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The field of epigenetics describes information transmission 
through cell division of heritable changes in a phenotype that 
does not involve DNA sequence changes. CpG island hyper­
methylation, histone modification, and transmitted chromatin 
structure are the underlying mechanisms for epigenetic trans­
mission, and CpG island hypermethylation is a key component 
for altered gene expression associated with human cancers. CpG 
islands are DNA segments that are at least 0.5 kb in size, rich 
in G:C and CpG content, and found in approximately 70% of 
human gene promoters.1 Promoter CpG islands are usually un­
methylated in normal cells, with the exception of those on an 
inactive X chromosome or associated with imprinted genes. 
Although the cause is unclear, promoter CpG island hyperme­
thylation can occur in association with cancer development and 
aging. Promoter CpG island hypermethylation is found in vir­
tually all human cancer tissue types and acts as an important 
mechanism for the inactivation of tumor suppressor genes and 
tumor-related genes.2,3 Gastric cancer is one of the human can­
cers in which promoter CpG island hypermethylation is fre­
quently found.2,4 In our preliminary study, which analyzed 41 
candidate genes in major types of human cancers and cancer-as­
sociated normal tissues, gastric cancer demonstrated a signifi­

cantly higher number of methylated genes than those of other 
human cancer tissue types (Fig. 1). In addition, gastric cancer-
associated normal mucosa also exhibited the highest number of 
methylated genes when compared to normal tissue from other 
organs, including the lung, breast, colon, and liver (Fig. 1). These 
facts suggest the possibility that aberrant CpG island hyperme­
thylation is more involved in the carcinogenesis of gastric can­
cer than in that of other human cancer tissue types.

GASTRIC CANCER METHYLATION CHANGE

How many genes are known to be methylated in gastric 
cancer?

In 1996, Lee et al.5 reported for the first time that p16 was 
inactivated in gastric cancer by promoter CpG island hyper­
methylation rather than by genetic mutation. Since then, many 
researchers have demonstrated cancer-specific hypermethylation 
and inactivation of candidate genes in gastric cancer tissues and 
have correlated this hypermethylation with clinicopathologic 
features. However, the number of genes demonstrated to be in­
activated by promoter CpG island hypermethylation was limit­
ed until the application of array-based genome-scale DNA me­
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thylation analysis for gastric cancers. With the application of 
5-aza-2´-deoxycytidine (DAC) treatment and oligonucleotide 
microarrays, Yamashita et al.6 estimated that approximately 421 
genes are silenced by promoter CpG island hypermethylation 
in a gastric cancer cell line (AGS). Considering the fact that pro­
moter CpG island hypermethylation is exaggerated in a cancer 
cell line compared with primary cancer tissue and that the AGS 
cell line has an increased rate of de novo methylation because of 
over-expression of DNMT3b, the actual number of genes silenc­
ed by promoter CpG island hypermethylation can be estimated 
to be less than 421 in primary gastric cancers. Our team also 
performed bead array-based expression analysis of gastric cancer 
cell lines before and after DAC treatment with subsequent con­
firmation of CpG island hypermethylation of the candidate genes 
by methylation-specific PCR. We found 140 novel genes that 
are silenced by promoter CpG island hypermethylation in pri­
mary gastric cancer tissue (Jung et al. in preparation). 

The timing of hypermethylation in multistep gastric 
carcinogenesis

Promoter CpG island hypermethylation is now recognized to 
be an important mechanism responsible for the inactivation of 
tumor suppressor genes or tumor-related genes. If promoter CpG 
island hypermethylation of some genes plays an important role 
in the malignant transformation of gastric epithelial cells, this 
pattern of hypermethylation should be found in premalignant 
lesions of the stomach, including gastric adenomas and intesti­
nal metaplasia. In order to determine the frequency and timing 
of hypermethylation during multistep gastric carcinogenesis, 
Kang et al. analyzed multistep lesions of the stomach, in regards 
to their methylation status, in five genes7 or 12 genes8 using me­

