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Abstract

The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible
for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from
advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid
and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties.
Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking
and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that
neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better
understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In
the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern
carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related
genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.

Introduction
The cancer stem cell (CSCs) paradigm has started a new
era in cancer research with significant implications for
the formulation of future clinical therapeutics [recently
reviewed in [1,2]]. This hierarchical model for cancer,
unlike the classical stochastic model, supports the exis-
tence of CSCs, or tumour-initiating cells, that are respon-
sible for tumour formation, maintenance, growth and
metastasis [3,4]. Although CSCs were identified in solid
and non-solid tumours, our current knowledge concern-
ing the origin of these cells and the processes leading to
their formation is limited due to the complexity of the
experimental approaches that will be required to provide
data of sufficient substance to support this hypothesis
[5,6]. Given the stem cell-like characteristics of CSCs, it
has been proposed that CSCs originate from adult stem
cells, progenitor cells or differentiated cells that have
acquired ‘stemness’ properties [3,6-8]. Although all three
cell sources have the capacity to be genuine CSCs, in our

view, adult stem cells appear to be the most probable tar-
get for malignant transformation, generating cells with
stem-like properties and tumorigenic potential [6,9,10]
and accounting for cancer as a ‘stem cell disease’ [9].
Unlike adult stem cells, progenitor cells and somatic cells
are more lineage-committed and comprise reduced pro-
liferation potential, thus requiring additional alterations
to re-acquire the self-renewal potential [3,6,9].
One of the major drivers of malignant transformation is

aging [11-15]. With age, all cells, including stem cells, accu-
mulate genetic and/or epigenetic alterations, which affect
the cellular, molecular and physiological functionality of
tissues [13-16]. The consecutive deterioration of tissues is
an important risk factor for the origin of age-related
chronic diseases in humans, such as diabetes, cardiovascu-
lar and neurodegenerative diseases, etc. Age-associated
effects may also lead to a higher risk of tumorigenesis,
when in concomitant with deregulated cell signalling and
changes in the microenvironment of stem cells. These
effects increase the resistance to cellular senescence and
programmed cell death and may ultimately lead to the
transformation of stem cells into CSCs. Although direct
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evidence for this concept is missing, it is consistent with
the notion that CSCs originate from adult stem or progeni-
tor cells. Further research is needed to better understand
the age-associated alterations involved in the generation of
CSCs and advances in this area are expected to shed new
light on cancer diagnosis and treatment. The present
review focuses on the relationship between aging and can-
cer stem cells and aims to explore the latest advances in
the field.

The CSCs model
In the last few decades, the concept that tumours may
comprise a rare population of cells with self-renewal, pro-
liferation and differentiation capacities, resembling stem
cells, has emerged. The first evidence for CSCs came from
the identification of leukemic stem cells (LSCs), which are
the cancer-initiating cells of the hematopoietic system
[17]. LSCs were identified as a population of cells expres-
sing the CD34+CD38- cell surface markers with a uniquely
oncogenic phenotype characterized by their ability to

initiate leukaemia in non-obese diabetic mice with severe
combined immunodeficiency disease (NOD/SCID mice)
[18]. The development of fluorescence-activated cell sort-
ing (FACS), together with the establishment of specific cell
surface markers, permitted the subsequent identification
of CSCs in solid tumours [7]: breast (CD44+CD24-/low) [5],
prostate and ovarian (CD44+) [19,20], brain and lung
(CD133+) cancers [21,22], and others [23-25]. In addition
to malignant tumours, tumour stem cells have been identi-
fied in benign tumours, as demonstrated recently by Xu
and colleagues (2009). These cells were isolated from
pituitary adenoma and exhibited similar characteristics to
multipotent stem-like cells, such as self-renewal capacity,
multi-lineage differentiation, sphere formation, resistance
to chemotherapy, and tumour formation in NOD/SCID
mice [26]. The presence of CSCs in both benign and
malignant tumours demonstrates the ability of these cells
to facilitate tumour formation and support carcinogenesis.
The identification of CSCs led to the characterization

of their stem cell-like properties (Figure 1), consistent

Figure 1 Characteristics of CSCs. CSCs are tumour-initiating cells that may result from malignant transformation of stem/progenitor cells,
instigating the tumorigenic process. CSCs have been described to possess stem-like properties, such as self-renewal, proliferation and
differentiation abilities, expression of pluripotent (e.g. Sox2, Oct4, Nanog) and functional (e.g. ALDH1, CD133+, CD34+CD38-) markers, active
signalling pathways (e.g. Notch, Hedgehog, Wnt), genetic and epigenetic profiles similar to stem cells, and capacity to form spheres in vitro. CSCs
can be efficiently detected when injected in immunocompromised mice, as these cells, through their self-renewal and differentiation potential,
give rise to a tumour with phenotypic heterogeneity. Tumorigenesis is followed by angiogenesis and by the invasion and metastatic stages, as
part of the disease progression. Indeed, CSCs have been associated with the induction of tumour vascularisation through the expression of
vascular-related factors and by their contribution to metastasis through the induction of the EMT program. Their resistance to chemo and
radiotherapies is clinically important as most anticancer agents target the tumour bulk but not the CSC population. The resistance ability of
these cells may be associated with their slow-cycling phenotype, and/or expression of efflux transporters, anti-apoptotic proteins, DNA-repair
mechanisms, or of free radicals scavengers.
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with their ability to cause tumour formation and recur-
rence [27,28]. By definition, normal stem cells give rise
to the cellular components of an organ by asymmetric
division mediating their self-renewal and differentiation
potential [6]. Similarly, CSCs mimic this process by pro-
moting aberrant organogenesis in a hierarchical-mode,
in which a phenotypically heterogeneous progeny at dif-
ferent levels of differentiation and proliferation is
formed [10]. The stem-like characteristics of CSCs
include the expression of pluripotent markers such as
Sox2, Oct4, and/or Nanog [27,28] and of functional
markers, like ALDH1, CD133+ (as lung stem cells), or
CD34+CD38- [as hematopoietic stem cells (HSCs)]
[9,29]. Furthermore, CSCs resemble normal stem cells
by sharing active signalling pathways, such as Notch,
Hedgehog, and/or Wnt [3,30], similar genetic and epi-
genetic profiles [31], and aptitude to form spheres in
vitro [27,32].
The isolation and maintenance of CSCs advanced our

