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Abstract

Background: DNA barcodes are a useful tool for discovering, understanding, and monitoring biodiversity which are
critical tasks at a time of rapid biodiversity loss. However, widespread adoption of barcodes requires cost-effective
and simple barcoding methods. We here present a workflow that satisfies these conditions. It was developed via
“innovation through subtraction” and thus requires minimal lab equipment, can be learned within days, reduces the
barcode sequencing cost to < 10 cents, and allows fast turnaround from specimen to sequence by using the
portable MinION sequencer.

Results: We describe how tagged amplicons can be obtained and sequenced with the real-time MinION sequencer
in many settings (field stations, biodiversity labs, citizen science labs, schools). We also provide amplicon coverage
recommendations that are based on several runs of the latest generation of MinION flow cells (“R10.3”) which
suggest that each run can generate barcodes for > 10,000 specimens. Next, we present a novel software,
ONTbarcoder, which overcomes the bioinformatics challenges posed by MinION reads. The software is compatible
with Windows 10, Macintosh, and Linux, has a graphical user interface (GUI), and can generate thousands of
barcodes on a standard laptop within hours based on only two input files (FASTQ, demultiplexing file). We
document that MinION barcodes are virtually identical to Sanger and Illumina barcodes for the same specimens (>
99.99%) and provide evidence that MinION flow cells and reads have improved rapidly since 2018.

Conclusions: We propose that barcoding with MinION is the way forward for government agencies, universities,
museums, and schools because it combines low consumable and capital cost with scalability. Small projects can
use the flow cell dongle (“Flongle”) while large projects can rely on MinION flow cells that can be stopped and re-
used after collecting sufficient data for a given project.

Keywords: DNA barcoding, Biodiversity discovery, MinION, Oxford nanopore, Citizen science, Species delimitation,
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Background
DNA sequences have been used for identification and
taxonomic purposes for decades [1–3], but for most of
this time, they have been akin to mobile phones in the
1990s: of limited value due to sparse signal coverage and
high cost. Obtaining barcodes was too complicated and
expensive despite the development of effective DNA ex-
traction protocols [4], fast Sanger sequencing protocols
[5], and the establishment of the Canadian Centre for
DNA Barcoding (CCDB), which is the primary sequen-
cing facility for the International Barcode of Life Con-
sortium (iBOL: [6]). After 15 years and the investment of
> 200 million USD in facilities and barcoding, ca. 8 mil-
lion animal barcodes are available for searches in the
database “BOLD Systems” of which ca. 6 million se-
quences can be downloaded as “public data” (April 2021:
[7]). Combined with barcodes from NCBI, they are now
a valuable resource for the global biodiversity
community.
However, the cost of barcodes has remained high

(http://ccdb.ca/pricing/) and the most widely used ap-
proach to large-scale barcoding still relies on sending
specimens from all over the world to the CCDB in
Guelph (Canada). For example, > 85% of all arthropod
barcodes in BOLD Systems were generated by the CCDB
with more than > 60% of the voucher specimens
remaining in the center [8]. Unfortunately, this model
for barcoding interferes with real-time biodiversity mon-
itoring and specimen accessibility. We therefore here
argue that barcoding has to be decentralized. We show
that this can be achieved through “innovation through
subtraction,” which yields simplified and cost-effective
solutions for generating barcode amplicons in molecular
laboratories with very basic equipment. Combined with
the use of MinION sequencers, these simplifications
allow for generating barcodes almost anywhere by biolo-
gists and citizen scientists alike.
A decentralized model for monitoring the world’s bio-

diversity is necessary given the scale, urgency, and im-
portance of the task at hand. For example, even if there
were only 10 million species of metazoan animals on the
planet [9] and a new species was discovered with every
50th specimen that is processed, species discovery with
barcodes will require the sequencing of 500 million
specimens [10]. Yet, species discovery is only a small
part of the biodiversity challenge in the 21st century.
Biodiversity loss is now considered by the World Eco-
nomic Forum as one of the top three global risks based
on likelihood and impact for the next 10 years [11] and
Swiss Re estimates that 20% of all countries face ecosys-
tem collapse as biodiversity declines [12]. This implies
that biodiversity discovery and monitoring will require
in the future completely different scales than in the past.
The old approaches thus need rethinking because all

