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Abstract: The International Cooperative Biodiversity Groups (ICBG) Program based at the University
of Illinois at Chicago (UIC) is a program aimed to address the interdependent issues of inventory
and conservation of biodiversity, drug discovery and sustained economic growth in both developing
and developed countries. It is an interdisciplinary program involving the extensive synergies and
collaborative efforts of botanists, chemists and biologists in the countries of Vietnam, Laos and the
USA. The UIC-ICBG drug discovery efforts over the past 18 years have resulted in the collection
of a cumulative total of more than 5500 plant samples (representing more than 2000 species), that
were evaluated for their potential biological effects against cancer, HIV, bird flu, tuberculosis and
malaria. The bioassay-guided fractionation and separation of the bioactive plant leads resulted in
the isolation of approximately 300 compounds of varying degrees of structural complexity and/or
biological activity. The present paper summarizes the significant drug discovery achievements made
by the UIC-ICBG team of multidisciplinary collaborators in the project over the period of 1998–2012
and the projects carried on in the subsequent years by involving the researchers in Hong Kong.
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1. Introduction

Natural products have been a rich source for the discovery of therapeutic agents throughout
the ages [1]. In contrast to the research philosophies of yesteryears, the research approach of the
current project is based on the recognition that the potential for achievements and rewards is much
greater when the process involves a collaboration among scientists in the countries rich in advanced
biotechnology and the countries rich in biodiversity of natural resources. The ICBG (International
Cooperative Biodiversity Groups) program was initiated in 1992 by the FIC (Fogarty International
Center) of NIH (United States National Institutes of Health), NSF (National Science Foundation)
and USDA (United States Department of Agriculture) [2], with the aims of fostering the cooperation
between the industrialized countries and the nations of the developing world, to pursue the common
goals of biodiversity conservation, drug discovery, and promoting economic growth of developing
countries [2,3]. In response to the 1997 Request for Application (RFA: TW-98-001), a proposal with
Dr. Djaja Doel D. Soejarto as PI (project leader) was put forward to establish and implement an ICBG
project based at UIC (University of Illinois at Chicago) [4,5]. This ICBG project is known as “Studies
on Biodiversity of Vietnam and Laos”, or UIC-ICBG in abbreviation, had been funded continuously by
FIC from 1998 to 2012. Further, the legacies of the project have been carried on through the subsequent
collaborative efforts involving researchers in Hong Kong.
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The objectives of this ICBG program included: (i) integrated effort of biodiversity inventory and
conservation at Cuc Phuong National Park (CPNP) in Vietnam, that will include the preparation
of a Manual for taxonomic identification of the flowering plants in the park, the establishment of
a Threatened Plants Rescue Center, the implementation of a conservation education program, and
the transfer of GIS-based biodiversity assessment technology to Vietnam; (ii) integrated study of
medicinal plants of Laos through the strengthening of the Lao Medicinal Plant Database and through
a comparative ethnobotany mapping project in selected ecogeographic zones in Laos; (iii) collection
of plant samples at CPNP and in Laos as an integral part of the UIC-ICBG drug discovery effort;
(iv) drug discovery and development of anti-HIV, anti-bird flu, anti-malaria, anti-TB , and cancer
chemoptherapeutic and chemopreventive agents from plants of Vietnam and Laos; (v) setting up
the infrastructure and the human resource for the preservation of traditional knowledge in the uses
of plants in primary health care of local communities through the establishment of new and the
upgrading of existing ethnomedical gardens; and, lastly; (vi) strengthening the capacity (institutional
infrastructure and human resources) of host institutions in Vietnam and Laos, in higher level of
expertise, to undertake research in biodiversity study and conservation, ethnobotany, and plant-based
drug discovery far into the future, beyond ICBG.

More than 60 scientists and scholars in different disciplines of the life sciences have participated
in the project, and the program has supported eight Master or Ph.D. degree students. Approximately
5500 plant samples including about 1100 ethnobotany based samples were collected from Vietnam and
Laos [2,4–6].

The drug discovery program encompassed biological evaluation and phytochemical study of
the plant extracts is one of the main components of the ICBG project based at the UIC. The candidate
plants were selected for collection based on two approaches [2]. One is a biodiversity-based collection
of plant samples, also referred as a “random” collection, with a goal to maximize the taxonomic
diversity. The other one is an ethnobotany-based approach, whereby plants were collected based on
the historical use of medicinal plants, especially those which have been used for the target diseases of
the ICBG program [6]. Of the cumulative total of more than 5500 plant samples (representing more
than 2000 species) that were collected in the two countries, 1901 have been evaluated for anti-HIV,
704 for cancer chemoprevention (i.e., quinone reductase, Cox-1, Cox-2, aromatase, luciferase-ARE and
luciferase NF-κB), 2786 for cytotoxicity, 1848 for HL-60 differentiation, 2268 for antimalarial, and 2066
for anti-TB (tuberculosis) activities. More recently, a new viral entry inhibition assay was introduced for
the evaluation of anti-bird flu and anti-HIV effects. Using this evaluation system, the 1859 previously
untested plant extracts were evaluated, leading to the identification of six anti-bird flu and 11 anti-HIV
plant leads [7]. One of the anti-HIV plant extracts, Justicia gendarussa showed potent inhibition activity
against viral entry with an IC50 value of 0.04 µg/mL [8].