understanding of cancer initiation and progression, result-
ing in in vitro models to characterize these cells, model
cancer transformation and progression, study the effect of
the microenvironment [33], screen for CSC-specific drugs
[34,35], and identify biomarkers for the onset, progression
of cancer and its recurrence after therapy [36] (Figure 2).
CSCs can be isolated from cancer cell lines or primary

tumours based on the i) expression of surface markers
[37,38], ii) detection of the side population [39], iii) anoikis
resistance [40], or iv) drug resistance [41]. However, the
low frequency of CSCs in primary tumours and the diffi-
culty to stably maintain these cells in vitro makes some
of these systems difficult to use. To overcome these issues,
in vitro models of cancer stem-like cells have been devel-
oped recently. Chen and colleagues (2012) developed a
CSC model from mouse induced pluripotent stem cells
(miPSC) cultured in a medium simulating the tumour
microenvironment [35]. Sachlos et al (2012) established a
valuable screening assay for CSCs-targeting drugs using
neoplastic human pluripotent stem cells (hPSCs) [34].
Additionally, several reports demonstrated that cancer
stem-like cells can be obtained by the reprogramming of
cancer cells [42,43] and primary tumours [36] to iPSC-like
induced pluripotent cancer cells (iPCs). Unfortunately, this
process is time-consuming and its efficiency is even lower
than the reprogramming of non-tumorigenic somatic
cells. The stem-like characteristics of iPCs were validated
through the expression of pluripotent markers, such as
Oct3/4, Sox2, or Nanog, as well as SSEA-4, Tra-1-60, or
Tra-1-81; and the capacity of iPCs to form the three germ
layers via embryoid bodies in vitro and teratomas in vivo
[4,27,28,42-44]. Furthermore, iPCs are resistant to several
anticancer drugs [43], express CSCs markers, like CD133

Figure 2 In vitro models of CSCs and their applications. Different in vitro models of CSCs have been created in an attempt to allow a better
understanding of the properties of these cells but also of the cancer biology. In addition, these models have been employed in drug screening
assays but also in the identification of biomarkers associated with different stages of neoplasia and its recurrence after therapy. Generally, CSCs
can be isolated from primary tumours and cancer cell lines based on definite properties, such as expression of specific cell surface markers (e.g.
CD44+, CD133+, CD34+CD38-), resistance to anoikis or to drugs, or possess of a side population phenotype. Furthermore, recent reports have
demonstrated the generation of CSC-like cells through the reprogramming of cancer cells from both primary tumours and cancer cell lines.
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[28], and demonstrate tumorigenic and metastatic proper-
ties in vivo [28,36].
Based on the tumorigenic potential and self-renewal

properties of CSCs, these cells can be easily detected by
serial transplantation in immunocompromised mice,
while the progeny tumour represents the phenotypic
heterogeneity of the parental tumour [10] (Figure 1).
Conversely, non-tumorigenic cells have lower prolifera-
tive and anti-apoptotic capacities, as confirmed by their
decreased Hoechst dye efflux or aldehyde dehydrogenase
activities and do not form tumours in vivo [39]. This
notion is consistent with the positive correlation
between the higher incidence of differentiated cancer
cells in a given tumour and favourable prognosis [3,6,7].
Differentiation of CSCs, or so called “differentiation
therapy”, was therefore proposed as a novel approach to
eliminate CSCs [45,46] using different compounds, such
as all-trans retinoic acid (ATRA), an inducer of the pro-
myelocytic differentiation used for the treatment of
acute promyelocytic leukaemia [47], and suberoylanilide
hydroxamic acid (SAHA), a histone deacetylase inhibitor
and differentiation inducer of human breast and cancer
cells [48].
CSCs are involved in cancer progression and metastasis

[49] (Figure 1). These cells induce tumour vascularisation
by promoting angiogenesis, through the expression of
vascular-related factors, e.g. VEGF and PD-ECGF [50],
and by stimulating the incorporation of CSC-derived
endothelial cells into newly formed capillaries [51].
Tumour vasculature is not only important for supplying
blood to the tumour but also for the proliferation and
maintenance of CSCs [51], resulting in a “vicious cycle”
contributing to cancer progression. Furthermore, CSCs
may contribute to invasion and metastasis by acquiring
migratory properties through the induction of the epithe-
lial to mesenchymal transition (EMT) program [14,49].
This concept was supported by the activation of b-cate-
nin and the low levels of E-cadherin in stem-like tumour
cells at the tumour-host interface [52] and the induction
of mesenchymal markers in CSCs, such as vimentin and
N-cadherin [28]. Moreover, tumours can become meta-
static as a result of the accumulation of extra mutations
and/or epigenetic modifications within the CSCs [2,46].
The formation of CSCs in tumours and their mainte-

nance, angiogenic support and subsequent metastatic
potential are clinically important especially since most
current antitumor therapies target the bulk tumour and
not CSCs. Moreover, the resistance of CSCs to che-
motherapy and radiotherapy supports their association in
tumour recurrence after therapy [35,53-55] (Figure 1).
This is consistent with the increased expression of ABC
efflux transporters [56,57], like P-glycoprotein and/or
ABCG2, and/or anti-apoptotic proteins (e.g. Bcl-2, survi-
vin, and NF-�B) [3,14], and with the higher DNA-repair

capacity [14], elevated free radical scavenger properties
[58], and/or slower proliferation potential related to a
slow-cycling state (G0 phase) of these cells [53]. Overall,
it is critical to develop novel therapies that are adjusted
to effectively eliminate CSCs and tumour recurrence.
However, considering that normal stem cells and CSCs
are very similar, effective chemotherapeutic agents must
selectively target CSCs but not normal stem cells [34,53].

