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Daemonorops draco Blume (DD), also called dragon’s blood, has been used as a
traditional Korean medicine, especially for relieving pain caused by wound infection.
Recently, it has been described that DD has antibacterial and analgesic effects. In this
study, the underlying anticancer effect of DD associated with apoptosis was investigated
in acute myeloid leukemia cell lines U937 and THP-1. DD exhibited cytotoxic effects and
induced apoptosis in U937 and THP-1 cells. Moreover, DD treatment significantly
reduced mitochondrial membrane potential (DY). The protein expression of cleaved
poly(ADP-ribose) polymerase, cleaved caspase-3, p-H2A.X, CCAAT/enhancer-binding
protein (CHOP), and activating transcription factor 4 was upregulated by DD treatment.
Consistently, DD-treated cells had increased reactive oxygen species (ROS) level in a
concentration-dependent manner via miR-216b activation in association with c-Jun
inhibition. N-acetyl-L-cysteine pretreatment reversed the cytotoxic effect of DD
treatment as well as prevented ROS accumulation. Collectively, the results of this study
suggest that the anticancer effect of DD in AML was mediated by CHOP-dependent
apoptosis along with ROS accumulation and included upregulation of miR-216b followed
by a decrease in c-Jun.

Keywords: Daemonorops draco Blume, acute myeloid leukemia, apoptosis, miR-216b, c-Jun, ER stress, reactive
oxygen species
INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous malignant disease caused by uncontrolled
proliferation of immature myeloid blast cells. The expansion of myeloid precursor cells in the bone
marrow (BM) is a distinct pathological characteristic of AML, which disrupts hematopoiesis in the
BM (1). More than half of patients with AML have chromosomal abnormalities, while the
remaining 40%–50% had cytogenetically normal AML (CN-AML). Various genetic mutations or
changes in gene phenotypes are detected in patients with CN-AML, which are important in
determining prognosis and treatment (2). To date, 13 types of mutant genes have been discovered,
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including Nucleophosmin 1 (NPM1), DNA methyltransferase 3A
(DNMT3A), FMS-like tyrosine kinase 3 (FLT3), Isocitrate
dehydrogenase (IDH), and Ten–eleven-translocation 2 (TET2)
(3). These chromosomal and gene mutations were used as an
index for the four stages of risk stratification in the 2010
European Leukemia Net classification scheme (4).

The pathology and prognosis of AML are closely related to
endoplasmic reticulum (ER) stress and the amount of reactive
oxygen species (ROS). Doron et al. have reported that AML cells
utilize ER stress to change the stromal composition in the BM.
Therefore, the reduction of ER stress, change in ROS, and
correlation between the two are important indicators for
evaluating AML activity (5). Moreover, ROS was related to the
lifespan of hematopoietic stem cells and alterations in leukemic
oncogenes (6). The ER maintains cellular functions, including the
synthesis and proper folding of proteins (7, 8). However, in
undesirable conditions, such as hypoxia, ischemia, and
turbulence in intracellular pH, ER stress occurs (9).
Subsequently, unfolded protein response is induced by ER stress,
which results in various symptoms, including neurodegenerative
diseases and cancer (10). Thus, ER stress is one of the key
mechanisms in the process of ROS-mediated apoptosis (11).

MicroRNAs (miRNA) play an essential role in maintaining
homeostasis of cellular growth, differentiation, migration, and
apoptosis, which are regulated by the development and
differentiation of hematopoietic cells (12). In particular,
alterations in miRNA genes have close relationships with the
development of tumor and hematological diseases (13, 14).
Impaired miRNA expression in AML that can stem from many
causes, such as chromosome translocations, inversion, gene
deletions, and mutations, is directly or indirectly controlled by
post-transcriptional modification due to limitless clonal expansion
of myeloid blast cells (15). Amanda et al. have reported that 33
types of miRNA were upregulated or downregulated in AML,
suggesting the use of miRNAs in subclassifying the types of
leukemia (16). Moreover, miR-15 and miR-16 were deleted or
downregulated in chronic lymphocytic leukemia (17), whereas
overexpression of the miR-181 family is associated with the high
risk of cytogenetically normal AML along with CCAAT/enhancer-
binding protein-alpha mutations (18). Modulation of miRNA
genes is related to the mutation of different oncogenes, as miR-
155 was regulated in patients with AML with FLT3-internal
tandem duplication mutations, and miR-10a and miR-10b were
capable predictors of AML with mutations (19, 20). Notably, miR-
216b is downregulated in various types of cancer, including
cervical cancer, non-small cell lung cancer (NSCLC), and
colorectal cancer (21–23). The expression of miR-216b showed a
higher frequency ofU2AF1 and IDH1/2mutations in patients with
AML and was a valuable predictor of AML recurrence (24).