Of particular relevance to this review concerns the record of the bioassay-guided natural products
chemistry accomplishments achieved in the UIC-ICBG project. Since the projects’ inception in 1998,
we have isolated approximately 300 compounds of varying degrees of structural complexity, novelty
and/or biological activity (anti-HIV, anti-malaria, anti-TB, or anticancer) from more than 30 active
plant leads at UIC. The isolates include a series of anti-HIV and anticancer phytochemicals belonging
to two new and one little known carbon skeletons, as well as potent antimalarial agents. The bioactive
and/or novel isolates obtained are described below.

2. Active Agents

Natural products have long been the main resource in the search for potential lead compounds for
the development of a large variety of therapeutic drugs including anticancer and antiviral agents [1].
One of the research missions of the UIC-ICBG was to discover new/novel molecules from tropical
plant materials. The discovered bioactive compounds may serve as promising leads for future drug
development. During the project, the plant extracts, the separated fractions, the purified compounds,
and the synthesized derivatives were subjected to bioactivity evaluation in various in vitro assays.
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The disease targets of this drug discovery program mainly focused on the search for therapeutic agents
that targeted cancer, HIV (human immunodeficiency virus), TB and malaria.

2.1. Anticancer Active Agents

A specific goal of the UIC-ICBG program is to discover potential antitumor candidates.
In accordance with this widely-held program, from a total of 2786 extracts of terrestrial plants
collected in Vietnam and Laos evaluated for cytotoxic activity in a panel of cell lines consisting of KB
(human cervial carcinoma, a Hela derivative previously referred to as oral epidermis), Col-2 (human
colon carcinoma), LNCaP (hormone-dependent human prostate cancer), Lu-1 (human lung cancer),
MCF-7 (human breast carcinoma), hTERT (human telomerase reverse transcriptase immortalized), and
HUVEC (primary human umbilical vein endothelial) cells, 327 samples were deemed active in the
initial screen. Subsequent chemical study of 22 rank ordered plant extracts derived from 17 species
led to the isolation of 32 active compounds including 15 new molecules (Figure 1 and Table 1) [9–11].
Among these active compounds, members of a rare C18 carbon compounds (1–22), designated as
“miliusanes”, were of special interest. The anticancer activity of the miliusanes has been evaluated in
the murine hollow-fiber in vivo assay, and three miliusanes (1–3) were further evaluated in the 60-cell
line system by the National Cancer Institute (NIH, USA).

Among the selected plant samples for drug discovery phytochemical study, a dichloromethane
extract of Miliusa sinensis Finet & Gagnep. (Annonaceae) collected in the Cuc Phuong National
Park (Nho Quan District, Ninh Binh Province, Vietnam) exhibited cytotoxicity against KB cells with
an IC50 value (concentration required to inhibit cell growth by 50%) of 2.0 µg/mL during initial
bioassay [9]. The Bioassay-guided fractionation of the leaves, twigs and flowers of M. sinensis led to
the isolation of a cluster of novel anticancer agents belonging to a rare skeletal group of C-18 terpenes
(miliusanes). Of the 22 miliusane isolates, 20 are new molecules. Nine of these compounds (1–3, 5,
8, 9, 18, 20 and 21) demonstrated significant cytotoxic activity in a panel of cell lines [9]. It has been
noted that the presence of different functional groups significantly affected the cytotoxicity of this
group of compounds (miliusanes I (3) vs. V (7)). Cytotoxic potency was also affected markedly by
configurational differences in the functional groups (miliusanes I (3) vs. miliusanes III (5) vs. IV (6)).
The epimers of 4β-hydroxyl group showed much better cell killing activity than their respective
4α-epimers. Interestingly, the investigators have observed that the cytotoxicity was not reduced to
any extent when the γ-lactone ring was opened (miliusanes XVIII (20) and XIX (21)). In an attempt to
improve the bioactivity of the miliusanes, 42 derivatives were prepared by esterification of the C-5
hydroxyl group of 1. Although only a few of the derivatives showed equivalent or slightly better
cytotoxicity, the derived methoxyacetyl-miliusol did demonstrate selectivity in a panel of cancer cell
lines. MCF-7 was observed to be 9–15 times more susceptible to methoxyacetyl-miliusol (23) than the
other four cell lines [9].

Asparagus cochinchinensis (Lourerio) Merrill (Asparagaceae) has long been used to treat chronic
fever in Laos, China and Korea [10,12]. Bioassay-directed fractionation of the dried roots of
A. cochinchinensis led to the isolation of five new (24–27 and 29) and five known compounds (28 and
30–33). Among the isolates, compounds (24, 29 and 31) demonstrated moderate cytotoxicity against
KB, Col-2, LNCaP, Lu-1, and HUVEC cell lines, with IC50 values ranging from 4 to 12 µg/mL (4–58 µM),
while compounds 25, 27 and 28 showed cytotoxicity toward KB cells only.