Origin of CSCs: Adult stem cells vs progenitor
cells
Do CSCs originate from adult stem or progenitor cells?
Given that these cells represent a rare population within a
tissue, similarly to CSCs in the tumour, makes them diffi-
cult to study [10]. Furthermore, the process in which an
adult/progenitor cell undergoes malignant transformation
into a CSC is very complex and may involve multiple
stages. Nevertheless, strong evidence suggests that most
tumours originate from CSCs through neoplastic altera-
tions of adult stem or progenitor cells [2,9,59].
Adult stem cells constitute small populations within the

tissues that are important for tissue homeostasis and
regeneration by replacing senescent cells and those lost as
a consequence of tissue injury [11]. Through asymmetric
division, stem cells support their self-renewal while main-
taining their tissue-specific differentiation capacity [13].
Although HSCs were the first adult stem cells to be
described, the existence of adult stem cells have been con-
firmed in other tissues, such as heart [60], lung [61], brain
[62], skeletal muscle [63], kidney [64], and others [65-67].
Adult stem cells have a longer lifespan than progenitor

and somatic cells; long enough to allow the accumulation
of age-associated genetic and/or epigenetic alterations
responsible for malignant transformation into CSCs
[2,3,10,14,15,68,69]. For this reason, during chronological
aging, adult stem cells are more likely to be the target of
alterations that may lead to the formation of CSCs. This
notion is further supported by the observation that pro-
genitor cells lose their self-renewal property during com-
mitment, an important capacity that should be re-acquired
in order to undergo transformation [70]. Adult stem cells
can self-renew and thus require fewer mutations and/or
epigenetic modifications to undergo neoplastic transfor-
mation than progenitor cells [3]. Progenitor cells may gain
stem cell-like characteristics through the activation of self-
renewal-related genes through de novo mutations [70] or
gain of mutations of adult stem cell’s origin [3], or via
EMT induction [2,71].
Since hematopoietic lineage markers are well known,

leukaemia has become an important model for the study
of the cell origin of LSCs. Nevertheless, LSCs’ origin is still
controversial [3,6]. Many reports support that leukaemia
arises from malignant HSCs [3]. A study on patients with
acute myelogenous leukaemia (AML) detected different
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cell types of the myeloid and lymphoid lineages expressing
the AML1/ETO transcript. The authors suggested that the
acquisition of the genetic translocations had occurred at
the stem cell stage, as these cells were able to differentiate
into B cells and cells from the myeloid lineage, and some
of which acquired additional mutations that ultimately
resulted in AML [72]. These results are further supported
by the observation that LSCs are CD34+CD38-, similarly
to normal primitive cells, supporting that HSCs are a pos-
sible target for transformation into LSCs [73]. Chronic
lymphocytic leukaemia (CLL), a malignancy involving
mature B lymphocytes, was demonstrated to be caused by
the accumulation of oncogenic episodes within the HSC
population [74].
The acquisition of self-renewal capability in progenitor

cells may induce leukaemia, as observed by the expres-
sion of the MLL-ENL [75], MOZ-TIF2 [76], and MLL-
AF9 oncogenes, or by the activation of b-catenin [77] in
progenitor cells of the hematopoietic system. However,
when the same oncogenes were expressed in HSCs,
fewer transformed cells were required for leukaemia
induction in vivo and the tumours induced by these
cells were more heterogeneous [2]. These results indi-
cate that progenitor cells require self-renewal properties
in order to be transformed into LSCs, a mechanism that
already exists in HSCs. In addition to leukaemia, CSC’s
origin has been determined in solid tumours such as
gliomas. When Nf1 and p53 gene mutations were intro-
duced into neural stem cells (NSCs), no abnormalities
were observed, except when these alterations were pre-
sent in the oligodendrocyte precursor cells (OPCs), as
confirmed by the occurrence of glioma [78]. Instead,
when telomerase expression was induced in adult
mesenchymal stem cells, neoplastic transformation
occurred and tumour initiation was observed [79].
Furthermore, evidence has shown that the induction of
oncogene expression or abrogation of tumour suppres-
sion genes induces the transformation of stem cells into
CSCs, leading to tumour development [80-84]. Morrison
and colleagues (2008) studied the tumours of the per-
ipheral nervous system (PNS) and demonstrated that
the absence of Nf1-deficient neural crest stem cells in
postnatal mice, supporting that the PNS tumours did
not originate from these stem cells but rather from dif-
ferentiated glia [8]. Another study showed that the lack
of INK4A and ARF genes and the activation of the
EGFR pathway in both NSCs and differentiated astro-
cytes induced gliomagenesis [85].
Further studies are necessary to improve our knowledge

regarding the origin of CSCs, as these cells seem to result
from the transformation of adult stem cells, progenitor
and/or differentiated cells. Due to the longer lifespan of
adult stem cells, these cells are more likely to be the target
for the accumulation of genetic and/or epigenetic events

that may induce the first steps of tumorigenesis and carci-
nogenesis. Furthermore, the self-renewal and differentia-
tion properties of stem cells allow the accumulation of
mutations and other alterations to the downstream pro-
geny during the lifespan of an organism [68], explaining
why some types of progenitor and differentiated cells can
give rise to CSCs.