The proto-oncoprotein c-Jun is an initial transcription factor
that regulates the expression of cellular mechanisms and
carcinogen combination, which belongs to the Activation
protein-1 (AP-1) family (25). The overexpression of c-Jun is
superior to the mechanism caused by ER stress-related apoptosis,
suppressing the death caused by the activation of cleaved caspase-3
and cleaved poly(ADP-ribose) polymerase (PARP) (26). Several
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studies have identified c-Jun as a target protein of miR-216b, which
was effective in alleviating cancer-related symptoms. Xu et al.
confirmed that miR-216b directly targeted c-Jun, consequently
inhibiting AP-1-dependent transcription, and was susceptible to
ER stress-related apoptosis (26). Overexpression of miR-216b
improved cisplatin-induced apoptosis in NSCLC, which was
mediated by inhibiting the expression of c-Jun (27). Hence,
changes in c-Jun activity through the regulation of miR-216b will
be a standard for observing changes in AML cell activity.

Daemonorops draco Blume (DD), a traditional medicine
derived from a natural resin, is widely used for its analgesic
effects in wound healing, ulcers, and diarrhea and has also
hemostatic, anti-inflammatory effects and reduces genesis of
osteoclasts (28, 29). DD is also referred to as dragon’s blood;
however, this name collectively refers to plant extracts of various
origins according to region (6). Although other types of dragon’s
blood have shown antitumor effects, such as inhibiting liver
cancer (30, 31), the effects of DD in treating cancer have yet to be
explored. Flavone compounds derived from DD form a phenolic
group, which has antioxidant and anti-inflammatory activities
and properties that alleviate cancer toxicity (32, 33). Therefore,
to determine various bioactive components derived from DD,
liquid chromatography (LC)/mass spectrometry (MS)/ultraviolet
detection (UV) was performed. In this study, the anticancer
effect of DD was investigated; moreover, this study evaluated the
relationship between DD and ER stress and ROS and attempted
to verify the detailed mechanisms at a molecular level.
MATERIALS AND METHODS

Materials
DD was cultivated in Kang Won province in Korea and was
bought at Yak Won Herbal Pharmacy. DD was stored at the
herbarium of the Department of Pathology, College of Korean
Medicine, and Kyung Hee University. DD (200 g) was extracted
using 99% ethyl alcohol (Duksan, Gyeonggi-do, South Korea)
according to the procedure described in previous studies (34).
Briefly, the solution was concentrated to 100-ml aqueous
solution using an evaporator and kept at −80°C for 24 h. Then,
DD was dissolved in dimethyl sulfoxide (Duksan, Gyeonggi-do,
South Korea). DD stock was prepared to a concentration of 200
mg/ml and then stored at −20°C.

LC/MS/UV-Based Analysis for DD Extract
The extract of DD was prepared by dissolving the samples in
methanol. The solutions were filtered through a 0.45-mm
hydrophobic polytetrafluoroethylene filter and analyzed by LC/
MS using an Agilent 1200 Series HPLC system (Agilent
Technologies, Santa Clara, CA) equipped with a photodiode
array detector combined with a 6130 Series electrospray
ionization (ESI) mass spectrometer. The ESI conditions were
set as follows: capillary voltage, 2.0 kV; convoltage, 50 V; source
temperature, 120°C, desolvation temperature, 350°C; and
desolvation gas flow rate, 800 L/h. High-purity nitrogen was
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used as the nebulizer and auxiliary gas. The collision energy for
detecting the precursor ions was set to 3 eV. Analysis was
performed by injecting 5 ml of the sample using Aglient Eclipse
Plus C18 column (3.5 mm, 4.6 mm × 100 mm) set at 35°C. The
mobile phase consisting of formic acid in H2O (0.1% [v/v]) (A)
and methanol (B) was delivered at a flow rate of 0.3 ml/min by
applying the following programmed gradient elution: 0%–100%
(B) for 30 min, 100% (B) for 1 min, 100% (B) isocratic for 10
min, and then 0% (B) isocratic for 10 min, to perform post-run
reconditioning of the column.

Cell Culture
The AML cell lines THP-1 and U937 were purchased from
Korean Cell Line Bank (Seoul, South Korea). THP-1 and U937
were cultured in RPMI 1640 medium containing 10% fetal
bovine serum, 10,000-U/ml penicillin/streptomycin, and 2-mM
L-glutamine (Gibco, Grand Island, NY, USA). All cells were
cultured in an incubator at 37°C in a humidified incubator
containing 5% CO2.

Cytotoxicity Assay
A cytotoxicity assay was performed to examine THP-1 and U937
cells using EZ-Cytox Cell Viability Assay Kit (Daeil Lab Service,
Seoul, South Korea) according to the manual. Cells were seeded
and exposed to various concentrations of DD (i.e., 12.5, 25, 50,
100, and 200 mg/ml) for 24 h onto a 96-well plate. The cells were
incubated with an EZ-Cytox solution until formazan was formed
for 2 h. The absorbance values were measured at 450 nm using a
microplate reader (Bio-Rad, Hercules, CA, USA).