Bursera tonkinensis Guillaum. (Burseraceae) is another plant that showed cytotoxic potential in
the UIC-ICBG program. The CH2Cl2 extract from the roots of B. tonkinensis collected in Cuc Phuong
National Park exhibited cytotoxicity against KB cells with an IC50 value of 4.1 µg/mL. As a result of a
phytochemical study, 12 compounds were isolated from the roots of B. tonkinensis, including burselignan,
bursephenylpropane, and burseneolignan [11]. Among the isolates, 4′-demethyldesoxypodophyllotoxin
(34) showed potent cytotoxic activity against KB, Col-2 and LNCaP cell lines with IC50 values of
around 10 ng/mL [11].
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Table 1. The cell killing activity of compounds 1–34.

No. Compound Name Bioactivity: IC50 (µM) Plant Origin Ref.
KB Lu-1 Col-2 LNCaP MCF-7 HUVEC

1 Miliusol 1.2 1.6 1.4 1.8 3.1 1.3 Mliusa sinensis [9]
2 Miliusate 1.2 2.0 1.6 3.2 3.6 2.9 M. sinensis [9]
3 Miliusane I 1.4 2.9 2.9 5.1 2.2 1.8 M. sinensis [9]
4 Miliusane II 5.5 5.8 9.4 19.6 21.3 6.6 M. sinensis [9]
5 Miliusane III 1.2 4.8 4.3 5.1 2.6 - M. sinensis [9]
6 Miliusane IV 32.2 60.4 38.5 >62.0 15.8 - M. sinensis [9]
7 Miliusane V >55.0 >55.0 >55.0 >55.0 >55.0 - M. sinensis [9]
8 Miliusane VI 4.0 6.6 4.2 5.3 4.8 - M. sinensis [9]
9 Miliusane VII 5.8 6.2 3.7 5.8 6.1 - M. sinensis [9]

10 Miliusane VIII 47.4 63.6 33.4 43.4 26.4 >10.9 M. sinensis [9]
11 Miliusane IX >57.4 >57.4 46.0 >57.4 52.6 - M. sinensis [9]

12/13 Miliusane X/XI 5.2 21.4 8.0 29.6 5.0 - M. sinensis [9]
14/15 Miliusane XII/XIII 55.0 9.3 13.4 51.8 12.2 - M. sinensis [9]
16/17 Miliusane XIV/XV 5.3 7.5 5.4 27.6 10.1 - M. sinensis [9]

18 Miliusane XVI 6.1 19.9 3.9 6.1 6.4 - M. sinensis [9]
19 Miliusane XVII 6.7 14.9 9.5 24.0 11.0 - M. sinensis [9]
20 Miliusane XVIII 3.1 1.8 2.3 2.4 3.0 - M. sinensis [9]
21 Miliusane XIX 2.6 1.8 2.0 1.7 2.3 - M. sinensis [9]
22 Miliusane XX >59.0 >59.0 >59.0 >59.0 >59.0 - M. sinensis [9]
23 Methoxyacetylmiliusol 16.4 25.3 15.6 >26.6 1.70 - [9]
24 Asparacoside 4.8 4.2 5.4 10.1 - 4.1 Asparagus cochinchinensis [10]
25 Asparacosins A 24.1 >45.0 >45.0 >45.0 - >45.0 A. cochinchinensis [10]
26 Asparacosins B >39.6 >39.6 >39.6 >39.6 - >39.6 A. cochinchinensis [10]
27 3′ ′-methoxyasparenydiol 40.5 66.5 >67.5 >67.5 - >67.5 A. cochinchinensis [10]
28 Asparenydiol 8.5 70.1 >75.1 >75.1 - >75.1 A. cochinchinensis [10]
29 3′-hydroxy-4′-methoxy-4′-dehydroxynyasol 31.9 25.5 41.4 41.1 - 58.1 A. cochinchinensis [10]
30 Nyasol >79.3 >79.3 >79.3 >79.3 - >79.3 A. cochinchinensis [10]
31 3′ ′-methoxynyasol 31.9 15.9 22.3 23.4 - 23.7 A. cochinchinensis [10]
32 1,3-bis-di-p-hydroxyphenyl-4-penten-1-one >74.5 >74.5 >74.5 >74.5 - >74.5 A. cochinchinensis [10]
33 trans-coniferyl alcohol >109.9 >109.9 >109.9 >109.9 - >109.9 A. cochinchinensis [10]
34 4′-demethyldesoxypodophyllotoxin 0.05 - 0.06 0.03 - - Bursera tonkinensis [11]

vinblastine 0.00037 0.11 0.0043 0.00061 0.0026 -
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2.2. Anti-HIV Active Agents

Another goal of the UIC-ICBG program is to discover new/novel compounds against HIV.
Two protocols were performed to evaluate the anti-HIV activity. The first one was quantitated
using GFP (green fluorescent protein) reporter cell lines HOG.R5 [13]. Briefly, a reporter cell line
for quantitating HIV-1 replication was developed using HOS (human osteosarcoma) cells rendered
susceptible to HIV-1 infection by the transfection of genes for CD4 and CCR5, the co-receptor utilized by
macrophage-tropic (R5) HIV-1 isolates. The other protocol used was so-called “One-Stone-Two-Birds”
evaluation system, a more concise, safe and efficient assay to identify anti-flu (entry) and anti-HIV
(replication) activities [7]. A total of 1901 plant extracts has been screened using the HOG.R5
reporter cell line, and an additional 1859 extracts were evaluated in the antiviral entry assay system
(“One-Stone-Two-Birds” evaluation system) for anti-HIV activity. Chemical study of 32 prioritized
active extracts led to the isolation of 42 bioactive compounds (Table 2 and Figure 2) including 24 new
molecules [14–22].