thylation-specific PCR or in 25 genes using MethyLight analy­
sis;9 they demonstrated that promoter CpG island hypermeth­
ylation occurs early in multistep gastric carcinogenesis and ac­
cumulates during progression of the gastric lesion along the mul­
tistep carcinogenesis pathway. During multistep gastric carci­
nogenesis, there is a steep rise in the number of methylated genes 
when progressing from chronic gastritis to intestinal metapla­
sia, which was a consistent finding in a series of studies.7-9 Re­
gardless of the status of Helicobacter pylori infection, the number 
of methylated genes in intestinal metaplasia was significantly 
higher than that found in chronic gastritis without intestinal 
metaplasia.9 This suggests that intestinal metaplasia is an epi­
genetically altered lesion. However, even in chronic gastritis with­
out intestinal metaplasia, promoter CpG island hypermethyl­
ation occurs in association with H. pylori infection10 and aging.11,12 

Helicobacter pylori infection-associated DNA 
hypermethylation

H. pylori has been designated as a human class I carcinogen 
for gastric malignancy by the International Agency for Research 
on Cancer. Although the exact mechanism of H. pylori-associat­
ed gastric carcinogenesis is unknown, long-standing bacterial 
infection, perpetuated chronic inflammation, and sustained mu­
cosal epithelial cell proliferation are thought to produce a carci­
nogenic environment. Chan et al.10 were the first to demonstrate 
H. pylori-associated hypermethylation in the gastric epithelia, 
which was supported by subsequent studies demonstrating that 
the eradication of H. pylori infection results in a reversal of the 
methylation status of multiple CpG island loci.13-15 Thus, it is 
plausible that aberrant methylation induced by H. pylori infec­
tion may contribute to H. pylori infection-associated gastric car­

Fig. 1. Bar graphs display the number of methylated genes in cancer-associated normal tissue (A) and cancer tissue (B). The error bars indi-
cate the standard error of the mean. Forty-one genes are analyzed for their methylation status in tissue samples from eight human cancer 
tissue types and six types of cancer-associated normal tissue using the MethyLight assay. EHC, extrahepatic bile duct cancer; PrC, prostate 
adenocarcinoma; BrC, breast adenocarcinoma; CRC, colorectal adenocarcinoma; EsC, esophageal adenocarcinoma; HCC, hepatocellular 
carcinoma; LuC, lung adenocarcinoma; GC, gastric adenocarcinoma. 
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cinogenesis. It has been reported that interleukin 1 beta can mo­
dulate CpG island methylation through the activation of DNA 
methyltransferase.16 In an in vitro study, interleukin 1 beta siR­
NA blocked H. pylori-induced methylation of the CDH1 pro­
moter CpG island locus in a gastric cancer cell line.17 In an ani­
mal model experiment by the Ushijima team, H. pylori infec­
tion resulted in the induction of CpG island hypermethylation 
of candidate genes, and the eradication led to marked decreases 
in methylation levels in the candidate genes. However, the sup­
pression of inflammation by treatment with the immunosup­
pressive drug cyclosporine blocked the induction of DNA me­
thylation in the candidate genes. These findings suggest that 
the infection-associated inflammatory response, rather than H. 
pylori itself, was responsible for the induction of altered DNA 
methylation.18 In a subsequent gerbil study, neutrophilic infla­
mmation caused by treatment with ethanol or NaCl did not in­
duce DNA methylation in candidate genes, whereas chronic in­
flammation caused by H. pylori or H. felis infection led to alter­
ed methylation in candidate genes. This finding suggests that 
it is not the inflammation itself, but rather specific types of in­
flammation, that are necessary for methylation induction.19 