Mitochondrial Membrane Potential Assay
JC1-MMP Assay Kit (ab113850, Abcam) was used. JC-1 Dye
(Mitochondria Function Assay Kit, Thermo–Fisher Scientific,
USA) for MMP can be detected using aggregated (excitation/
emission = 535/595) and J-monomers (excitation/emission =
475/535). The signal ratio can be used to differentiate healthy
mitochondria from depolarized ones in association with changes
in mitochondrial calcium, superoxide, mitochondrial
permeability transition, and membrane potential. THP-1 and
U937 cells were seeded in a 96-well plate and pretreated with a
density of 1 × 106 cells per well. After staining with 20-mM JC-1
Dye for 10 min at room temperature (RT) in the dark, the cells
were treated with DD (15 and 30 mg/ml) for 4 h. Then, the 96-
well plates were measured using an enzyme-linked
immunosorbent assay (ELISA) reader (Bio-Rad, Hercules,
CA, USA).

Western Blotting
Cells were lysed with a lysis buffer (pH = 7.4, 150-mM NaCl, 1%
NP-40, 50-mM Tris-HCl, 0.25% sodium deoxycholic acid, 1-M
ethylenediaminetetraacetic acid, 1-mM Na3VO4, and 1-mM
NaF) containing a protease inhibitor cocktail (Amresco,
Scolon, OH, USA). In the lysate sample, the protein
concentration was quantified using Bio-Rad DC Protein Assay
Kit II (Bio-Rad, Hercules, CA, USA) according to the
manufacturer’s instructions. The proteins were separated using
Frontiers in Oncology | www.frontiersin.org 3
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (8%–
12%) by electrophoresis and transferred to polyvinylidene
fluoride membranes (Millipore, USA). Then, 5% skim milk in
Tris-buffered saline plus 0.1% Tween 20 (TBST) was used to
block nonspecific protein binding sites. The following specific
primary antibodies were used—c-PARP (1:1,000) (#9542) (Cell
Signaling, Beverly, MA, USA), c-cas3 (1:1,000) (#9661), CCAAT/
enhancer-binding protein (CHOP) (1:1,000) (#2895), p-H2A.X
(1:1,000) (#2577), b-actin (1:1,000) (# 4967), p-ATF4 (1:1,000)
(#PA5-105835) (Thermo–Fisher Scientific, Waltham, MA, USA),
and p-c-Jun (1:1,000) (#822) (Santa Cruz Biotechnologies, Santa
Cruz, CA, USA)—for 24 h at 4°C. After washing with TBST for 30
min, the membranes were incubated with rabbit horseradish
peroxidase-conjugated immunoglobulin G (IgG) secondary anti-
mouse or rabbit antibody (5% skim milk) (1:10,000, Santa Crus,
Dallas, TX, USA) for 1 h at RT. Protein expression levels were
identified using an enhanced chemiluminescence system
(Amersham Pharmacia, Piscataway, NJ, USA).

Live and Dead Cell Assays
THP-1 (2 × 105 cells/ml) or U937 (2 × 105 cells/ml) cells were
seeded into a 4-chamber slide (Nunc™ Lab-Tek™ II Chamber
Slide™ System, Thermo–Fisher Scientific, USA) at 1 ml/well.
After seeding, the culture medium was treated with 30-mg/ml DD
for 24 h at 1 ml/well. The cells were washed with Dulbecco’s
phosphate-buffered saline, then loaded with calcein-AM (LIVE/
DEAD® Viability/Cytotoxicity Kit, Thermo–Fisher Scientific,
USA) and ethidium homodimer-1 (LIVE/DEAD® Viability/
Cytotoxicity Kit, Thermo–Fisher Scientific, USA) for 30 min,
and added to each slide, according to the manufacturer’s
protocol. Images were obtained using confocal microscopy
FV10i (OLYMPUS Fluoview USA) (green: live cells; red: dead
cells; scale bar = 100 mm).

Measurement of ROS
The Reactive Oxygen Species Detection Assay (Abcam,
Cambridge , United Kingdom) using reagent 2 ’ ,7 ’-
dichlorofluorescin diacetate (DCFDA) was used to identify
hydroxyl, peroxyl, and other ROS of cellular cytosolic
hydrogen peroxide (H2O2). THP-1 and U937 cells were seeded
onto 96-well plates and pretreated with N-Acetyl-L-cysteine
(NAC) (Sigma Aldrich Co., St. Louis, MO, USA) for 1 h, and
the control group was not pretreated with NAC. Then, the cells
were stained with 20-µM DCFDA for 30 min at RT in the dark.
Consequently, both THP-1 and U937 cells were treated with 30-
mg/ml DD for 4 h. Then, the 96-well plates were measured using
an ELISA reader (Bio-Rad, Hercules, CA, USA) (Ex/Em = 450/
570 nm)