Aging and transformation of stem/progenitor
cells into CSCs?
Mammalian aging is associated with a reduction in orga-
nismal functionality and this is accompanied by an age-
related decline in tissue regeneration and homoeostasis
[11,13,14,68]. Due to its complexity, the biological
mechanisms underlying the aging process are still not
well known [68]. Diverse theories have been proposed in
an attempt to explain this issue [11], including the
mutation accumulation theory, suggested in 1952 by
Medawar [86], and the antagonistic pleiotropy theory,
suggested by Williams in 1957 [87]. Later on in 1977,
Kirkwood published the disposable soma theory, sug-
gesting that an organism has a limited amount of energy
that should be divided between the non-reproductive
part of the organism, or soma, and the reproductive
part, or germ line. Lifespan is controlled by an energetic
balance needed to allow the organism to repair age-
related damage with minimal impact on reproductive
capacity [88]. Immortal germ cells must resist stress to
be able to transmit genetic information to subsequent
generations with high accuracy and reliability [11]. In
this context, adult stem cells can be considered part of
the somatic content of an organism as they are not
immortal and have a finite replicative lifespan, in con-
trast to embryonic stem cells (ESCs) and germ cells
[89]. Thus, this theory predicts that adult stem cells may
be subjected to age-related alterations, such as telomeric
DNA reduction, DNA repair deficiency, chromosome
rearrangements, genotoxic effects, and accumulation of
genetic/epigenetic alterations [14] (Figure 3). Indeed, it
is widely accepted that aging is associated with stem cell
pool depletion, as a consequence of cellular senescence
or apoptotic death, and/or their reduced functionality,
leading to reduced tissue regeneration potential and
impaired homeostasis [11,89,90]. These effects are asso-
ciated with the onset of age-related human diseases,
such as neurodegenerative disorders, heart failure,
arthritis, diabetes, etc. [13,68,91] (Figure 3). Further-
more, the transformation of stem/progenitor cells into
CSCs can be induced with time, leading to tumour for-
mation and carcinogenesis [2,3,10,14,15,68]. In fact, cell
senescence and apoptosis are important mechanisms for
the organism as a defence from tumour formation
[7,11,13,14,92,93]. This review has focused on aging-
associated tumorigenesis.
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Some types of cancer can be viewed as age-related disor-
ders associated with genetic and/or epigenetic alterations
of stem/progenitor cells along with the deregulation of
their microenvironment [14,68,94-99]. In the case of
HSCs, a direct link was established between the age-
related loss of lineage specificity and regenerative capacity
[95], and the onset of leukaemia [94-97]. This relationship
is supported by the expression of leukaemia-related
genetic [95] and epigenetic alterations [100] in aged HSCs,
associated with an aged bone marrow microenvironment
that allows the expansion of LSCs [97]. In addition to leu-
kaemia, adult stem/progenitor cells deficiency and loss of
their function during aging have been associated with the
onset of non-hematopoietic tumours, such as skin and
brain cancers. For example, the resistance of stem cells to
cell death and senescence was shown to be mediated by
age-associated self-renewal deregulation and genetic and/
or epigenetic alterations, inducing their transformation
into CSCs and skin tumour [98]. Moreover, aged NSCs
have been associated with tumour formation and neurode-
generative disorders, as a consequence of their impairment
and inability to perform tissue homeostasis [99].

Age-associated genetic events and generation of
CSCs
During the lifespan of an organism, stem cells are sub-
jected to DNA damage, such as base modifications, inter
or intrastrand crosslinks, DNA strand breaks, etc. Such
damage can result from the effect of endogenous [e.g.
reactive oxygen species (ROS), reactive nitrogen species
(RNS), spontaneous hydrolysis, alkylation, replication
errors, etc.] and exogenous (e.g. UV light, chemical, che-
motherapeutic and radioactive compounds, X-rays, ioniz-
ing radiation, etc.) genotoxic agents, telomere shortening,
and spontaneous degradation of DNA, leading to genome
instability [68,101,102] (Figure 3). Unlike damaged pro-
teins, lipids and RNA, which can be replaced, damaged
DNA cannot be substituted and it is easily heritable to
daughter cells. To ensure that the genomic integrity of
stem cells is well preserved throughout the lifespan of an
organism, these cells must resist damage from noxious
external stimuli and injuries. DNA damage response path-
ways are highly important for stem cells, as shown by the
exceptional capability of stem cells to repair DNA, in con-
trast to other cell types [101], and by studies with DNA
repair-deficient mice that showed a senescence- and apop-
tosis-related depletion of the stem cell population [103].
Nonetheless, age-dependent reduction in DNA damage
repair pathways occurs in stem cells and may contribute
to their dysfunction as well as malignant transformation
and tumorigenesis [104,105].
Stem cells may possess an additional cytoprotective

system to protect against the acquisition of genetic and
epigenetic modifications in their genomes. The immortal
strand hypothesis states that, during the asymmetric divi-
sion of a stem cell, the segregation of its DNA takes place
in a non-random manner as it depends on the DNA
strand’s age. In fact, the new stem cell acquires the oldest
template from the DNA replication and the other daugh-
ter cell that undergoes differentiation obtains the newly
synthesized strand. The stem cell pool includes the DNA
strands with fewer mutations acquired during DNA repli-
cation and the most similar to the original cell population
generated during development [106]. Although evidence
exists to support this theory in many types of stem cells,
the biochemical mechanisms responsible for this event
are still under investigation [106-108].
Although stem cells possess efficient systems for pro-

tection from DNA damage, these systems are not per-
fect and may be overwhelmed. Therefore genetic/
epigenetic alterations can elude and accumulate with
time within cells [68]. This observation was confirmed
by a study from Welch et al (2012), revealing that HSCs
and progenitor cells from healthy individuals accumulate
mutations with age, 0.13 exonic mutations per year of
life [15]. Though most of these background mutations