Aging-related hypermethylation vs inflammation-related 
hypermethylation

Challenging traditional thought regarding the lack of CpG 
island methylation in normal tissues, a recent study indicated 
that 4-8% of CpG island loci are methylated in the genomic 
DNA of human blood, brain, muscle, and spleen tissue.20,21 Ad­
ditionally, normal cells have been shown to acquire hypermeth­
ylation in an aging-related manner: aging-related methylation 
was first demonstrated for the oestrogen receptor (ER) gene by 
Issa et al.22 and has subsequently been demonstrated in multiple 
genes by Ahuja et al.23 In the stomach, Waki et al.11 reported 
aging-related methylation of CDH1, MLH1, and p16 in non-
neoplastic gastric epithelia. However, because CpG island hy­
permethylation can be induced by chronic inflammation in the 
stomach and because the prevalence of H. pylori infection in­
creases with age,24 the interplay between aging and chronic in­
flammation is complicated by H. pylori infection. Chan et al.25 
found that CDH1 methylation was associated with age in the 
stomach, the presence of chronic gastritis, and H. pylori infec­
tion using a univariate analysis, but H. pylori infection was the 
only independent factor associated with CDH1 methylation in 
the multivariate analysis. Furthermore, Maekita et al.26 reported 
that there was no aging-related hypermethylation in healthy 
gastric mucosa. However, a current study by our team supports 

the presence of aging-related hypermethylation in the gastric 
mucosa because the number of methylated genes was signifi­
cantly higher in H. pylori-negative adult stomach samples than 
in H. pylori-negative pediatric samples.27 In WI-38 human em­
bryonic lung fibroblasts, p16 was found to undergo spontaneous 
promoter CpG island hypermethylation during passage of these 
cells in culture,28 which supports the presence of age-related hy­
permethylation. Thus, we cannot exclude the possibility that 
aging-related methylation occurs in non-neoplastic gastric epi­
thelia without H. pylori infection.

Field cancerization

Many studies have shown that methylation levels or frequen­
cies of multiple genes are higher in gastric mucosa from gastric 
cancer patients than in mucosa from non-cancer subjects.11,26,29 
In a stomach with enhanced CpG island hypermethylation, the 
affected cells may have a growth-selective advantage imparted 
by the expressional loss of the methylated genes, which may 
predispose the cells to acquiring further genetic or epigenetic 
defects that lead to neoplasia. Synchronous multiple gastric 
cancers, constituting 4-9% of gastric cancers, occur at an older 
age and are more commonly associated with an extensive distri­
bution of intestinal metaplasia in the background mucosa com­
pared with single gastric cancer.30,31 In a recent study, non-neo­
plastic gastric mucosa from synchronous gastric cancer patients 
was found to have more hypermethylated genes than non-neo­
plastic gastric mucosa from patients with a single gastric cancer, 
which suggests that enhanced hypermethylation in the back­
ground gastric mucosa might contribute to the development of 
multiple gastric cancers.32 Multiple gastric cancers are not only 
a genetic model but also an epigenetic model for field cancer­
ization. Based on the findings that methylation levels in gastric 
mucosa are significantly increased in cases with a single gastric 
cancer and even more so in cases with multiple gastric cancers, 
it has been suggested that quantitative information regarding 
methylation levels of specific genes may serve as a biomarker for 
predicting an individual’s risk for developing gastric cancer.32,33 
However, it should be noted that increased methylation levels 
or frequencies in gastric mucosa from gastric cancer patients 
may reflect a higher prevalence of H. pylori infection and intes­
tinal metaplasia (compared with gastric mucosa from non-can­
cer subjects).34,35 Because both H. pylori infection and intestinal 
metaplasia are closely linked with increased CpG island hyper­
methylation, further clarification is needed regarding whether 
non-neoplastic gastric mucosa without intestinal metaplasia 
from H. pylori-negative gastric cancer patients harbors more hy­
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permethylated genes than non-neoplastic gastric mucosa from 
H. pylori-negative non-cancer subjects. In Park et al.’s study,9 no 
significant differences were observed in the number of methyl­
ated genes or methylation levels of 25 individual genes in chron­
ic gastritis tissue from cancer and non-cancer patients after nor­
malization of the confounding factors of H. pylori and intestinal 
metaplasia. Because synchronous multiple gastric cancers tend 
to be associated with widespread intestinal metaplasia when com­
pared with single gastric cancers, cancer-associated gastric mu­
cosa might show higher methylation frequencies or higher me­
thylation levels of multiple CpG island loci in multiple synch­
ronous gastric cancer patients than in single gastric cancer pa­
tients. 