countries will need real-time distributional and abun-
dance information for species in order to develop effect-
ive conservation strategies and policies. In addition, they
will need information on how species interact with each
other and the environment [13].
Barcodes were initially intended as an identification

tool for biologists [1]. Thus, most projects focused on
taxa with a large following in biology (e.g., birds, fish,
butterflies) [14] Yet, despite targeting taxa with well-
understood diversity, the projects struggled with barcod-
ing > 75% of the described species in these groups [14].
When the pilot barcoding projects ran out of tissues
from identified specimens, they started targeting uniden-
tified specimens; i.e., DNA barcoding morphed into a
technique that was used for biodiversity discovery (often
in “dark taxa”: [14, 15]). This shift towards biodiversity
discovery was gradual and incomplete because the pro-
jects used a “hybrid approach” that started with sorting
specimens to “morphospecies” before barcoding one or a
few specimens for each morphospecies/sample (e.g.,
[16–22]). However, this approach is not ideal for bio-
diversity discovery and monitoring because morphospe-
cies sorting is labor-intensive and of unpredictable
quality because it is heavily dependent on the taxonomic
expertise of the sorters [23, 24]. This is why it is prefera-
ble to reverse the workflow [25] by barcoding all speci-
mens first and assessing congruence with morphology
afterwards [26, 27]. This approach has the additional
benefit that it yields quantitative data and corroborated
species-level units. However, it requires efficient and
low-cost barcoding methods that are also suitable for
biodiverse countries with limited science funding.
Fortunately, such cost-effective barcoding methods are

now becoming available. This is partially due to the re-
placement of Sanger sequencing with second- and third-
generation sequencing technologies that have lower se-
quencing costs [25, 28–35]. These changes mean that
the widespread application of the reverse workflow is
now feasible for tackling the species-level diversity of
those metazoan clades that are so specimen- and
species-rich that they have been neglected in the past
[35, 36]. Many of these clades have high spatial species
turnover, requiring many localities in each country to be
sampled and large numbers of specimens to be proc-
essed [34]. Such intensive processing is best achieved
close to the collecting locality to avoid the delays and
costs of shipping samples across continents. Local pro-
cessing is now feasible because biodiversity discovery
can be readily pursued in decentralized facilities at var-
ied scales. Indeed, accelerated biodiversity discovery is a
good example of a big science initiative that allows for
meaningful engagement of students and citizen scien-
tists, which can enhance significantly biodiversity educa-
tion and appreciation [37–40]. This is especially so when
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stakeholders not only barcode, but also image speci-
mens, determine species abundances, and map distribu-
tions of newly discovered species. All of which can be
based on specimens collected in the citizens’ own
backyard.
But can such decentralized biodiversity discovery really

be effective? Within the last 5 years, students and interns
in the laboratory of the corresponding author at the Na-
tional University of Singapore barcoded > 330,000 speci-
mens. After analyzing the first > 140,000 barcoded
specimens for selected taxa representing different eco-
logical guilds, the alpha and beta diversity of Singapore’s
arthropod fauna was analyzed based on ~ 8000 putative
species which revealed that some habitats were unex-
pectedly species-rich and harbored unique faunas (e.g.,
mangroves, freshwater swamp: [34, 41]). Barcodes even
helped with the conservation of charismatic taxa when
they were used to identify the larval habitats for more
than half of Singapore’s damsel- and dragonfly species
[42] and facilitated species interaction research and bio-
diversity surveys based on eDNA [43, 44]. Biodiversity
appreciation by the public was fostered by featuring
newly discovered species and their species interactions
on “Biodiversity of Singapore” (BOS > 15,000 species:
[45]), dozens of new species have been described, and
the descriptions of another 150 species are being final-
ized [46–54].
Barcoding metazoan specimens require the successful

completion of three steps: (1) obtaining DNA template,
(2) amplifying COI via PCR, and (3) sequencing the COI
amplicon. Many biologists learn these techniques in uni-
versity for a range of different genes—from those that
are easy to amplify (short fragments of ribosomal and
mitochondrial genes with well-established primers) to
those that are difficult (long, single-copy nuclear genes
with few known primers). Fortunately, amplification of
short mitochondrial markers like COI does not require
the same level of care as nuclear markers. Learning how
to barcode efficiently is hence an exercise of unlearning
unnecessary procedures. Note that this unlearning
comes with cost savings which are particularly vital for
boosting biodiversity research where it is most needed:
in biodiverse countries with limited science funding.
Our manuscript therefore has a more comprehensive
Methods section than most publications, because we do
not only describe which methods we used for our exper-
iments, but also why certain alternative methods were
avoided. In addition, we provide videos that illustrate the
techniques [55].
Simplified laboratory techniques for obtaining barcode

amplicons are important, but they need to be comple-
mented with efficient and cost-effective sequencing tech-
niques. Therefore, we here also test the capabilities of
the latest flow cells used in Oxford Nanopore