Figure 3 Age-related effects in the stem cell population. Stem
cell populations, and their progeny, are subjected to age-effects
that are related to the decline in tissue regeneration and
homeostasis and consecutive onset of chronic human diseases,
such as neurodegenerative disorders, heart failure, and diabetes.
Deregulation of stem cell function or decrease of their population,
due to cell senescence and apoptotic death, are the main factors
for these age-related observations. Furthermore, malignant
transformation of stem/progenitor cells may occur, leading to
tumour formation and carcinogenesis. Indeed, the aging process is
associated with the accumulation of genetic/epigenetic alterations
within the stem/progenitor cell populations, together with telomeric
DNA reduction, DNA repair deficiency, and chromosome
rearrangements that may induce this process. During time,
endogenous (e.g. ROS, RNS, spontaneous hydrolysis, alkylation,
replication errors, telomere shortening, etc.) and exogenous (e.g. UV
light, chemical, chemotherapeutic and radioactive compounds,
X-rays, ionizing radiation, etc.) damage may occur, thus affecting the
stem cell population.
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are not relevant for the initiation of leukaemia, few rele-
vant mutations may occur and give advantage to the
cell, which then undergoes transformation into a LSC
and initiates leukaemia. These observations are consis-
tent with the model of pre-tumour progression pro-
posed by Calabrese et al (2004) that during the period
preceding tumorigenesis, neutral mutations accumulate
in stem cells without apparent effects on cell morphol-
ogy or tumorigenesis. Since the stem cell population is
very small, benign mutations can be maintained and
accumulated over time due to genetic drift. This “pre-
tumorigenesis process” may start from birth and pro-
ceed until the tumour formation, a process that can take
years or even decades. The shift from the pre-tumour
progression towards the tumour progression is marked
by a combination of mutations that allows the stem/pro-
genitor cells to undergo transformation and induce
tumour formation in a multistep process [69]. There-
fore, the early stage of this process is characterized by
the formation of a pre-CSC. Shlush et al (2014) and
Corces-Zimmerman et al (2014) have recently identified
pre-leukaemic HSCs as chemoresistant HSCs containing
mutations arising early in the evolution of AML
[109,110]. Such cells are distinct from HSCs but antece-
dent to leukemic cells and contain some, but not all,
leukaemia-specific mutations where the earliest are in
“landscaping” genes, genes implicated in the regulation
of the epigenetic processes, and the latest are in “prolif-
erative” genes [109,110]. These stem/progenitor cells
can acquire extra genetic/epigenetic alterations that can
lead to genome instability [15,69].
Telomere attrition or gaining of oncogenic events (e.g.

BCR-ABL or AML1-ETO translocations in HSCs) are
examples of such events that allow the selection of these
cells among others [14,15,68]. Genome instability can
lead to additional alterations, such as increased telomer-
ase activity, and inactivation of tumour suppressor genes
(e.g. p16INK4A, pRb, p53 and/or PTEN), which allow cells
to resist to senescence and apoptosis signals and to
become immortal [14,68]. These events may lead to the
malignant transformation of stem/progenitor cells into
CSCs and tumorigenesis. Furthermore, the self-renewal
properties of stem cells allow the propagation of these
genetic and epigenetic events to their progeny, explaining
why non-stem cells (e.g. progenitor cells) can undergo
transformation into CSCs [14,68]. Taken together, telo-
merase activity and/or activation of oncogenes and inac-
tivation of tumour suppressor genes are important
factors for the transformation of stem/progenitor cells
into CSCs.
Telomerase expression is not homogeneous in all cells

within an organism. Indeed, adult stem cells, as ESCs,
germ cells and cancer cells, express telomerase, other-
wise absent in somatic cells [111,112]. Telomeric DNA

extension and maintenance are ruled by telomerase, a
ribonucleoprotein that uses an internal RNA subunit as
a template, avoiding telomeres shortness and related
chromosome instability and aneuploidy associated with
loss of cell viability through cell cycle arrest and apopto-
sis or necrosis [12,113]. Unlike germ cells, telomerase
expression in adult stem cells decreases with age, caus-
ing telomere shortening with each cell division [114].
When telomeres become too short, a p53-mediated
DNA-damage response becomes activated, leading to
cell cycle arrest or apoptosis. In fact, downregulation of
the tumour suppressor protein p53 in telomerase-defi-
cient mice leads to carcinogenesis [115]. Therefore, telo-
merase has an important protective activity from
genome instability and cancer. On the contrary, these
defence mechanisms can lead to organ aging and failure
as a consequence of stem cells loss, especially in tissues
with high turnover. Tissues with high potential for long-
evity possess stem cells with longer telomeres and this
influences the number of cell divisions a stem cell can
undergo [116]. CSCs can therefore be generated from
stem cells with short telomeres resulting in genomic
instability and accumulation of mutations in tumour
suppressor genes or in oncogenes. Consequently, telo-
merase activity can be increased in CSCs, allowing telo-
mere maintenance and elongation in CSCs and
tumorigenesis [111]. Telomerase has being studied in
different mouse models of tumorigenesis and studies
during aging. These studies showed an onset of age-
related diseases related with telomerase-deficiency, for
the exception of carcinogenesis. In fact, tumour occur-
rence was reduced even in the absence of the main
tumour-suppressor pathways, except when p53 was
downregulated. Higher occurrence of cancer was
described when telomerase was overexpressed [12]. Tel-
omerase activity is reactivated in most cancers (85-90%),
but when this system is inhibited or is lacked (10-15%
of the tumours), tumours express a telomerase-indepen-
dent system, the alternative lengthening of telomeres
(ALT) [117,118]. ALT system is based on the copy of a
telomeric DNA template through a homologous recom-
bination and was demonstrated to be expressed in many
tumours, being rare in carcinomas [118].
As discussed earlier, inactivation of tumour suppressor