Prognostic implications of individual gene methylation

Promoter CpG island hypermethylation can be utilized as a 
tumor biomarker for the detection of tumor cells in gastric juice 
or serum or for the prediction of clinical outcomes. A dozen 
DNA methylation markers have been reported to be closely as­
sociated with worse or better clinical outcomes in gastric cancer 
patients; MAL or COX2 methylation was correlated with better 
clinical outcomes in gastric cancer patients,36,37 whereas DAPK, 
TMS1, IQGAP2, SOX2, CACNA2D3, DKK-3, TFPI2, and 
Cystatin methylation has been correlated with worse clinical 
outcomes in gastric cancer patients.38-44 However, most of the 
studies that have evaluated these DNA methylation markers for 
their prognostic implication used methylation-specific poly­
merase chain reaction (MSP). Although MSP is a highly sensi­
tive method for detecting one methylated allele in 10,000 un­
methylated alleles,45 it is unreliable for detecting low levels of 
methylation. Another issue related to these DNA methylation 
markers is that a validation study was not performed to prove 
their utility as a prognostic marker. The final issue concerns 
concordance among individual gene hypermethylation: hyper­
methylation of one specific gene tends to be concordant with 
that of another individual gene; thus, better or worse survival 
observed in gastric cancers with hypermethylation of an indi­
vidual gene may not be attributed to hypermethylation of that 
particular gene. Rather, survival may be related to concordant 
hypermethylation of multiple CpG island loci, namely CpG is­
land methylator phenotype (CIMP). 

CIMP-positive gastric cancer

CIMP refers to a subset of malignancies that is characterized 
by widespread hypermethylation of multiple promoter CpG is­
land loci. Since the CIMP concept was first introduced for the 

molecular pathways of colorectal cancers (CRCs) by Dr. Issa’s 
group,46 many investigators have attempted to characterize the 
clinicopathological and molecular features of CIMP-positive 
CRCs and have found a close association with proximal colon 
location, older age at onset, poor differentiation, microsatellite 
instability (MSI), and BRAF mutations.47-49 Similarly, the pres­
ence of CIMP-positive gastric cancers has been reported by the 
same group,50 which did not find distinct clinicopathologic fea­
tures of CIMP-positive gastric cancers, with the exception of a 
close association with MSI. Since then, several researchers have 
attempted to characterize the clinicopathological features of 
CIMP-positive gastric cancers using variable methodologies for 
DNA methylation analysis and their own CIMP marker panels; 
this has led to controversial results.51-56 Despite variable find­
ings, relatively common findings include close associations of 
CIMP-positive gastric cancers with diffuse type-histology and 
better clinical outcomes. Recently, with the exclusion of MSI-
positive gastric cancers and Epstein-Barr virus (EBV)-positive 
gastric cancers from the analysis, Park et al.57 found characteris­
tic clinicopathologic features of CIMP-positive gastric cancers 
that were defined as tumors with methylation of 13 or more 
markers during the analysis of the 16 cancer-specific DNA me­
thylation markers; these defined CIMP-positive gastric cancers 
tended to show distinct clinicopathologic features, including a 
proclivity toward diffuse or mixed-type histology, poor differ­
entiation, infiltrative gross types, and higher cancer stages. 