Table 2. The anti-HIV activity of compounds 35–76.

No. Compound Name IC50 (µM) SI a Plant Origin Ref.

35 Litseaverticillol A 21.4 2.6 Litsea verticillata [14]
36 Litseaverticillol B 8.5–2.8 2.8–1.9 L. verticillata [15]
37 Litseaverticillol C 30.3 2.4 L. verticillata [15]
38 Litseaverticillol D 57.6 >1.0 L. verticillata [15]
39 Litseaverticillol E 16.0 3.1 L. verticillata [15]

40/41 Litseaverticillol F/G 45.2 1.7 L. verticillata [15]
42 Litseaverticillol H Toxic - L. verticillata [15]

43/44 Litseaverticillol L/M 49.6 NT b L. verticillata [20]
45 Isolitseane A - - L. verticillata [17]
46 Isolitseane B 38.1 3 L. verticillata [17]
47 Isolitseane C - - L. verticillata [17]
48 Verticillatol 144.7 NT b L. verticillata [18]
49 Litseagermacrane 27.5 2.3 L. verticillata [15]
50 5-epieudesm-4(15)-ene-1β,6β-diol 73.1 NT b L. verticillata [15]
51 Litseachromolaevane B 119.7 NT b L. verticillata [15]
52 Oxyphyllenodiol B 54.6 NT b L. verticillata [17]

53 1,2,3,4-tetrahydro-2,5-dimethyl-8-
(1-methylethyl)-1,2-naphthalenediol 91.0 NT b L. verticillata [17]

54 (+)-5′-demethoxyepiexcelsin 42.7 1.4 L. verticillata [18]
55 3-epi-litsenolide D2 9.9 4 L. verticillata [17]
56 Litseabutenolide 40.3 NT b L. verticillata [17]
57 4-hydrixy-2-methylbut-2-enolide 129.8 NT b L. verticillata [17]
58 Hydroxydihydrobovolide 122.7 NT b L. verticillata [17]
59 Vaticinone 15.3 1.4 Vatica cinerea [19]

60 (23E)-27-nor-3β-hydroxycycloart-
23-en-25-one

21%
inhibition @

5.9 µM
- V. cinerea [19]

61 (24E)-3-oxo-lanosta-8,24-dien-26-oic acid 8.6 1.7 V. cinerea [19]
62 Dammara-20,25-dien-3β,24-diol 6.1 2.3 V. cinerea [19]
63 (23E)-dammara-20,23-dien-3β,25-diol 22.6 1.3 V. cinerea [19]

64 Betulinic acid
32.5 1.1 V. cinerea [19]
3.1 5 V. cinerea [21]

65 Betulin 13.8 1.4 V. cinerea [19]
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Table 2. Cont.

No. Compound Name IC50 (µM) SI a Plant Origin Ref.

66 Betulonic acid 21.4 4.9 V. cinerea [19]

67 Ursolic acid
14.7 1.1 V. cinerea [19]
14.4 1.0 Strychnos vanprukii [21]

68 Pheophorbide a 2.5 >13 Vatica cinerea [19]
69 1-hydroxy-cyclocolorenone 88.0 NT b V. cinerea [19]
70 3β-O-trans-feruloylbetulinic acid 5.1 3.0 Strychnos vanprukii [21]
71 3β-O-cis-feruloylbetulinic acid 11.1 2.0 S. vanprukii [21]
72 3β-O-cis-coumaroylbetulinic acid 8.0 2.0 S. vanprukii [21]
73 3β-O-trans-coumaroylbetulinic acid 5.6 3.0 S. vanprukii [21]

74 3-(4-hydroxyphenyl)-1-(2,4,6-
trimethoxyphenyl)-2-propen-1-one <15.2 >1.6 Vitex leptobotrys [22]

