba1 mRNA, as
designed (Figure 4A). Gba1 mRNA expression in E17 whole
embryos was measured by using quantitative reverse-
transcription polymerase chain reaction (qRT-PCR), and the
results showed that the expression of Gba1 transcripts had no
significant difference between Gba1F213I/F213I mice and wild type
mice (Figure 4B). A large reduction in GCase activity was found
in extracts from skin, liver and brain from Gba1F213I/F213I mice.
Activity in the F213I mouse tissues was about 20% of normal
controls, consistent with the values of clinic GD patients carrying
the F213I mutation (Figure 4C).

DISCUSSION

GD is a common lysosomal storage disease in humans. It is
caused by mutations in the gene (GBA1) coding for GCase, which
lead to the accumulation of glucosylceramide in lysosomes
(Stirnemann et al., 2017). There are nearly 500 types of allele
variants reported in GBA1. Due to the distribution and diversity
of human genetic variation, the frequency of each mutant allele
varies. Several genetically modified GD mouse models have been
established. The first GCase-deficient mouse was created by
insertion of a neomycin resistance gene into Gba1 gene, and
died shortly after birth (Tybulewicz et al., 1992). Inducible Gba1
deletion mouse models, in which the exons 9–11 are flanked by
LoxP sites, was generated in 2006 (Enquist et al., 2006; Du et al.,
2019). To simulate the gene mutation of GD patients, some Gba1
point mutation GDmouse models were developed, such as L444P
mice, D409V mice, and RecNciI (L444p and A456P double
mutation) mice (Strasberg et al., 1994; Liu et al., 1998; Weber
et al., 2021). F213I allele is the second high-frequency point
mutation ofGBA1 gene in Chinese GD patients. So far, there have
been few studies and no animal model on this allele. Therefore, to

FIGURE 1 | F213I point mutation in partially humanizedGba1 gene led to decreased GCase activity in vitro. (A) Structures of the mhGba1-WT and mhGba1-F213I
expression plasmids. Exons 5-7 of mouse Gba1 cDNA are replaced by exons 5-7 of human GBA1. F213I mutation was introduced into the partially humanized Gba1
cDNA. Black bars represent mouse Gba1 coding exons. Grey bars represent Gba1 uncoding exons. Lines between bars represent introns. Yellow bars represent
human GBA1 coding exons, and red asterisk represents F213I mutation site. (B) GCase activity was detected in the Crispr/Cas9-mediated GBA1-knockdown
human HEK293 cells, using normal human HEK293 cells as control. To reduce interference of the endogenous GCase activity, the human HEK293 cells were infected
with lentivirus expressing CAS9 protein and sgRNA ofGBA1, pooled by using puromycin selection (1 ug/ml) for 7 days and were collected for the GCase activity assays.
The results were expressed as the mean—SEM and difference between groups was analyzed by Student’s t-test, ***p < 0.001. (C) The endogenous GBA1-knocked
down human HEK293 cells were transfected respectively with the mhGba1-WT, mhGba1-F213I and mGba1-WT expression plasmids, and collected for GCase activity
assays 48 h after transfection. The results were expressed as the mean—SEM and differences between every two group were analyzed by Student’s t-test, *p < 0.05,
**p < 0.01. (D)Western blot was used to detect the expression of the different types of HA-tagged GCase, with Gapdh as an internal reference. Results were quantified
with the ImageJ software, and the relative expression values were labelled, taking the mGba1 as 100%.
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investigate the function of F213I allele and develop a model for
future therapy by gene editing, we constructed a GD mouse
model with partially humanized Gba1 F213I allele.

Previous studies showed that it was feasible for conserved
genes to exchange corresponding conserved exons to generate
human-mouse chimeric gene without affecting the gene function.
GBA1 gene is highly conserved in human and mouse. In this
research, the mouse Gba1 exon 5-7 was replaced by the human
counterparts to generate the human-mouse chimeric Gba1 gene
(mhGba1) and in vitro GCase assays showed that the partial
humanization had little effect on the activity of GCase, while the
F213I mutation in mhGba1 (mhGba1-F213I) greatly reduced the
activity. To generate the mhGba1-F213I mice, the mouse
genomic fragment containing exons 5-7 were replaced by
human corresponding region carrying F213I mutation, and the
correctly spliced mature mRNA of mhGba1-F213I was generated.
GCase activity assay revealed that the GCase activity decreased in