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was isolated using the RNeasy Mini Kit (EZ™ Total
RNA Mini Prep Kit, Enzynomics, South Korea) according to the
manufacturer’s protocol and reverse transcribed using the HB_I
RT Reaction Kit. cDNAs were amplified by qRT-PCR using the
synthesized specific HB_I Nucleic Mix II primers and RNU6B
March 2022 | Volume 12 | Article 80817
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HB primers (HeimBiotek, South Korea). PCR was performed
using the LightCycler instrument (Roche Applied Sciences,
Indianapolis, IN, USA). PCR was started at 95°C for 15 min,
followed by 40 cycles at 95°C for 10 s and 60°C for 40 s, and
finished with 95°C for 60 s, 55°C for 30 s and 95°C for 30 s. The
expression of RNU6B was used to normalize the expression of
target genes. The specific primer Has-miR-216b was designed
and synthesized by HeimBiotek Company (HeimBiotek, South
Korea). Relative miRNA fold change was normalized using
standard Ct values of RNU6B (U6) (HeimBiotek, South
Korea). RT-PCR was performed using the LightCycler
instrument (Roche Applied Science, Indianapolis, IN, USA).

Transfection miR-216b Inhibitor Study
THP-1 and U937 cells were transfected with a miR-216b
inhibitor (HeimBiotek, South Korea) and ViaFect™

Transfection Reagent (Promega, Madison USA) and seeded
onto 6-well plates with prewarmed serum-free medium. In this
process, 10–50-nM miR-216b inhibitor and 3-ml ViaFect™

Transfection Reagent were added into 100-ml prewarmed
serum-free medium at RT and mixed immediately. The cells
were incubated with ViaFect™ Transfection Reagent: miR-216b
inhibitor mixtures for 5 min transfected using ViaFect™

Transfection Reagent according to the manufacturer’s protocol.
After the transfection of miR-216b inhibitor for 48 h, THP-1 and
U937 cells were treated with 30-mg/ml DD for 24 h. MiR-216b
inhibitor oligobase type with follow: 2’ O-Methyl RNA base was
applied by HeimBiotek, South Korea.

Statistical Analysis
Data were presented as means ± standard deviation. Statistically
significant differences between the control and MLT-treated
groups were calculated using Student’s t-test using SigmaPlot
12 (SysTest Software Inc., San Jose, CA, USA). All experiments
were performed in triplicate. Differences with p-values of less
than 0.05 were considered statistically significant.
RESULTS

Identification of Various Flavonoids in DD
by HPLC-MS
LC/MS/UV-based analysis of the extract of DD revealed a major
peak with molecular ions of m/z 257.1 [M+H]+ and m/z 255.1 [M-
H]- at a retention time of 30.5 min, which also showed a unique UV
spectrum (lmax 218, 236, 304, and 321 nm) (Figure 1). Based on the
characteristic UV data and the molecular ions detected by LC/MS,
as well as the chemical database of DD previously reported in
available studies (29, 34–36), the major metabolite was determined
to be (2S)-7-hydroxy-5-methoxyflavan (Figure 1).

DD Had a Cytotoxic Effect on AML Cells
To investigate the cytotoxic effect of DD, EZ-Cytox was
performed in AML cells, including U937 and THP-1 ells. In
Figures 2A, B, the concentrations of 25 and 50 mg/ml showed a
survival rate of approximately 55%–80%. Cell viability assay
Frontiers in Oncology | www.frontiersin.org 4
showed that the survival rate decreased in a concentration-
dependent manner. This result was statistically significant.

DD Reduced MMP and Induced Apoptosis
in AML Cells
To establish the mechanism of apoptosis controlled by DD, JC-1
staining and Western blotting were conducted. As shown in
Figures 3A, B, DD reduced MMP (DY) in a concentration-
dependent manner in AML cells. Furthermore, caspase-3 is a
critical executioner of mitochondria-mediated apoptosis (37).
Western blotting showed that DD significantly induced the
activation of caspase-3 along with the expression of cleaved
PARP via the inhibitory regulation of c-Jun. Furthermore,
CHOP is a major mediator of ER stress-related pathways
closely related to caspase-3 activation (38, 39). CHOP alone
does not exert sufficient effect to cause cell destruction but
enhances the effect of activating transcription factor 4 (ATF4)
to decrease cell viability through ER stress. Furthermore, ATF4
and CHOP were found to act on the same target gene to increase
protein synthesis related to stress-induced transcription,
inducing apoptosis (40). Nevertheless, the underlying
anticancer mechanism of DD related to ER stress-related
apoptotic proteins and caspase-mediated apoptosis has not
been identified so far. Furthermore, DD significantly reduced
MMP (DY), cleaved caspase 3, and cleaved PARP; increased
CHOP and p-ATF4; and attenuated p-c-Jun in a concentration-
dependent manner in AML cells (Figures 3C–F). These results
demonstrated that DD is involved in apoptosis via the
mitochondria-mediated caspase and ER stress-related apoptosis
activation pathways.