Technologies (ONT) instruments. They have the advan-
tage of being inexpensive and yielding data quickly by
passing single-stranded DNA through a nanopore and
using the current fluctuations to reconstruct the DNA
sequence [56]. ONT’s MinION is especially suitable for
decentralized barcoding because it is small and inexpen-
sive. However, its use for barcoding has been unpopular
because of low sequence read accuracy (85–95%: [56,
57]). This meant that the data had to be analyzed with
complex bioinformatics pipelines that were not suitable
for widespread use.
Recently, three significant changes occurred. Firstly,

ONT released a low-cost and capacity flow cell (Flongle)
that only has 126 pores (126 channels) instead of the
customary 2048 (512 channels) of a full MinION flow
cell. We here test whether Flongle is a promising tool
for small barcoding projects that need quick turnaround
times for a few hundred specimens. Secondly, ONT re-
leased a new flow cell chemistry for full flow cells
(“R10.3”) where the nanopores have a dual instead of a
single reader-head. Dual reading has altered the read
error profile by giving better resolution to homopoly-
mers and improved consensus accuracy [58, 59]. Lastly,
ONT released high accuracy (HAC) basecalling [60]. All
three innovations are here tested using six different
amplicon pools of very different sizes (191 - 9932 speci-
mens). Overall, we find that the innovations were very
effective at improving read quality and quantity. This
meant that we could develop and release a new bioinfor-
matics software, “ONTbarcoder,” which is fast and user-
friendly in that it has a GUI, is compatible with all major
operating systems, and does not require the installation
of third-party software.

Results
Performance of new flow cells and high-accuracy
basecalling
We used six pools of amplicons to test the new ONT
products. The pools contained amplicons for 191–9932
specimens and were run for 15–49 h (Table 1). The
amplicons were tagged with 13-bp indices to facilitate
demultiplexing reads to specimen-specific bins. Basecal-
ling the fast5 files using Guppy in MinIT under the high
accuracy (HAC) model was still very slow and took 12
days for the largest dataset (Palaearctic Phoridae (658
bp)) (Table 1). However, it yielded good quality reads
that could be demultiplexed at high rates for the four
R10.3 MinION datasets (= 30–49%). The only exception
was the Palaearctic Phoridae (313 bp) dataset (15.5%).
Flongle datasets showed overall also lower demultiplex-
ing rates (17–21%).
We then investigated barcode accuracy (Fig. 1) by dir-

ectly aligning the MinION barcodes with Sanger and
Illumina barcodes for the same specimens. We find that
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MinION barcodes are virtually identical (> 99.99% iden-
tity, Table 2). We furthermore established that the num-
ber of ambiguous bases (“N”) is very low for barcodes
obtained with R10.3 (< 0.01%). Indeed, more than 90% of
all barcodes are entirely free of ambiguous bases. In
comparison, Flongle barcodes have a slightly higher pro-
portion of ambiguous bases (< 0.06%). They are concen-
trated in ~ 20% of all sequences so that 80% of all
barcodes again lack Ns. This means that MinION bar-
codes well exceed the Consortium for the Barcode of
Life (CBOL) criteria for “barcode” designation with re-
gard to length, accuracy, and ambiguity (Ratnasingham
and Hebert 2013).
Rarefaction at different read coverage levels reveals

that 80–90% of high-quality barcodes are obtained
within a few hours of sequencing. In addition, the num-
ber of barcodes generated by MinION exceeded or was
comparable to what could be obtained with Sanger or
Illumina (Fig. 1). We also determined the coverage
needed for obtaining reliable barcodes. For this purpose,
we plotted the number of barcodes obtained against
coverage (Fig. 2). This revealed that the vast majority of
specimens yield high-quality barcodes at coverages be-
tween 25x and 50x when R10.3 reads are used.