both central and peripheral tissues of Gba1F213I/F213I mice.
However, like the previously reported Gba1 point mutation
mice, homozygous Gba1F213I/F213I mice died within 24 h after
birth (Liu et al., 1998). So far, GD patients homozygous for N370S
(p.Asn370Ser) or L444Pmutations have been reported, and F213I
was only found in compound heterozygote forms with N370S or
L444P, but skin abnormalities were not diagnosed in these GD
patients (Koprivica et al., 2000; Choy et al., 2007). Our results
showed that the F213I homozygotes died within 24 h of birth and
had red, wrinkled, dry skin that was indicative of disruption of the
skin permeability barrier, resembling the phenotypes of mice
homozygous for Gba1 knockout, L444P or N370S mutation
(Tybulewicz et al., 1992; Liu et al., 1998; Xu et al., 2003).
Saposin C enhances GCase activity and protects GCase from
intracellular proteolysis, Gba1D409V/D409V:Saposin Cnull/null mice
also displayed similar skin phenotypes (Liou et al., 2019). As
explained by Liu, Y., epidermal abnormalities were not observed

FIGURE 2 | The construction of the mhGba1-F213I mice. (A) A general scheme of the genome of wild type mice and mhGba1-F213I mice. Black bars represent
mouse Gba1 coding exons. Grey bars represent Gba1 uncoding exons. Yellow bars represent human GBA1 coding exons, and red asterisk represents mutation site.
The WT allele of Gba1 was measured by using the mGba1-F primer with the reverse mGba1-T primer. The mhGba-F213I allele was measured by using the hGBA1-F
primer with the reverse hGBA1-T primer. Recombination sites were amplified by PCR and sequenced to confirm the homologous substitution. Primer mGba1-5F
and hGBA1-5T were used for upstream recombination boundary sequencing. Primer hGBA1-3F and mGba1-3T were used for downstream recombination boundary
sequencing. (B) PCR analysis of DNA extracted from tails of Gba1 (+/+) mice, Gba1 (F213I/+) mice and Gba1 (F213I/F213I) mice for genotype identification.
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in Gaucher patients, which may arise from the differences in skin
barrier formation during fetal development (Liu et al., 1998). In
rodents a competent skin permeability barrier forms very late in
gestation 1–2 days before birth, while the permeability barrier
normally forms well before birth at between 30 and 34 weeks of
gestation in human, which provides enough time for residual
GCase mediated conversion of glucosylceramide to ceramide
during this period to produce a competent barrier (Holleran
et al., 1994; Kalia et al., 1998; Doering et al., 2002). However, the
residual level of GCase activity in F213I mice may be insufficient
to completely process the epidermal glucosylceramide in this
short time period during gestation. Infants with less residual level
of GCase activity have been described to have a severe skin
phenotype (Sidransky et al., 1996). Another factor contributing to
the glucosylceramide storage in epidermis but not in brain and

liver in the F213I mouse could be related to biochemical
differences of the glucosylceramides found in different tissues
(Liu et al., 1998), for example skin contains glucosylceramides
with additional hydroxyl groups and with very long chain fatty
acids, in addition to common types of glucosylceramides like
those found in brain and liver (Wertz, 1992). The F213I mutation
may render the GCase enzyme less active against the
hydroxylated glucosylceramides with long chain fatty acids
than against the common types of glucosylceramides, resulting
in storage restricted to epidermis.

Enzyme replacement therapy (ERT) and substrate reducing
therapy (SRT) are used as clinical therapeutic methods, and AAV-
mediated gene addition has been investigated by other researchers
and our team (Du et al., 2019; Hurvitz et al., 2019; Jackson et al.,
2019; Peng et al., 2021). Gene editing or repairing could be an