DD Increased DNA Damage in AML Cells
To evaluate the cytotoxic effects of DD, Western blotting and
live/dead staining were adopted in U937 and THP-1 cells. DD
significantly increased p-H2A.X by Western blotting in a
concentration-dependent manner compared with the untreated
groups (Figures 4A, B). Similarly, DD-treated cells emitted
significantly more red fluorescence due to dead cells compared
with the control group (Figures 4C, D). Consistently, DD
effectively induced apoptosis by causing DNA damage.

DD Increased ROS and NAC Reversed
DD-Induced Cytotoxicity in AML Cells
Furthermore, chemotherapy increases the consumption of
glutathione and sulfhydryl in cells, followed by an increase in
ROS, which eventually leads to DNA damage (41). To determine
whether DD induces ROS accumulation, a DCFDA staining
assay kit was used. As shown in Figures 5A, B, the amount of
intracellular ROS was significantly increased compared with that
in the untreated control group in AML cells. To determine the
role of ROS in DD-induced apoptosis, ROS was measured in
AML cells with and without NAC pretreatment. NAC is an
antioxidant and a safe and inexpensive drug that induces
glutathione production and inhibits the depletion of MMP
(DY) as an ROS scavenger (42). As shown in Figures 5C, D,
ROS accumulation was effectively attenuated by NAC
March 2022 | Volume 12 | Article 808174
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pretreatment compared with that in the untreated group in U937
and THP-1 cells. Consistently, the reduced cell viability caused
by DD was significantly recovered by NAC pretreatment in both
cells (Figures 5E, F). These findings showed that the DD-
induced apoptosis in AML cells may depend on the regulation
of ROS accumulation.

DD Regulated the Expression Level of
miR-216b Along and Inhibited p-c-Jun in
AML Cells
Several studies have identified c-Jun as a target protein of miR-
216b, which was effective in alleviating cancer-related symptoms
(26). Since DD significantly reduced c-Jun, its upstream miRNA,
miR-216b, was measured. To measure the expression of miR-
216b, qRT-PCR was performed in U936 and THP-1 cell lines.
Frontiers in Oncology | www.frontiersin.org 5
The treatment of DD significantly upregulated the expression of
miR216b in a concentration-dependent manner (Figures 6A, B).
To measure the role of miR-216b in DD-induced apoptosis,
qRT-PCR and cell viability assay were performed. MiR-216b
inhibitor transfection reversed the increased miR-216b by DD
treatment (Figures 6C, D). Consistently, reduced cell viability by
DD treatment was increased by miR-216 inhibitor transfection
(Figures 6E, F). These results indicate that miR-216b is involved
in the anticancer effects of DD. Additionally, to examine the
involvement of miR-216b in the anticancer effect of DD and
apoptosis, we performed qRT-PCR of miR-216b, together with
Western blotting of p-c-Jun in AML cells, and we observed that
miR-216b level was highly increased in THP-1 and moderately in
U937 cells (Figures 6A–D). Transfection of miR-216b inhibitor
in the presence of DD significantly upregulated p-c-Jun level and
A

B

D E

C

FIGURE 1 | (A) UV chromatogram of LC/MS (detection wavelength was set at 315 nm) of the extract of DD. (B) Positive and (C) negative ion-mode ESI-MS data of
the peak at retention time 30.5 min and (D) UV data of the peak. (E) The chemical structure of (2S)-7-hydroxy-5-methoxyflavan (1).
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A B

FIGURE 2 | Daemonorops draco Blume (DD) exerted a cytotoxic effect on acute myeloid leukemia cells. The cytotoxicity of DD in (A) U937 and (B) THP-1 cells. The
cells were treated with DD (i.e., 12.5, 25, 50, 100, or 200 mg/ml) for 24 h. Cell viability assay was performed using EZ-Cytox. Values above represent the means of
three experiments. Means ± standard deviation; **p < 0.01 and ***p < 0.001 compared with the untreated groups.
A B

D E

F

C

FIGURE 3 | Daemonorops draco Blume (DD) reduced mitochondrial membrane potential and induced apoptosis in U937 and THP-1 cells treated with DD. (A, B) Cells
were pretreated at JC-1 (20 mM) and DD (15 and 30 mg/ml) for 4 h. Green monomeric fluorescence form changed to red fluorescent aggregates in a concentration-
dependent manner, which was measured using a microplate reader. (C–F) After treatment with DD (15 and 30 mg/ml) for 24 h, the cells were subjected to Western
blotting due to the expression of apoptosis-related proteins, such as cleaved caspase-3, cleaved poly(ADP-ribose)polymerase, CCAAT/enhancer-binding protein, p-ATF4,
p-c-Jun, and b-actin, in (C, E) U937 and (D, F) THP-1 cells. Fluorescein isothiocyanate (excitation/emission = 540/570) and rhodamine (excitation/emission = 540/570).
Values above represent the means of three experiments. Means ± standard deviation; *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the untreated groups.
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reduced CHOP, an ER stress-related apoptosis marker,
compared to the DD-only treated cells (Figures 6G, H).
Collectively, these results document that miR-216b-mediated
c-Jun and CHOP are closely related to DD-induced apoptosis
of AML cells.
DISCUSSION