Increasing coverage beyond 50x only led to modest im-
provements in quality and few additional barcodes. The
coverage needed for obtaining Flongle barcodes was
somewhat higher, but the main difference between the
R9.4 technology of the Flongle flow cell and R10.3 of the
MinION flow cell was that more barcodes retained am-
biguous bases even at high coverage for R9.4 data. The
differences in read quality between R9.4 and R10.3 be-
came even more obvious when the read bins for the
“Mixed Diptera Subsample” were analyzed based on
identical numbers of R10.3 and R9.4 reads. The barcodes
based on Flongle and R10.3 data were compatible, but
the R10.3 barcodes were ambiguity-free while some of
the corresponding Flongle barcodes retained 1–2 am-
biguous bases.
Overall, these results imply that 100x raw read cover-

age is sufficient for obtaining barcodes with either R10.3
or R9.4 flow cells. Given that most MinION flow cells
yield > 10 million reads of an appropriate length, one
could, in principle, obtain 100,000 barcodes in one flow
cell. However, this would require that all amplicons are
represented by similar numbers of copies and that all
reads could be correctly demultiplexed. In reality, only
30–50% of the reads can be demultiplexed and the

Table 1 Datasets generated in this study and the results of barcoding using ONTbarcoder at 200X coverage (Consensus by Length)
and 100X coverage (Consensus by Similarity)

Dataset name Flow cell details
Run time/Guppy version

Raw reads/reads passing length
threshold/reads of suitable
length/ demultiplexed

Demultiplexing rate/# QC_compliant
barcodes/# Filtered barcodes with
1 N/# Filtered barcodes with > 1 N /#
Unreliable barcodes

MinION R10.3 datasets

Mixed Diptera
(658 bp, N=511)

R10.3: reused flow cell: 71 pores
according to QC, but 500+ active
during run
Runtime: 27.5 h
Guppy: 4.2.3+f90bd04

3,864,000/3,425,357/3,560,389/1,544,758 43.39%/495/2/5/8
Total success rate= 502/511 (98.2%)

Afrotropical Phoridae
(658 bp, N=4275)

R10.3: new flow cell:
QC: 1101 pores
Runtime: 49.5 h
Guppy: 4.0.11+f1071ce

6,838,903/5,465,164/5,474,306/2,681,029 48.97%/3722/121/59/247
Total success rate= 3905/4275 (91.3%)

Palaearctic Phoridae
(658 bp, N=9932)

R10.3: new flow cell:
QC: 1239 pores
Runtime: 47.5 h
Guppy: 4.2.3+f90bd04

16,595,984/15,658,174/16,100,505/5,012,489 31.13%/8026/108/231/780
Total success rate= 8365/9932 (84.2%)

Palaearctic Phoridae
(313 bp, N=9929)

R10.3: new flow cell:
QC: 1297 pores
Runtime: 37 h
Guppy: 4.2.3+f90bd04

13,690,869/13,221,764/10,366,455/
12,983,260/2,015,135

15.52%/8705/118/112/899
Total success rate= 8935/9929 (90%)

Flongle datasets

Mixed Diptera Subsample
(658 bp, N=257)

Flongle: new
QC: 81 pores
Runtime: 24 h
Guppy: v 4.0.11+f1071ce

294,896/222,189/190,952/33,270 17.42%/185/35/20/9
Total success rate= 240/257 (93.4%)

Chironomidae
(313 bp, N=191)

Flongle: new
QC: 74 pores
Runtime: 15 h
Guppy: 4.2.3+f90bd04

560,062/525,087/504,621/108,574 21.52%/178/1/2/6
Total success rate= 181/191 (94.8%)
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number of reads per amplicon fluctuates widely (Fig. 3).
Very-low coverage bins tend to yield no barcodes or bar-
codes of lower quality (errors or Ns). These low-
coverage barcodes can be improved by collecting more
data, but this comes at a high cost and increased risk of
a small number of contaminant reads yielding barcodes.
For example, we observed that “negative” PCR controls
yielded low-quality barcodes for 4 of 106 negatives in
the Palaearctic Phoridae (313 bp) and 1 of 105 negatives
in the Palaearctic Phoridae (658 bp) datasets.
To facilitate the planning of barcode projects, we illus-

trate the trade-offs between barcode yield, sequencing
time, and the amount of raw data needed for six

amplicon pools (Fig. 4: 191–9932 specimens). These
standard curves can be used to roughly estimate the
number of raw reads needed to achieve a specific goal
for a barcoding project of a specific size (e.g., obtaining
80% of all barcodes for a project with 1000 amplicons).
Note that the number of raw reads is displayed in real-
time in MinKNOW so that the run can be terminated
when the target number of reads has been reached. The
number of recoverable barcodes in Fig. 4 was set to the
number of all error-free, filtered barcodes obtained in an
analysis of all data. We would argue that this is a realis-
tic estimate of recoverable barcodes given the saturation
plots in Fig. 2 that suggest that most barcodes with