75 Tsugafolin 118 - V. leptobotrys [22]
76 Alpinetin 130 NT b V. leptobotrys [22]

3TC 0.29
a SI = selectivity index = CC50/IC50; b NT = n on-toxic at 20 µg/mL.
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Among the plants investigated, the chloroform extract of the leaves and twigs of Litsea verticillata
Hance (Lauraceae) collected from Cuc Phuong National Park area [4] displayed significant inhibition
activity against HIV-1 in a concentration of 20 µg/mL with minimal toxicity (90% cell viability).
Anti-HIV bioassay-directed fractionation of L. verticillata led to the isolation of 24 anti-HIV compounds
of a number of different skeletal types, including more than 10 different classes of sesquiterpenes
(35–53), lignans (54) and butenolides (55–58) [14–17,20]. The sesquiterpenes belong to 13 different
skeletal types, including two new sesquiterpene carbon skeletons. One of the skeletons was a novel
one that the investigators designated as litseane [14], with a second one being given the name of
isolitseane [18]. Ten litseanes (35–44) and three isolitseanes were isolated (45–47) [14,20], with all of
the natural litseanes and one isolitseane showing anti-HIV activity with IC50 values ranging from
8–58 µM in the HOG.R5 system. Total synthesis of litseane compounds have since been reported
by two independent research groups. The Vassilikogiannakis group achieved the total synthesis of
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litseaverticillols A–H by means of a biomimetic sequence of transformations initiated by a [4 + 2]
reaction cascade and involving singlet oxygen (1O2) as the key step [23–27]. While the Kuwahara group
accomplished the first enantioselective total synthesis of the (1R, 5S)-stereoisomer of litseaverticillols A
and B by employing the Evans asymmetric aldol reaction and a microwave-promoted cyclization of a
stannylated thiol ester intermediate as the C-C bond-forming steps [28,29]. A French group conducted
synthetic study of the isolitseanes and analogues [30].

During the initial bioassay evaluation, a chloroform-soluble extract prepared from the twigs
and leaves of Vatica cinerea King (Dipterocarpaceae) collected from the Cuc Phuong National Park
was shown to inhibit HIV-1 replication by 86% with no cellular toxicity at 20 µg/mL. Accordingly,
bioassay-guided separation led to the isolation of 11 active compounds (59–69), including a new
triterpene (59) [19]. The majority of the triterpenes, sesquiterpene, 1-hydroxycyclocolorenone, and
pheophorbide a isolated from this plant showed anti-HIV activity, with the chlorophyll being the most
active, demonstrating an IC50 value of 1.5 µg/mL (2.5 µM), while being completely devoid of toxicity
up to a concentration of 20 µg/mL (33.8 µM).

Three new betulinic acid derivatives (70–72) and three known triterpenes (64, 67 and 73) were
isolated from the leaves and twigs of Strychnos vanprukii Craib. All of them showed moderate anti-HIV
activity with IC50 values ranging from 5 to 11 µM [21].

Vitex leptobotrys H. Hallier f. (Lamiaceae) was selected for further bioassay-directed fractionation
based on the result that the chloroform extract of the leaves and twigs inhibited HIV by 66% at a
concentration of 20 µg/mL without showing any toxicity to the host cells at the same concentration [22].
Accordingly, 13 compounds were isolated and identified from this plant, and three of them (74–76)
were found to have anti-HIV activity.

2.3. Anti-TB Active Agents

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis (H37Rv), which affects
approximately 3 million annual deaths in the 1990s, and the TB mortality has fallen 47% since 1990,
with nearly all of that improvement taking place since 2000 [31,32]. As part of the UIC-ICBG project,
extracts were primarily screened against M. tuberculosis H37Rv using the microplate Alamar blue
assay (MABA) [33] and low-oxygen recovery assay (LORA) [34]. The MIC is defined as the lowest
concentration effecting a reduction in fluorescence or luminescence of 90% with respect to untreated
controls. Accordingly, five of the most active plants selected from the evaluated 2066 plant extracts
were carried out for bioassay-guided fractionation, which led to the isolation of 11 active compounds
(Table 3 and Figure 3) including six new molecules [35–38].

Table 3. The anti-TB activity of compounds 77–88.

No. Compound Name MIC (µM) Plant Origin Ref.

77 (−) Z-9-octadecen-4-olid 5.3 Micromelum hirsutum [35]
78 Micromeline 112.9 M. hirsutum [35]
79 Lansine 59.3 M. hirsutum [35]
80 3-formylcarbazole 216.9 M. hirsutum [35]
81 3-formyl-6-methoxycarbazole 69.3 M. hirsutum [35]
82 5-(8Z-heptadecenyl) resorcinol 34.4 Ardisia gigantifolia [37]
83 5-(8Z-pentadecenyl) resorcinol 79.2 A. gigantifolia [37]
84 - 42.0 A. gigantifolia [37]
85 Bonianic acids A 34.9 Radermachera boniana [36]
86 Bonianic acids B 9.9 R. boniana [36]
87 Ergosterol peroxide 3.5 R. boniana [36]
88 8-hydroxy-6-methoxy-pentylisocoumarin 153.4 Xylosma longifolia [38]

Rifampin 0.049
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Merr. (Rutaceae) collected from the Cuc Phuong National Park (Vietnam) led to the isolation of six 
carbazole alkaloids, as well as the γ-lactone derivative of oleic acid [35]. Five of the isolates (77–81) 
showed anti-TB activity. Among the active compounds, a fatty acid lactone,  
(−) Z-9-octadecen-4-olid (77) showed promising in vitro anti-TB activity with a MIC value (the drug 
concentration effecting an inhibition of 90% or greater) of 1.5 µg/mL with a selectivity index (SI) of 
63 based on its cytotoxicity against the VERO cells, and exhibited activity against the Erdman strain 
of M. tuberculosis in a J774 mouse macrophage model with an EC90 value of 5.6 µg/mL) [35]. This 
suggested (−) Z-9-octadecen-4-olid might be a potential new anti-TB agent and worthy of further study.  