EBV-associated gastric cancer

In addition to H. pylori, EBV has also been recognized as a 
gastric cancer-causing infectious agent.58,59 EBV-associated gas­
tric cancer, comprising nearly 10% of gastric cancers, are char­
acterized by a younger age at onset, male predominance, proxi­
mal location, frequent association of lymphoid stroma, and a 
better prognosis.60 EBV-associated gastric cancer is a prototype 
of the CIMP-positive types of gastric cancer and exhibits con­
sistently higher frequencies and levels of methylation in exam­
ined cancer-related methylation markers,53,57,61 which is inde­
pendent of whether the EBV-associated gastric cancer is histo­
logically lymphoepithelioma-like or ordinary.60 Because the 
number of methylated cancer-specific methylation markers is 
far higher in EBV-associated gastric cancers than in EBV-nega­
tive gastric cancers, EBV-associated aberrant hypermethylation 
is a global event. However, MLH1 methylation and resultant 
MSI are, if ever, rarely observed in EBV-associated gastric can­
cers. Although it can be speculated that the methylation ma­
chinery of EBV-associated gastric cancer is capable of recogniz­



http://www.koreanjpathol.orghttp://dx.doi.org/10.4132/KoreanJPathol.2012.46.1.1

Methylation Changes in Gastric Cancer  •  5

ing its own methylation targets, it may be hypothesized that 
the presence of both CIMP and MSI could cause a growth dis­
advantage and subsequently lead to the negative selection of 
gastric cancer cells containing both CIMP and MSI. Tumor cells 
from EBV-associated gastric cancers display DNA methyltrans-
ferase I over-expression,62 which is closely associated with inter-
leukin-1-beta (IL1B) over-expression60 or latent membrane protein 
2A-associated phosphorylation of signal transducer and activator 
of transcription 3 (STAT3) in EBV-associated gastric cancers.63 
IL1B is capable of increasing the expression of DNMT1 via the 
production of nitric oxide, and phosphorylated STAT3 binds to 
the DNMT1 promoter and induces transcription. 

MSI-positive gastric cancer

The frequency of MSI-positive gastric cancer varies from 8% 
to 37%. In gastric cancer, MSI is mainly caused by promoter 
CpG island hypermethylation of the MLH1 gene. Somatic mu­
tations of mismatch repair genes are very rare in sporadic gastric 
cancers. Thus, known clinicopathological features of MSI-posi­
tive gastric cancer, including female sex, older age of onset, an­
tral location, ulcerofungating gross type by Borrmann’s classifi­
cation, intestinal type by Lauren classification, expanding type 
by Ming classification, and better survival64 represent features of 
sporadic MSI-positive gastric cancer. Since gastric cancer is an 
extracolonic lesion in Lynch syndrome, we have encountered 
MSI-positive gastric cancer without MLH1 methylation. Re­
cently, our team has compared clinicopathological features be­
tween MSI-positive gastric cancers with and without MLH1 
methylation (Kim et al. in preparation). Of the known clinico­
pathological features for MSI-positive gastric cancer, female pre­
ponderance, older age of onset and antral location do not corre­
spond with Lynch syndrome-associated MSI-positive gastric 
cancer.65 Several studies have shown that MLH1 methylation 
occurs in premalignant stages, including intestinal metaplasia 
and gastric adenoma. Thus, MLH1 methylation has been con­
sidered an early event during multistep gastric carcinogene­
sis.7,9,66,67 However, a recent study of Ling et al.68 has shown that 
MSI can develop from MSI-low or the absence of MSI due to 
time-dependent accumulation of DNA methylation during 
progression of early stage-gastric cancer, which indicates that 
silencing of MLH1 due to promoter hypermethylation may ap­
pear as a later event during multistep gastric carcinogenesis. 
Unfortunately, the study did not investigate whether later ac­
quisition of MLH1 methylation occurs as a phenomenon of 
CIMP. MLH1 methylation is unlikely to occur as an isolated 
sporadic event without concurrent hypermethylation of multi­

ple gene promoter CpG island loci.