genes (e.g. p53, PTEN) together with activation of onco-
genes (e.g. Ras, Bmi1, and c-myc) play an important step
in the formation of CSCs and in tumorigenesis
[7,11,13,14,68,92,93]. Tumour suppressor genes are well-
known DNA damage-induced pathways’ components that
promote cell senescence, apoptosis, or transient cell cycle
inhibition through the upregulation of specific genes
[119]. Downregulation of p53 has been observed in many
types of cancer [68]. When its activation is stimulated by
stress (e.g. damaged DNA, UV, and oncogenic events), this
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transcription factor induces the expression of various
target genes implicated in several cellular pathways, such
as the ones associated with cycle regulation, genome stabi-
lity, and induction of cell differentiation [120]. Moreover,
when activated in stem/progenitor cells, p53 may induce
their apoptotic death by stimulating pro-apoptotic pro-
teins (like Bak proteins) or by the down-regulating anti-
apoptotic factors (such as Bcl-2 and Bcl-xL) [14]. Instead,
when down-regulated due to inactivating mutations, dele-
tion of the p14ARF gene, or through MDM2 gene multipli-
cation in the genome, p53 provides an advantage to cells
as they resist to apoptosis, leading to their immortality by
unlimited cell divisions [120]. It has been demonstrated
that p53 suppression may induce CSC expansion and
tumour formation. Therefore, therapies that enhance p53
may lead to the elimination of this type of cells and the
inhibition of cancer progression [119].
In addition to p53, PTEN and the corresponding

abnormality activated PTEN/PI3K/AKT signalling path-
way have been related with cancer. PTEN, a tumour
suppressor gene that controls cell growth, migration,
death and differentiation through AKT regulation [121],
can undergo a decrease of its activity through mutations,
deletions or methylation silencing of its promoter [122].
Indeed, when depleted in HSCs, NSCs or prostate stem
cells, PTEN can lead to leukaemia [123], brain or pros-
tate tumorigenesis, respectively [121]. Mutations in PI3K
and AKT were reported in breast CSCs, but also in
other cancers, and might be related with tumour prolif-
eration [124].
The activation of oncogenes has been widely demon-

strated in many cancers. The oncogenes c-myc and
Bmi1 are such examples [125-127]. Recently, c-myc has
been used together with other transcription factors for
the generation of iPSCs from differentiated cells [128].
This fact demonstrates its importance for stem cell
maintenance, although a role in regulating the balance
between self-renewal and differentiation of stem cells
has also been described [129]. Indeed, cell proliferation
can be promoted via c-myc overexpression through its
amplification, translocation or activation of downstream
genes [126]. In CSCs, c-myc oncogene expression is
higher than in other cancer cells and it was essential for
CSCs proliferation and survival [130]. Another oncopro-
tein reported to be implicated in the self-renewal regula-
tion of both normal and cancer stem cells is Bmi1
[131,132]. Bmi1 is usually upregulated in cancer [127]
and its expression was shown to be important for cancer
initiation and progression, and maintenance of the CSC
compartment [133,134]. Another example of oncogenes
expressing activating mutations in cancer is the Ras
family [135]. This family of GTPases is located at the
cell membrane and regulates signal transmission from
hormones, growth factors and cytokines receptors.

These proteins can regulate cell proliferation, differen-
tiation and death through their influence in some signal
transduction pathways (e.g. MAPK and PI3K/AKT)
[135]. Activating missense mutations in Ras are found
in many cancers [125]. Interestingly, different expression
levels of K-Ras have diverse effects. For instance, when
Ras is activated at endogenous levels, cell proliferation is
enhanced, but its overexpression induces cell cycle
arrest and senescence [125]. Instead, when K-Ras is
absent in ES cells, these cells undergo aberrant transfor-
mation and acquire an abnormal self-renewal capacity,
demonstrating the tumour suppression protein-like
behaviour by promoting tumour formation when absent
in stem cells [136].
After CSC formation followed by tumorigenesis, the

progression of the disease may go through invasion
stages such as metastasis. For this step, unlimited self-
renewal properties of CSCs through its deregulation are
fundamental [14,68] and may be acquired through the
activation of Wnt/b-catenin, EGFR, NOTCH, and/or
Hedgehog signalling pathways, leading to cell survival,
maintenance, and metastasis [14]. Wnt/b-catenin is an
important signalling pathway that regulates stem cell
potency of embryonic and adult stem cells but also their
commitment and differentiation [137]. If Wnt/b-catenin
functionality is decreased, the progenitor compartment
is compromised due to a decline of the stem cell self-
renewal ability [138]. In contrast, abnormal activation of
this pathway through b-catenin expression is related
with CSC maintenance and tumour development
[77,139-141]. Equally, upregulation of the oncoprotein
PLAGL-2 in normal and malignant NSC promotes their
self-renewal and proliferation through activation of
Wnt/b-catenin signalling [142]. This fact is confirmed
by the higher copy numbers of PLAGL-2 in human
malignant gliomas and colon cancers [142].