Ardisia gigantifolia Stapf (Primulaceae) has been used as a medicinal plant to eliminate blood 
stasis, disperse swelling, improve blood circulation, and also as an analgesic [39]. Antitubercular 
(anti-TB)-guided isolation of the CHCl3 extract of the leaves and stems of this plant led to the isolation 
of two active 5-alkylresorcinols (82 and 83) [37]. Fifteen (15) derivatives were further synthesized 
based on the two natural compounds to improve the bioactivity against tuberculosis. Only one 
compound (84) was found to show slightly improved anti-TB activity; since the compound contains 
nitrogen, it can be made in a water soluble form by preparing it as a salt compound, hence, worthy 
for further study as a novel anti-TB agent.  
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Anti-TB bioassay-directed fractionation of the extract of the stem bark of Micromelum hirsutum
Merr. (Rutaceae) collected from the Cuc Phuong National Park (Vietnam) led to the isolation of six
carbazole alkaloids, as well as the γ-lactone derivative of oleic acid [35]. Five of the isolates (77–81)
showed anti-TB activity. Among the active compounds, a fatty acid lactone, (−) Z-9-octadecen-4-olid
(77) showed promising in vitro anti-TB activity with a MIC value (the drug concentration effecting
an inhibition of 90% or greater) of 1.5 µg/mL with a selectivity index (SI) of 63 based on its
cytotoxicity against the VERO cells, and exhibited activity against the Erdman strain of M. tuberculosis
in a J774 mouse macrophage model with an EC90 value of 5.6 µg/mL) [35]. This suggested (−)
Z-9-octadecen-4-olid might be a potential new anti-TB agent and worthy of further study.

Ardisia gigantifolia Stapf (Primulaceae) has been used as a medicinal plant to eliminate blood
stasis, disperse swelling, improve blood circulation, and also as an analgesic [39]. Antitubercular
(anti-TB)-guided isolation of the CHCl3 extract of the leaves and stems of this plant led to the isolation
of two active 5-alkylresorcinols (82 and 83) [37]. Fifteen (15) derivatives were further synthesized based
on the two natural compounds to improve the bioactivity against tuberculosis. Only one compound
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(84) was found to show slightly improved anti-TB activity; since the compound contains nitrogen,
it can be made in a water soluble form by preparing it as a salt compound, hence, worthy for further
study as a novel anti-TB agent.

A plant extract (Radermachera boniana Dop, Bignoniaceae), collected from the Cuc Phuong National
Park, was found to inhibit the growth of M. tuberculosis H37Rv with a MIC value of 78 µg/mL.
Bioassay-directed fractionation of the plant led to the isolation and structural elucidation of three new
triterpenoids together with six known compounds. Among the isolates, bonianic acids A (85) and B
(86) and ergosterol peroxide (87) exhibited significant activity against M. tuberculosis H37Rv strain [36].

Two new glucosides and seven known compounds were isolated from the stem bark of
Xylosma longifolia (Flacourtiaceae), and the isolate 8-hydroxy-6-methoxy-pentylisocoumarin (88)
exhibited an MIC value of 40.5 µg/mL against M. tuberculosis [38].

2.4. Antimalarial Active Agents

The study of plant species of South Asia as an important source for the discovery of antimalarial
agents is also a major objective of the UIC-ICBG project. Aside from tuberculosis and AIDS, malaria is
a tropical disease that affects about 40% of people in the world [40,41]. Hence, the discovery of novel
antimalarial agents is very much needed. Antimalarial assays of plant extracts and pure compounds
were conducted with cultured chloroquine-sensitive parasites, using clone D6 derived from CDC Sierra
Leone and chloroquine-resistance clone W2 derived from CDC Indochina [42]. During this project,
a total of 2268 plant extracts were evaluated for antimalarial activity against Plasmodium falciparum
clones D6 and W2. From the active extracts, 19 active compounds (Table 4 and Figure 4), with 12 being
novel, were obtained [43–50].

Table 4. The antimalarial activity of compounds 89–107.