AML is one of the most aggressive types of cancer with a low
treatment success rate (43, 44). The survival rate of AML is
estimated to be less than 10% when a relapse occurs (43, 45).
Symptoms and prognosis of AML are associated with numerous
genemutations,which leads to thedifficultyofmakingcleardiagnosis
and treatmentdecision.Themutation inhematopoietic stemcell that
has the multipotent ability of self-renewal could be related to clonal
expansion, making it the distinct characteristic responsible for the
variability of AML (46). In a recent cohort study, 86% of patients
showed two ormore genemutations, and co-mutated gene increased
the mortality of AML (47). Induction therapy is the main treatment
for patients with AML, using chemotactic agents, such as
anthracyclines and cytarabine (48). Consolidation therapy is used
in AML relapse or minimal residual leukemia, in which
chemotherapy and hematopoietic stem cell transplantation are
used alone or in combination. Recently, new treatment strategies,
such as FLT3 inhibitors, IDH inhibitors, nuclear exporter inhibitors,
Frontiers in Oncology | www.frontiersin.org 7
and immune therapies, are introduced to regulate genetic expression
and immunological responses in AML (48). However, complete
remission of chemotherapy in older patients is relatively low, while
specific treatment methods for relapsed/refractory AML have yet to
be identified (49). Furthermore, short-termand long-termside effects
of chemotherapywere identified, accompaniedbysignificant impacts
on quality of life in patients with AML (50). Diverse variations in
AMLandthe limitationsof existinganticancerdrugs suggest theneed
for research on alternative treatments for AML.

Meanwhile, the efficacy of DD in AML has not been explored,
and the underlying mechanisms of DD were identified in U937
and THP-1 cells, including apoptosis, ROS, and miRNA
regulation. U937 is a pro-monocytic, human myeloid leukemia
cell line, which is commonly used to elucidate mechanisms of
monocyte and macrophage differentiation. THP-1 is a human
monocytic leukemia cell line, characterized by the expression of Fc
and C3b receptors, with the lack of surface immunoglobulins (51).
The classification of membrane receptors, such as IgG or C3b, is
thought to be consistent with the AML model because they are
detected in the blast cells of patients with AML. Blast cells are
classified into myeloblasts, myelomonocytes, and monocytes (52).

Recently, clinical case studies have reported that the apoptosis
pathway involvingcaspase3 andcleavedPARParemajormediators
that enhance chemotherapy effectiveness (53, 54). Moreover,
cleaved caspase 3 triggers various pathways involved in apoptosis
signaling (53). The mitochondrion is a sensor of apoptosis-
March 2022 | Volume 12 | Article 808174
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FIGURE 4 | Daemonorops draco Blume (DD) increased DNA damage in U937 and THP-1 cells. (A, B) The effect of DD on H2A.X, which was treated with various
concentrations of DD (i.e., 15 and 30 mg/ml for 24 h), in U937 and THP-1 cells, which were subjected to Western blotting with the antibodies of p-H2A.X and b-
actin. (C, D) Confocal images of AML cells represented live cells (left panel), dead cells (middle panel), and the combination of both (right panel). AML cells were
treated with DD (30 mg/ml) for 24 h, and double dyes were incubated at 37°C for 30 min. AML cells were stained with calcium AM (excitation/emission = 494/517)
and ethidium homodimer-1 (excitation/emission = 528/617). Scale bar = 100 mm.
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promoted caspase activation in response to the apoptotic signaling
pathway caused by DNA damage or various cellular stresses (55).
Notably, the reduction inMMP (DY) is characterized by inevitable
apoptosis resulting in the cleaved form of executioner caspase 3,
causing the proteolysis of PARP (56). Here, the ER stress-related
factor CHOP induces the activation of caspase 3 due to DNA
damage caused by drug treatment, leading to apoptosis (56, 57).
CHOP induced by numerous cellular stresses is a pro-apoptotic
factor that promotes the activation of apoptotic genes and the
hyper-oxidation of the ER lumen (58). Meanwhile, ATF4 plays a
dual role in maintaining protein homeostasis while inducing
apoptosis and cell cycle arrest. ATF4 is related to the reduction of
stress in cancer cells due to lipid accumulation andmalnutrition, as
well as angiogenesis and metastasis, and conversely, when the
Frontiers in Oncology | www.frontiersin.org 8
situation changes, cancer cells are vulnerable to apoptosis through
chemotherapy (59). Notably, ATF4 and CHOP prefer binding to
similar motifs (GCATCAT/G) that share target gene sets (26). The
forced expression of ATF4 and CHOP induced ATP depletion and
oxidative stress protein synthesis that could result in cell death (52).
Conversely, c-Jun N-terminal kinase (JNK), referred to as a serine/
threonine (Ser/Thr) protein kinase, is included in the mitogen-
activated protein kinase family. JNK mediates various cellular
responses, such as proliferation, differentiation, survival,
migration, invasion, and apoptosis, and stimulates inflammation,
fibrosis, cancer progression, and metabolic diseases (60–62).