Age-associated epigenetic events and generation
of CSCs
Epigenetics is the study of molecular factors and pro-
cesses that regulate gene function independently of
alterations in the DNA sequence [143]. This process is
important for the proper function of different cells in a
multicellular organism by controlling the activation or
silencing of specific genes. Epigenetic changes occur at
multiple levels, such as DNA methylation and histone
modifications, both affecting chromatin folding, and
non-coding microRNAs [144]. The functions of DNA
methylation, or the de novo addition or maintenance of
methyl groups to CpG sites by DNA methyltransferases
(DNMTs), include regulation of gene transcription, pre-
servation of parental imprinting, X-chromosome inacti-
vation, and prevention of homologous recombination
and chromosomal instability [145,146]. In addition, the
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posttranslational modifications of histones, such as acet-
ylation and methylation of lysine residues of histones
H3 and H4, control chromatin structure and therefore
transcriptional activity [147].
Aging is associated with epigenetic changes. This

observation is related to an accumulation of epimuta-
tions due to the decrement of the epigenetic control
with time [16]. In fact, errors may occur during the
DNA methylation maintenance, resulting in genes or
genomic regions that undergo hypomethylation or
hypermethylation during aging [16,148]. The epigenetic
deregulation and consecutive genetic expression varia-
tion may therefore induce the onset of human disorders,
like neurological diseases and cancer [149].
Generally, cancer epigenomes display global DNA hypo-

methylation associated with hypermethylation at definite
promoters [150]. DNA hypomethylation occurs at repeti-
tive sequences, coding regions and at the promoters of
many genes, such as the oncogenes Ras and Maspin.
Furthermore, DNA hypomethylation leads to genome
instability through chromosomal reorganizations
[151-153]. Age-associated hypermethylation has been
observed to occur at CpG islands [154] and at promoters
of the key developmental genes [155] and polycomb group
target genes (PCGT) [156]. Teschendorff et al (2010)
demonstrated that methylation at the PCGT promoters
can lead to the silencing maintenance in stem cells of
usually suppressed genes, which may drive to carcinogen-
esis as stem cell features are preserved [156]. Furthermore,
silencing of tumour-suppressor genes, such as APC,
p16INK4A, p14ARF, etc., has been associated with DNA
hypermethylation at the promoters [157].
Feinberg et al (2005) proposed a model for the origin of

CSCs and therefore carcinogenesis: the epigenetic progeni-
tor model of human cancer [153]. According to this
model, cancer arises from stem/progenitor cells by three
steps: (1) an epigenetic alteration, (2) a mutation-induced
oncogene activation or tumour-suppressor silencing,
which can be substituted by epigenetic alterations, and (3)
genetic and epigenetic instability. The model, first pro-
posed by Feinberg (2005), is further supported by the
observation that cancer cells and ESCs share highly similar
epigenetic profiles. Importantly, the notion that epigenetic
alterations in stem/progenitor cells are the major driving
force for carcinogenesis can explain why most types of
cancers arise in the elderly. The case of patients with spe-
cific cancer-causing mutations (such as in the APC gene
in colon cancer patients) are especially interesting because
probably age-associated epigenetic changes are required
for the transformation process [158].

Age-associated macromolecule accumulation
Deregulation of proteostasis may be involved in cancer
and other human diseases, including neurodegenerative

diseases, cystic fibrosis, and type 2 diabetes [159,160].
Proteostasis, or homeostasis of the proteome, is an
essential mechanism for cell function and viability that
coordinates proteome stability by regulating protein
synthesis, localization, and folding, and the removal of
misfolded, degraded, or aggregated proteins [161]. These
processes require many components that are tightly
regulated by the cell: i) ribosomes that govern protein
translation [162], ii) molecular chaperones that control
protein folding, localization, and prevent undesirable
protein aggregation [163], and iii) the autophagy and
proteasome systems that remove unneeded, misfolded,
modified, damaged, and aggregated proteins, which are
not rescued by chaperones or other systems [164,165].
In situations of severe proteotoxic stress, senescence or
apoptosis can be induced [166].
Many reports have demonstrated that the functionality

and efficiency of proteostasis decline with age as shown
by the accumulation of damaged proteins in aged tissues
[159,160,166-168]. Such damaged proteins may result
from protein misfolding, aggregation, or modification,
translation errors, ROS, or from genetic alterations
[166,169]. As a consequence, damaged proteins can
accumulate within cells with age, instigating cell’s mal-
function and death due to membrane damage and for-
mation of toxic aggregates [160,166]. For instance, the
occurrence of augmented protein modifications, e.g. oxi-
dation, glycation, or carbonylation, with age may disturb
several cellular processes, like energy metabolism and
protein synthesis, folding and degradation pathways
[170]. Therefore, proper maintenance of protein home-
ostasis in stem cells is of vital importance as it maintains
the cell’s proteome and therefore its functionality [159].
Vilchez et al (2013) proposed a model to clarify the role
of proteostasis in the different types of stem cells and dif-
ferentiated progeny. According to this model, both long-
term stem cells (e.g. HSCs) and differentiated cells (e.g.
neurons or cardiomyocytes) possess high-quality proteos-
tasis, decreasing the effects caused by damaged proteins
and allowing their long-term survival [160].
Therefore, the temporal accumulation of damaged pro-