Fig. 1 Rapid recovery of accurate MinION barcodes over time (in hours, x-axis) (filtered barcodes: dark green = barcodes passing all 4 QC criteria,
light green = one ambiguous base; lighter green = more than 1N, no barcode = white with pattern, 1 mismatch = orange, > 1 mismatch = red).
The solid black line represents the number of barcodes available for comparison. White dotted line represents the amount of raw reads collected
over time, blue represents the number of demultiplexed reads over time (plotted against Z-axis)

Table 2 Quality assessment of barcodes generated by ONTbarcoder at 200X read coverage (Consensus by Length) and 100X
coverage (Consensus by Similarity). The accuracy of MinION barcodes is compared with the barcodes obtained for the same
specimens using Illumina/Sanger sequencing. Errors are defined as the sum of substitution or indel errors. Denominators are the
total number of nucleotides assessed

Dataset No. of comparison
barcodes

No. of barcodes with errors/No.
of errors/% identity

# of Ns/%Ns

R10.3: Mixed Diptera: Sanger barcodes available 476 2/10/99.997% 19 (0.006%)

R10.3: Afrotropical Phoridae: Illumina barcodes availablea 3316 23/48/99.995% 284 (0.011%)

Flongle-Mixed Diptera Subsample: Sanger barcodes available 231 5/8/99.994% 91 (0.058%)
a5 barcodes with very high distances from reference were excluded for R10.3: Afrotropical Phoridae dataset as they likely represent lab contamination (see
Srivathsan, Hartop et al. [35])
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significant amounts of data have been called at 200x
coverage. Note, however, that Fig. 4 can only provide
very rough guidance on how many reads are needed be-
cause, for example, the demultiplexing rates differ be-
tween flow cells and different amplicon pools have very
different read abundance distributions (see Fig. 3).
We further compared the barcodes obtained with ONT-

barcoder with those obtained via the recent software
NGSpeciesID [61]. NGSpeciesID often provides multiple
consensus barcodes for the same set of reads obtained for
the same specimen. We here only compared the consen-
sus barcodes supported by the highest number of reads.
When compared to lllumina or Sanger reference barcodes,
the barcodes obtained via ONTbarcoder have fewer errors
(Table 3: 25–118 erroneous barcodes for NGSpeciesID vs

5–28 erroneous barcodes for ONTbarcoder). In addition,
NGSpeciesID also yielded consensus barcodes for negative
controls because it performs no quality control based on
length, translation, or other criteria. Most of the corre-
sponding read sets yielded no barcodes with ONTbarco-
der due to rigorous quality checks and low read-count
filters. For example, NGSpeciesID formed 32 negative
consensus barcodes for Afrotropical Phoridae 658 dataset
(demultiplexed by minibar) although 30 were represented
by < 5 sequences.

Discussion
Democratization of barcoding
Biodiversity research needs new scalable techniques for
large-scale species discovery and monitoring. This task

Fig. 2 Relationship between barcode quality and coverage. Subsetting the data to 5–200X coverage shows that there are very minor gains to
barcode quality after 25–50X coverage. (filtered barcodes: dark green = barcodes passing all 4 QC criteria, light green = one ambiguous base;
lighter green = more than 1 N, no barcode = white with pattern, 1 mismatch = orange, > 1 mismatch = red)
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is particularly urgent and challenging for invertebrates
that collectively make up most of the terrestrial animal
biomass. We argued earlier that this is likely to be a task
that requires the processing of at least 500 million speci-
mens from all over the world with much of the biodiver-
sity discovery work having to be carried out in tropical
countries with limited research funding. Pre-sorting
these specimens into putative species-level units with
DNA sequences is a promising solution as long as
obtaining and analyzing the data are sufficiently straight-
forward and cost-effective. We believe that the tech-
niques described in this manuscript will help with
achieving these goals.
We here show that sequencing barcode amplicons