No. Compound Name
KB D6 W2

Plant Origin Ref.ED50
(µM)

IC50
(µM) SI a IC50

(µM) SI a

89 Polysyphorin 4.8 1.0 5.0 0.9 6.0 Raphidophora
decursiva [48]

90 Rhaphidecurperoxin 13.1 1.8 0.7 1.37 1.0 R. decursiva [48]
91 Decursivine - 11.3 - 12.7 - R. decursiva [47]
92 Verrucarin L acetate 0.17 0.0011 158.0 0.0012 135.0 R. decursiva [43]
93 Roridin E 0.00041 0.00039 1 0.0012 0.4 R. decursiva [43]

94 Naucleaorine 38.0 6.9 5.5 8.0 4.8 Nauclea
orientalis [46]

95 Epimethoxynaucleaorine >37.9 12.4 >3.1 13.2 >2.9 N. orientalis [46]

96 3α,23-dihydroxyurs-12-
en-28-oic acid >42.2 9.7 >4.4 12.7 >3.3 N. orientalis [46]

97 Oleanolic acid 46.0 4.6 10 5.1 9.1 N. orientalis [46]

98 3α,20-lupandiol >90.0 19.8 >4.5 19.1 >4.7 Grewia
bilamellata [45]

99 Grewin >107.5 11.2 >9.6 5.5 >19.7 G. bilamellata [45]
100 Nitidanin >99.0 21.2 >4.6 18.4 >5.4 G. bilamellata [45]

101 2R,3β-dihydroxyolean-
12-en-28-oic acid 51.5 21.1 2.4 8.6 5.9 G. bilamellata [45]

102 2,6-dimethoxy-1-
acetonylquinol 169.0 42.2 4.0 23.0 7.3 G. bilamellata [45]

103 Gongroneside A >13.7 1.6 >8.5 1.4 >9.8 Gongronema
napalense [49]

104 Betulinic acid 3-caffeate 4.0 1.4 2.9 1.0 4.0 Diospyros
quaesita [50]

105 Rourinoside >35.9 3.7 >9.5 2.1 >16.7 Rourea minor [44]
106 Rouremin >25.5 5.1 >5.0 4.5 >5.7 R. minor [44]

107 1-(26-hydroxyhexacosanoyl)-
glycerol >45.2 9.5 >4.3 12.7 >3.2 R. minor [44]

Artemisinin >70 0.007 >10,000 0.007 >10,000
a SI = Selectivity Index = ED50 KB/IC50 P. falciparum.
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States, the leave/stem extracts of Rhaphidophora decursiva (Roxb.) Schott (Araceae), found in the Cuc 
Phuong National Park, were shown to be active against both the D6 and W2 clones of P. falciparum 
with IC50 values less than 4 µg/mL [48]. Bioassay-directed fractionation led to the isolation of 18 
compounds from the dried leaves and stems of R. decursiva, six (89–93) of them possessed antimalarial 
activity [43,47,48]. 

Among the active compounds were two trichothecene sesquiterpenes, verrucarin L acetate (VA, 92) 
and roridin E (93), which were isolated from Ficus fistulosa Reinw. ex Bl. and R. decursiva, respectively 
[43]. Both trichothecenes showed the capability of killing the P. falciparum parasites at very low 
concentrations, but only VA demonstrated a good selective index (SI) (Table 4). Additional studies of 
structurally related or chemically modified trichothecenes might lead to more potent antimalarial 
compounds with greater selectivity indices. 

The CHCl3-soluble extract of the stem of Nauclea orientalis (L.) L. (Rubiaceae; common name: 
Khan Leuang) collected in Laos also showed an in vitro inhibitory effect on the D6 and W2 clones of 
P. falciparum with IC50 values of 3 and 6 µg/mL, respectively [46]. Bioassay-guided fractionation of 
the antimalarial-active CHCl3 extract of the dried stem resulted in the isolation of two novel 
compounds, as well as six known compounds, four of them (94–97) showed moderate in vitro 
activities against P. falciparum.  

Grewia bilamellata Gagnep. (Tiliaceae) was found to be another promising lead in an  
anti-P. falciparum screening study. Bioassay-directed fractionation led to the isolation of 12 compounds 
from a sample of the dried leaves, twigs, and stems of this plant [45]. Five of the compounds showed 
varying degrees of in vitro antimalarial activity (98–102).  

Gongronema napalense (Wall.) Decne. (Asclepiadaceae) (synonym: Gymnema napalense Wall.), 
known as “Kheuang nguan mu” in Laos, is used locally in combination with one other species to treat 
polio, and this plant had also been previously reported for the treatment of leucorrhea, blennorrhea, 
and traumatic injury [49,51]. Bioassay-guided fractionation of the CHCL3 extract of this plant led to 
the isolation of a new steroidal glycoside, gongroneside A (103), with an IC50 value of 1.60 and 1.39 
µM against the P. falciparum D6 and W2 clones, respectively [49].  

Diospyros quaesita Thw. (Ebenaceae), locally known as “Muang kout” in Laos, was found to be a 
promising lead in the anti-P. falciparum bioassay. Antimalarial bioassay-directed fractionation of the 
CHCl3 extract led to the isolation of seven compounds, including one active compound, betulinic acid 
3-caffeate (104) [50].  

The stem sample of Rourea minor (Gaertn.) Alston. (Connaraceae), known as ‘‘KhuaMa Vo’’ and 
a decoction used locally to treat dengue fever [44], showed in vitro inhibitory effect on P. falciparum. 
Bioassay-directed fractionation of the antimalarial active CHCl3 extract of the dried stems of R. minor 
led to isolation of two glycosides and five known compounds. Three compounds (105–107) showed 
weak in vitro activities against P. falciparum. 
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Through collaborations established with several institutes in Vietnam, Laos, and the United States,
the leave/stem extracts of Rhaphidophora decursiva (Roxb.) Schott (Araceae), found in the Cuc
Phuong National Park, were shown to be active against both the D6 and W2 clones of P. falciparum
with IC50 values less than 4 µg/mL [48]. Bioassay-directed fractionation led to the isolation of
18 compounds from the dried leaves and stems of R. decursiva, six (89–93) of them possessed
antimalarial activity [43,47,48].