Thus, to determine the anticancer effect of DD on AML, in
this study, the underlying apoptotic signaling of DD was studied
in connection with the regulation of c-Jun or ER stress-mediated
March 2022 | Volume 12 | Article 808174
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FIGURE 5 | Daemonorops draco Blume (DD) increased reactive oxygen species (ROS) accumulation and N-Acetyl-L-cysteine (NAC) pretreatment reversed the
cytotoxic effect of DD in U937 and THP-1 cells. (A, B) Both cells were incubated with 20-mM 2’,7’-dichlorofluorescin diacetate (DCFDA) for 30 min at 37°C in the
dark and subjected to ROS assay. The cells were exposed to 30-mg/ml DD for 4 h. DCFDA fluorescence was determined using a dual microplate reader. (C, D)
Both cells were exposed to NAC (5 mM) pretreatment for 60 min and subjected to ROS measurement. (E, F) A cell viability assay was conducted with absorbance
measurement using an optical spectrometer. (Ex/Em = 450/570). Values represent the means of three experiments. Means ± standard deviation; *p < 0.05, **p <
0.01, and ***p < 0.001 compared to untreated control group. #p < 0.05 and ###p < 0.001 between the two groups.
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FIGURE 6 | Anticancer effect of Daemonorops draco Blume (DD) and reactivation of c-Jun and CCAAT/enhancer-binding protein-mediated apoptosis in acute
myeloid leukemia cells. DD elevated the expression of miR-216b in (A) U937 and (B) THP-1 cells. AML cells were transfected with miR-216b inhibitor. (C–H) A total
of 1 × 105 cells/ml were seeded into 6-well plates and allowed to reach approximately 50% density of transfection. The cells were transfected with miR-216b
inhibitor for 48 h and exposed to the indicated doses of DD (i.e., 15 and 30 mg/ml) for 24 h. Following transfection for 48 h, miRNA was isolated and adopted to
quantitative analysis of miRNA expression level or cell viability (E, F), and Western blotting (G, H) was performed. Values represent the means of three experiments.
Means ± standard deviation; *p < 0.05, **p < 0.01, and ***p < 0.001 compared with untreated control group. #p < 0.05, and ###p < 0.001 between the two groups.
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apoptosis signaling. Here, the viability of AML cells treated with
DD was inhibited in a dose-dependent manner, indicating the
anticancer effect of DD on AML cells (Figure 2). Consistently,
DD altered MMP (DY) and increased the expression of cleaved
PARP, cleaved caspase 3, p-ATF4, and CHOP due to the
activation of the apoptotic pathway in a dose-dependent
manner, implying the potent involvement of ER stress-related
pathway and mitochondrial-mediated caspase activation
signaling in the anticancer effect of DD (Figure 3).

Several studies have reported that excessiveROS can causeDNA
damage, such as DNA double-strand break or DNA protein cross-
linking break generation, illustrating their genotoxic nature (63–
66). p-H2A.X is a marker of DNA damage due to DNA double-
strand break (67, 68). The underlying anticancer effect of DD was
associated with DNA damage followed by apoptosis induction at
the living. Consistently, DD significantly increased p-H2A.X due to
DNA damage, which was confirmed using DNA-binding polar
fluorescent probe through confocal microscopy. The red
fluorescent probe could not penetrate live cell membranes and
selectively binds to theDNA of dead cells (69), indicating increased
DNA damage due to DD treatment (Figure 4).