with MinION is a particularly attractive option. Firstly,
MinION library preparation can be learned within hours

and an automated library preparation instrument is
available and eventually expected to generate ligation-
based libraries (“VolTRAX”). Secondly, MinION flow
cells can accommodate projects of varying scales.
Flongle can be used for amplicon pools with a few hun-
dred products, while an R10.3 flow cell can accommo-
date projects with up to 10,000 specimens. The
collection of data on MinION flow cells can be stopped
whenever the software controlling the run (“Min-
KNOW”) indicates that a sufficiently high number of
reads have been acquired. Flow cells can then be washed
and re-used again although the remaining capacity de-
clines over time so that we have only re-used flow cells
up to four times.
Traditionally, the main obstacles to using MinION for

barcoding have been poor read quality and high cost.

Fig. 3 Read bin size distribution for six amplicon pools (color-coding as in Figs 1 and 2). Due to the very generous coverage for the “Mixed
Diptera” dataset, we also use grey to show the bin size distribution after dividing the bin read totals by 5
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Both issues are fading into the past. The quality of Min-
ION reads has improved to such a degree that the
laptop-version of our new software “ONTbarcoder” can
generate thousands of very high-quality barcodes within
hours. There is also no longer a need to “polish” reads
or to rely on external data or algorithms. The greater
ease with which MinION barcodes can be obtained is
due to several factors. Firstly, each flow cell now yields a
much larger numbers of reads. Secondly, R10.3 reads
have a different error profile which allows for recon-
structing higher-quality barcodes. Thirdly, high accuracy
basecalling has improved raw read quality and thus
demultiplexing rates. Lastly, we can now use parameter
settings for MAFFT that are designed for MinION reads.
These changes mean that even low-coverage bins can
yield very accurate barcodes; i.e., both barcode quality
and quantity are greatly improved.
We had previously tested MinION for barcoding in

2018 and 2019 and here re-sequenced some of the same
amplicon pools. This allowed for a precise assessment of
the improvements. In 2018, sequencing the 511

amplicons of the Mixed Diptera sample required one
flow cell and we obtained 488 barcodes of which only
one lacked ambiguous bases. In 2021, we re-sequenced
the same amplicon pool on a used flow cell (R10.3) with
only ~ 500 pores and obtained 502 barcodes with > 98%
(496) being free of ambiguous bases. The results ob-
tained for the 2019 amplicon pools were also better. In
2019, one flow cell (R9.4) allowed us to obtain 3223 bar-
codes from a pool of amplicons obtained from 4275
specimens of Afrotropical Phoridae. Resequencing weak
amplicons increased the total number of barcodes by ap-
proximately 500 to 3762 [35]. Now, one R10.3 flow cell
yielded 3905 barcodes (+ 143) for the same amplicon
pool, while retaining an accuracy of > 99.99% and redu-
cing the ambiguities from 0.45% to 0.01%. If progress
continues at this pace, we predict that MinION will be
the default barcoding tool for most users. This, too, is
because all barcoding steps can now be carried out in
one laboratory with a modest set of equipment (see
Table 4). With MinION being readily available, there is
no longer the need to outsource sequencing and/or to

Fig. 4 Relationship between barcoding success and number of raw reads for six amplicon pools (191-9932 specimens; barcoding success rates
84–97%). Percentage of barcodes recovered is relative to the final estimate based on all data
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wait until enough barcode amplicons have been pre-
pared for an Illumina or PacBio/Sequel flow cell [62].
This eases biodiversity discovery and allows many biolo-
gists, government agencies, students, and citizen scien-
tists from around the globe to get involved in
biodiversity discovery.
This raises the question of how much it costs to se-

quence a barcode with MinION. There is no straightfor-
ward answer because the cost depends on user targets.
For example, a user who wants to sequence a pool of
5000 barcodes may want an 80% success rate in order to
identify the dominant species in a sample (e.g., nuisance
midges from a mixed-species swarm [63]). Based on Fig.
4, only ca. 1.5 million raw MinION reads would be
needed. On average, MinION flow cells yield > 10 mil-
lion reads and cost USD 475–900 depending on how
many cells are purchased at the same time. Add the li-
brary cost of ca. USD 100 and the overall sequencing
cost of the project is USD 180-235. This experiment
would be expected to yield 4000 barcodes for the 5000
amplicons (4-6 cents/barcode). Given the low cost of 1
million MinION reads ($50-90), we predict that most
users will opt for sequencing at a greater depth since this
will likely yield several hundred additional barcodes.
This will increase the sequencing cost per barcode, be-
cause the first 1.5 million reads already recovered bar-
codes for all strong amplicons. Additional reads will
predominantly strengthen read coverage for these ampli-
cons and relatively few reads will be added to the read
bins that were too weak to yield barcodes at low cover-
age; i.e., there are diminishing barcode returns for add-
itional sequencing.
Overall, we thus predict that most users will only