FIGURE 3 |Mice with homozygous F213I mutation died postnatally within 24 h and displayed abnormal epidermis structure. (A) The number of embryos at E18.5
and the number of neonates at P14. Homozygotes for the F213I mutation died within 24 h after birth. (B) Photographs of the mice within 12 h after birth. Note the smaller
size and wrinkled skin of the F213I mouse. The square brackets indicate the sites where skin samples were taken for the photomicrographs in C. (C) H&E images of
brains, livers and epidermis. Tissues were collected from F213I homozygotes and wildtype littermate controls within 12 h after birth and processed for staining. The
angle bracket indicates the epidermal layer. No significant differences are noted in the three other layers of the epidermis (stratum basal, stratum spinosum, and stratum
granulosum) or the dermis. Stratum corneum (SC) was indicated by square basket. SC of newborn Gba1F213I/F213I mice was more basophilic, and more compact
between layers, which was indicated by arrowheads. (D) PAS images of epidermis (×150). The angle bracket indicates the epidermal layer. Stratum corneum (SC) was
indicated by square basket. Black triangles are used to highlight PAS-positive granules. PAS-positive granules in the granular and spinous layers were more prominent in
the F213I mice than in control mice.
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alternative treatment method for GD disease, but no researches
have been conducted. Because this mhGba1-F213I mice model has
the human genomic DNA around F231I mutation site in mouse
Gba1 allele, it will be suitable to detect Crispr/CAS9-mediated
repairing of human GBA1-F213I mutation in this model. And as
we described previously, Ubc-CreERT2-induced global Gba1
knockout (Gba1Flox/Flox:Ubc-CreERT2 mice) can solve the
problem of early postnatal death (Du et al., 2019). It will be
interesting to detect whether Gba1F213I/Flox:Ubc-CreERT2 mice
have extended survival time and can be used for future gene
edition therapy. Several researches have reported that the
carbohydrate mimic N-octyl-β-valienamine (NOV) up-regulated
cellular enzyme activity of some GCase mutants in cultured GD
fibroblasts, including F213I, N188S, G202R and N370S (Lin et al.,
2004; Lei et al., 2007; Luan et al., 2010), so it will be interesting to
detect the therapeutic effects of NOV in Gba1F213/F213I mice.
Because F213I homozygotes die early after birth, it will be
feasible to treat pregnant mice and detect its effects on the pups
and enzyme activity.

Now, it is clear that the presence of GBA1 mutation in
homozygous or heterozygous form is associated with an
approximately 20-fold increase in the risk for Parkinson
disease (PD) (Schapira, 2015; Gegg and Schapira, 2018; Do
et al., 2019). F213I was the second most common mutation in
patients with Gaucher disease (14%), but its mutation frequency
was relatively low (only 2% of the pathogenic variants in patients
with PD) (Mitsui et al., 2009; Sun et al., 2010). Up to now, we have
not observed the symptoms of Parkinson disease in 6-month-old
F213I heterozygotes. A lifespan observation of the F213I mice
may be needed in future research.

Moreover, GBA1 has a pseudogene GBAP1, acting as
competing-endogenous RNA (ceRNA) to regulate GBA1
expression (Straniero et al., 2017). It is possible that
GBAP1 is involved in the pathogenesis of PD and GD, and
manipulation of GBAP1 may have potential therapeutic
effects on the diseases. A research also designed specific
easy-to-use CRISPR-Cas9 gene editing strategy to correct
the common GBA1 N370S mutation and to ensure the

FIGURE 4 | GCase activity decreased in F213I mutation mice. (A) Sequencing results of the splice sites of mhGba1-F213I mRNA. The RNA was isolated from the
brain ofGba1F213I/F213I mice on P0 day and reverse-transcripted. The splice sites were amplified by PCR and sequenced. The result showed that the partially humanized
mhGba1-F213I gene was correctly spliced. (B) qRT-PCR analysis of mRNA extracted from Gba1F213I/F213I mice (n = 3) and wild type mice (n = 3) at embryonic day 17,
revealing no significant mRNA expression difference betweenGba1F213I/F213I mice and wild type mice. Results were expressed as the mean—standard error of the
mean (SEM) and the difference between the groups was analyzed by Student’s t-test. (C)GCase activity was detected in the skin, brain and liver ofGba1F213I/F213I mice
(n = 3) on P0 day, using wild type mice (n = 3) as controls. The results were expressed as the mean—SEM and difference between groups was analyzed by Student’s
t-test, ***p < 0.001. ****p < 0.0001.
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integrity of this pseudogene (Hanss et al., 2019). Mice lack the
pseudogene that is present in humans and apes, so we should
consider this deficiency when using GD mouse models, for
example it cannot be excluded that the absence of the
pseudogene in mice may affect the manifestation of PD or GD
symptoms.

In summary, our research revealed that F213I mutation caused
early postnatal lethality and this partially humanized mouse GD
model has the potential for future gene repairing researches in vivo.
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