Among the active compounds were two trichothecene sesquiterpenes, verrucarin L acetate
(VA, 92) and roridin E (93), which were isolated from Ficus fistulosa Reinw. ex Bl. and R. decursiva,
respectively [43]. Both trichothecenes showed the capability of killing the P. falciparum parasites at very
low concentrations, but only VA demonstrated a good selective index (SI) (Table 4). Additional studies
of structurally related or chemically modified trichothecenes might lead to more potent antimalarial
compounds with greater selectivity indices.

The CHCl3-soluble extract of the stem of Nauclea orientalis (L.) L. (Rubiaceae; common name:
Khan Leuang) collected in Laos also showed an in vitro inhibitory effect on the D6 and W2 clones of
P. falciparum with IC50 values of 3 and 6 µg/mL, respectively [46]. Bioassay-guided fractionation of the
antimalarial-active CHCl3 extract of the dried stem resulted in the isolation of two novel compounds,
as well as six known compounds, four of them (94–97) showed moderate in vitro activities against
P. falciparum.

Grewia bilamellata Gagnep. (Tiliaceae) was found to be another promising lead in an
anti-P. falciparum screening study. Bioassay-directed fractionation led to the isolation of 12 compounds
from a sample of the dried leaves, twigs, and stems of this plant [45]. Five of the compounds showed
varying degrees of in vitro antimalarial activity (98–102).

Gongronema napalense (Wall.) Decne. (Asclepiadaceae) (synonym: Gymnema napalense Wall.),
known as “Kheuang nguan mu” in Laos, is used locally in combination with one other species to treat
polio, and this plant had also been previously reported for the treatment of leucorrhea, blennorrhea,
and traumatic injury [49,51]. Bioassay-guided fractionation of the CHCL3 extract of this plant led to
the isolation of a new steroidal glycoside, gongroneside A (103), with an IC50 value of 1.60 and 1.39 µM
against the P. falciparum D6 and W2 clones, respectively [49].

Diospyros quaesita Thw. (Ebenaceae), locally known as “Muang kout” in Laos, was found to be a
promising lead in the anti-P. falciparum bioassay. Antimalarial bioassay-directed fractionation of the
CHCl3 extract led to the isolation of seven compounds, including one active compound, betulinic acid
3-caffeate (104) [50].

The stem sample of Rourea minor (Gaertn.) Alston. (Connaraceae), known as “KhuaMa Vo” and
a decoction used locally to treat dengue fever [44], showed in vitro inhibitory effect on P. falciparum.
Bioassay-directed fractionation of the antimalarial active CHCl3 extract of the dried stems of R. minor
led to isolation of two glycosides and five known compounds. Three compounds (105–107) showed
weak in vitro activities against P. falciparum.
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3. Discussion and Conclusions

The UIC-ICBG project over 14-years periods (1998–2012), plus the subsequent continuous efforts
carried out by researchers in Hong Kong, has resulted in the generation of a large database of
information for the discovery of bioactive agents. A web-based “Atlas of Seed Plants of Cuc Phuong
National Park” presently contains all of the 1926 species of angiosperms collected through the ICBG
program [52]. Through the extensive biological and chemical studies of the active extracts and fraction,
the ICBG team has isolated approximately 300 compounds of various chemical structures, from
more than 30 active leads, including some highly active compounds and series of novel bioactive
phytochemicals. The UIC-ICBG researchers further synthesized a library of derivatives of a number
of active compounds and analyzed the structure-activity relationship. These results are expected to
provide leads for further drug development. However, as the molecular targets and mechanisms of
action of the active natural products are still unknown, continuing research of these lead compounds
need to be carried out in order to develop them as future therapeutic drugs.

During the 14 years’ efforts of the UIC ICBG, they evaluated several thousand plant extracts
against cancer, HIV, TB, malarial and bird flu virus and resulted in the identification of at least
100 bioactive compounds. However, a large number of the active plant leads have not been studied
phytochemically. Some of the plant extracts have demonstrated potent bioactivity. For example,
among the anticancer plant leads, the number of the active plant leads that showed cell killing activity
with IC50 values of less than 5 µg/mL totaled 140, and the number with IC50 values of less than
1 µg/mL is 44. Among the antimalarial plant leads, the number of the active plant extracts that
showed anti-P. falciparum activity with IC50 values within 5 µg/mL is 33, and the number with IC50

values within 1 µg/mL is 10. Thus, we believe that further exploration of these phytochemically
uninvestigated active plant leads will produce a large number of novel and active compounds, which
are considered as a valuable asset of the 14 years’ extensive research and achievements of the UIC
based ICBG program.
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