teins may occur due to the deregulation of proteostasis
[159,160,166,167]. In such conditions, the transcription
factor heat shock factor 1 (HSF1) becomes activated and
induces the expression of heat shock proteins (Hsps) that
undertake the folding of the misfolded proteins and pre-
vent their aggregation [167]. HSF1 has been described to
have an important role in carcinogenesis as shown by its
role in tumour initiation and progression through the
regulation of the expression of Hsps and other targets
[171,172]. Indeed, Hsf1-/- mice expressing a mutant p53
are incapable of forming tumours [171]. Furthermore,
HSF1 expression is important for proliferation of cancer
cells [173], as demonstrated by a study showing that
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higher HSF1 expression in breast tumours is associated a
poorer prognosis in breast cancer [174]. The importance
of HSF1 in carcinogenesis may be associated with its
capacity to regulate additional transcriptional programs
distinct from heat shock, and therefore protein folding-
unrelated, like energy metabolism, DNA repair, apopto-
sis, etc. The activation of these pathways by HSF1 facili-
tates malignant transformation, cancer cell survival, and
proliferation [172]. HSP90, a target of HSF1, is a molecu-
lar chaperone that supports protein folding and prevents
their aggregation [175]. This proteostasis factor may sup-
port the acquisition of genetic diversity of proteins [159].
Indeed, HSP90 seems to protect and maintain functional-
ity of misfolded proteins that result from destabilizing
mutations [159]. Such proteins, like p53, Akt, Bcr-Abl,
among others, have important roles within the cellular
pathways, and were found to be mutated in cancers
[176,177]. HSP90 may have an important role in the sur-
vival of CSCs and cancer cells, as demonstrated by the
development of cancer therapies targeting this molecular
chaperone [178].
If chaperones cannot repair damaged or misfolded

proteins, these proteins undergo degradation through
autophagy or proteasome [160]. Autophagy, a lysosomal
catabolic pathway important for the degradation of
damaged organelles and proteins, is an essential physio-
logical mechanism for self-renewal and differentiation of
adult stem cells [164,179,180]. Indeed, the long lifespan
and the quiescent state of these cells limit their capacity
to dilute “cell waste” through their progeny [168]. When
this mechanism was absent in stem cells, a block of the
differentiation potential together with a loss of pluripo-
tency and self-renewal was observed in these cells [179].
Importantly, autophagy can circumvent oncogenesis by
eliminating damaged mitochondria, that would other-
wise lead to bioenergetic deficiency, an escalation of
ROS levels, and oncogenic proteins like p16/SQTM1
[168]. Autophagy can be suppressed by several onco-
genes (e.g. Akt, PI3K, etc.) and be induced by tumour
suppressor proteins, such as PTEN, DAPK1, etc.) [168].
The proteasome system and autophagy are important

cellular mechanisms that regulate an appropriate protein
concentration within the cell [160,165]. Such proteins are
involved in many cellular pathways, such as cell cycle,
apoptosis, signal transduction, etc. [181]. Although the
importance of these systems for hESC pluripotency
are known, their role in adult stem cells still needs to be
clarified [160].
Taken together, adult stem cells maintain cytoprotec-

tive mechanisms to prevent the accumulation of proteins
that could otherwise lead to cellular damage. The deregu-
lation of some of the proteostasis pathways, such as
autophagy and molecular chaperones, might be related
with tumorigenesis. It will be important to understand

the role of proteostasis in stem cells during aging and
their relation with the generation of CSCs. It is clear that
proteostasis is an important process for both CSCs and
cancer cells, in terms of CSC maintenance [182-184],
chemoresistance [185], migration and invasion [186] and
as demonstrated by its activation in cancer cells
[171,172,187].

Conclusions
In the last decade, significant progress has been made in
the field of CSC biology and we are gradually gaining a
better understanding of the role of these cells in tumour
initiation and progression. Indeed, CSCs are cells with
stem cell-like properties that may play a central role in
the process of carcinogenesis. They have been implicated
in tumorigenesis, angiogenesis, invasion and metastasis,
and tumour recurrence after therapy. Recent cancer
therapies have been focused on CSCs in the hope that
their elimination will allow the elimination of self-
renewal tumour cells and therefore the bulk tumour,
leading to a long-term suppression of disease recurrence.
Although our knowledge in terms of the origin of CSCs

has been improved in recent years, there is still much that
remains unknown. Different models have been developed
supporting the emerging consensus that CSCs arise from a
stem/progenitor through temporal accumulation of
genetic/epigenetic alterations [14,15,69,95,153]. Indeed,
the complex transformation process of stem/progenitor
cells into CSCs may involve different steps and it may
occur in parallel with a deregulated microenvironment,
associated with telomere attrition, inactivation of tumour
suppressor genes and upregulation of oncogenes together
with genomic and epigenetic instability. At more advanced
stages of malignant transformation CSCs may evade the
immune system, induce angiogenesis, and finally acquire
metastatic capacities.
Due to the fact that age-related effects on stem/progeni-

tor cells are difficult to study experimentally, many aspects
of this process are still not well known; especially with
regards to the transformation mechanism leading to the
generation of CSCs. Therefore, it is of special importance
to fill-in the gap between age-associated effects on stem/
progenitor cells and tumorigenesis. Likewise, further char-
acterization of the mechanisms involving proteostasis in
stem cells and their role during aging is needed, as well as
their relation with the development of CSCs.
Therefore, in the context of aging, genetics, epigenetics

and the microenvironment are all interconnected, per-
mitting tumour initiation and progression. It is of enor-
mous importance to study the biological properties of
CSCs, particularly genotypic and phenotypic features that
distinguish them from normal stem cells. Knowledge
gained from such studies is a pre-requisite for the devel-
opment of new therapies that selectively target CSCs,
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neutralizing their metastatic potential and thus eliminat-
ing one of the most lethal age-related diseases, cancer.
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