Epigenetic regulation of microRNA

A new class of small non-coding RNAs known as microR­
NAs (miRNA) have recently been discovered. Mature miRNAs, 
21 to 30 nucleotide-sized, are cleaved from 70- to 100-nucleo­
tide hairpin miRNA precursors in the cytoplasm by the RNase 
III enzyme Dicer. Base-pairing between the miRNA strand and 
the 3´ untranslated regions of its target mRNAs (potentially 
hundreds of genes) directs RNA-induced silencing complex to 
either cause mRNA degradation or translational repression. 
Through these molecular mechanisms, miRNAs serve as key 
regulators of gene expression involved in crucial cellular pro­
cesses, including development, proliferation, cellular differenti­
ation, and apoptosis. Although the generation of miRNAs and 
their mode of action in regulating gene function have been in­
tensively studied, the regulation of miRNA expression remains 
largely unclear. The means by which miRNA is regulated is 
somewhat complicated. Recently, Saito et al. demonstrated for 
the first time that miR-127 is regulated by DNA hypermethyl­
ation69 and since then, a dramatically increased number of stud­
ies have documented the epigenetic regulation of miRNAs.70 
However, in gastric cancer, approximately 113 miRNAs have 
been demonstrated to be dysregulated compared with normal 
gastric mucosal tissues but a dozen miRNA genes have been 
shown to be downregulated by aberrant hypermethylation, in­
cluding miR-512-5p,71 miR-375,72 miR-212,73 miR-181c,73 miR-
196b,74 miR-137,75 miR-129-2,76 miR-124a-1, miR-124a-2, miR-
124a-3,77 miR-34b, and miR-34c.78 In particular, Ando et al.77 
demonstrated that miR-124a-1, -2, and -3 are frequently meth­
ylated in primary gastric cancer and in normal gastric mucosal 
tissues from healthy individuals with H. pylori infections. Among 
H. pylori-negative individuals, methylation levels are significant­
ly higher in non-cancerous gastric mucosal tissues from gastric 
cancer patients than gastric mucosal tissues from healthy indi­
viduals, which suggest that methylation of miRNA genes com­
prises a field defect contributing to the pathogenesis of gastric 
cancer.77 Suzuki et al.78 also reported that miR-34b/c methylation 
is significantly associated with H. pylori infection among healthy 
individuals. 

Future perspective

Although it is well known that EBV-positive gastric cancer 
is featured with extensive hypermethylation of multiple genes, 
the mechanism leading to genome-wide hypermethylation is 
still unknown. Because EBV-positive gastric dysplasia or ade­
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noma has never been reported, it seems likely that EBV-infected 
epithelial cells transform directly into malignant cells. DNMT1 
elevation in association with EBV infection does not provide a 
satisfactory explanation for genome-wide extensive hypermeth­
ylation because in vitro transfection of DNMT1 in cell lines or 
DNMT1 elevation in association with H. pylori infection also 
does not lead to such extensive hypermethylation as seen in EBV-
positive gastric cancer. If we can elucidate the mechanism of 
EBV-associated extensive hypermethylation, we will have a bet­
ter understanding of how promoter CpG island hypermethyl­
ation occurs. 

Although gastric cancer has shown a higher number of genes 
methylated compared with colorectal cancer, clinicopathologi­
cal features of CIMP-positive gastric cancer are still obscure and 
marker panels diagnosing CIMP-positive gastric cancer are not 
established yet, which is in contrast to the situation in colorec­
tal cancer. It is imperative to develop CIMP panel markers en­
abling the diagnosis of CIMP-positive gastric cancer and then 
to characterize clinicopathological features of CIMP-positive 
gastric cancer. In case these are accomplished, we expect to iden­
tify the precursor lesions of CIMP-positive gastric cancer and to 
delineate multistep morphological progression of CIMP-posi­
tive tumors. 

CONCLUSION

Although molecular pathways and morphological pathways 
are not well established for gastric cancers when compared with 
colorectal cancers, rapid development of methylation analysis 
technology will enable us to take a glimpse at the landscape of 
epigenetic alterations occurring at each step of multistep gastric 
carcinogenesis, which will provide molecular insights on mor­
phological progression pathways. In addition, epigenetic stud­
ies may offer great potential for the identification of tumor bio­
markers that can be utilized to detect and diagnose gastric can­
cer at its earliest stages, to accurately assess an individual’s risk 
for gastric cancer, or to predict the response to chemotherapy or 
clinical outcomes. 
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