Furthermore, to confirm whether the DD-induced apoptosis
signaling is regulated by ROS, NAC pretreatment was performed.
Importantly, NAC pretreatment alone or NACwith DD treatment
increasedcell viability comparedwithuntreatedcontrols, indicating
that ROS accumulation plays a critical role in DD-induced
activation of the apoptotic pathway in AML cells (Figure 5).
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Accumulating evidence showed that ER stress-related and
mitochondria-mediated pathways are closely involved in ROS
accmulation, thereby exerting potential anticancer effects of DD.
The Human Genome Project has provided the genetic blueprint of
humans and helps to uncover the genetic causes of human diseases
including cancer. As human genome sequences have begun to be
solved using algorithms, cancer progression has been found to be
caused by miRNA, which controls tumor suppressor genes and
oncogenes. Therefore, numerous studies on miRNA related to
human diseases and cancer have been conducted (70). Of note,
the importance of natural products in regulating miRNA has only
recently begun to focus on determining therapeutic targets for
cancer (71). Consistently, several studies have reported that herbal
extracts are extensively related tomodulatingmiRNA in association
with the inhibition of epithelial–mesenchymal transition,
chemoresistance, and metastasis (72, 73). Interestingly, miRNA is
easy to acquire frompatient blood or tissue samples and is used as a
diagnostic and prognosticmarker as it provides crucial information
concerning gene expression profiling (74), suggesting that cancer-
specific characterization of AML contributes to the advantage of
targeting of miRNA-based therapy. Therefore, to assess whether
DD has a miRNA-based therapeutic effect on AML, the underlying
anticancer effect of DD was investigated in association with the
miR-216b-mediated pathway. Here, DD significantly induced the
expression of miR-216b in both U937 and THP-1 cells, revealing
that DD is a regulator of miR-216b. Notably, it has been recently
identified that plants significantly inhibitmiRNA,which is required
for controlling processes by the introduction of a sponge RNA
involved in fine-tuning targeting miRNA (75, 76). MiR-216b
directly inhibited c-Jun in response to ER stress, which led to
CHOP-dependent apoptosis (26).Additionally, c-Jun is involved in
cell survival in various cancers by the dysregulation of the PI3K/
AKT axis, including NSCLC (77) and gastric cancer (61).

Interestingly, the excessive depletion of miR-216b and the
activation of c-Jun by miR-216b inhibitor were observed
compared with those in groups treated with DD alone, indicating
that DD induces apoptosis in sensitized AML cells via miR-216b-
dependent signaling (Figure 6). Additionally, the biological effects
of natural products have been studied for decades, and recent
analysis methods related to HPLC-MS have enabled gathering
scientific data on effective compounds (78). Furthermore, it is
well documented that effective compounds of natural products,
such as alkaloids, phenolics, and carotenoids, have apoptotic effects
on AML (79). Salvia miltiorrhiza, another traditional herbal
medicine, classified similarly with DD in terms of blood
circulatory effects, induces apoptosis and necrosis in a ROS-
independent and caspase-independent manner in acute
lymphoblastic leukemia cells (80). Additionally, Spatholobi caulis,
an effective Chinese medicine for relieving blood stasis, was proved
to exert caspase-dependent apoptotic activity on U937, a human
monocyte leukemia cell line (81). In previous studies, compared
with the efficacy of natural products targeting a single mechanism
for leukemia caused by complex mutations, DD significantly
activated mitochondria-mediated caspase activation, ER stress-
related regulation of ROS, c-Jun, and miR-216b, indicating the
multiple anticancer mechanisms of DD (Figure 7). However, the
FIGURE 7 | A diagram of the anticancer effect of Daemonorops draco Blume
(DD) research strategy. DD significantly promoted mitochondria-mediated
caspase activation and endoplasmic reticulum stress-related apoptosis
pathway involved in reactive oxygen species generation, leading to apoptosis
due to DNA damage in AML cells. DD treatment significantly showed
anticancer effects on AML cells by significantly inhibiting c-Jun, leading to
apoptosis via the regulation of miR-216b.
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preparedDDsolution is highlyconcentrated andbioavailability and
inability could be the issues to achieve the therapeutic dose in vivo.
Further investigation is needed for future studies about the
anticancer effect of DD. The antitumor properties of DD should
be examined further in in-depth studies on the specific therapeutic
application methods of DD in treating AML. One of the
constituents of DD, dracorhodin has been reported to have an
anticancer effect in melanoma (82), esophageal squamous cell
carcinoma (83), lung cancer (84), breast cancer (85), etc. Other
compounds fromDDincludingabietic acid (86) andnordracorubin
(87) showed anticancer activities. DD could be a potent candidate
for in vivo and clinical studies.This study is limited in that the effects
ofDDonAMLare confined to in vitro studies. In future studies, the
practical effects of DD should be explored through in vivo
experiments. The determination of the specific interrelationships
by which ROS lowered the viability of AML cells and regulated ER
stress should be further addressed. Furthermore, to confirm the
efficacyofDD inpatientswithAML, further studies are required for
the identification of proper dosage of DD through animal
experiments; moreover, studies on the subtypes of various AML
cell lines and miRNA genes should be conducted.
CONCLUSIONS

DD has a significant cytotoxic effect on AML cells. Notably, DD
treatment efficiently induced ROS-mediated ER-associated
degradation, including CHOP and p-ATF4 along with cleaved
caspase 3 and cleaved PARP, and attenuated c-Jun, activating p-
gH2A.X. Moreover, DD treatment regulated miR-216b-dependent
ER stress-related apoptosis in AML cells. Overall, this study opens
up the possibility of therapeutic application of DD against AML,
involving upregulation of miR-216b.
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