multiplex 10,000 amplicons in the same MinION flow
cell so that the sequencing cost per specimen would be
0.06–0.10 USD depending on flow cell cost. Large-scale
biodiversity projects can reduce the cost further by

switching to sequencing with PromethION, a larger
ONT sequencing instrument that can accommodate up
to 48 flow cells. PromethION flow cells have 6 times the
number of pores for twice the cost so that this switch re-
duces the sequencing cost by 60% (flow cell capacity:
60,000 barcodes). At the other end of the scale are those
users who occasionally need a few hundred barcodes.
They can use Flongle flow cells, which yield compara-
tively expensive barcodes (0.50 USD) because each flow
cell costs $70 and requires a library that is prepared with
half the normal reagents (ca. $50).

ONTbarcoder for large-scale species discovery with
MinION
We here introduce ONTbarcoder, which runs on a regu-
lar laptop using either Windows10, Linux, or Macintosh
OS and has a GUI. ONTbarcoder has been extensively
tested (> 4000 direct comparisons with Sanger and Illu-
mina barcodes) and is designed to yield thousands of
barcodes rapidly without impairing accuracy even when
encountering low-coverage amplicons. Accuracy is en-
sured by applying 4 QC criteria related to the length and
translatability of the barcode. Speed is maintained
through the parallelization of most steps on UNIX sys-
tems (Mac and Linux; parallelization is restricted to
demultiplexing in Windows). ONTbarcoder furthermore
allows for updating the parameter file for alignment.
This is advisable because MinION continues to evolve
quickly. We expect flow cell capacity to increase further
and basecalling to improve (see [64]). For example, a
new basecaller (“bonito”) developed by ONT has shown
promise by improving raw read accuracy (https://
nanoporetech.com/about-us/news/new-research-
algorithms-yield-accuracy-gains-nanopore-sequencing).
This basecaller is now also available in MinKNOW and
our preliminary tests (Flongle: Mixed Diptera Sub-
sample, Chironomidae; R10.3: Palaearctic Phoridae, 313
bp; bonito version = 0.3.6) confirm that it yields reads of
similar quality as HAC (unpublished data). We expect
these regular changes to ONT software to further im-
prove the suitability of ONT sequencers for barcoding.
ONTbarcoder evolved from miniBarcoder, which

yielded high-quality barcodes based on four different
amplicon pools covering > 8000 barcodes [33, 35, 58,
65], but had two drawbacks that have been fixed in
ONTbarcoder. Firstly, we dropped the translation-based
error correction that tended to increase the number of
Ns. This step used to be essential because indel errors
were prevalent in consensus barcodes obtained with
older flow cell models. Secondly, ONTbarcoder can be
installed by unzipping a file and is easy to maintain on
different operating systems. Until now, external depend-
encies meant that several software packages had to be
installed and that only some operating systems were

Table 4 Equipment required for MinION barcoding

Required (< 500 specimens)

1 MinION sequencer (preferably Mk1C for basecalling) with Flongle
adapter

2 Thermocycler(s)

3 Gel Electrophoresis setup

4 Magnetic Separation Rack

5 Qubit for DNA quantification

6 Standard equipment: Vortex, Mini-centrifuge, pipettes, freezer, fridge

7 Standard laptop or PC

Required (> 500 specimens)

1 Multichannel pipette(s)

Optional but highly desirable

1 Hula Mixer
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compatible. This has been a major drawback of all Min-
ION bioinformatics pipelines and led Watsa et al. [37] to
recommend that bioinformatics training is needed before
MinION barcoding could be used in schools (e.g., train-
ing in UNIX command-line). With ONTbarcoder, such
training will no longer be needed.
MinION has been used for barcoding fungi, animals,

and plants and alternative pipelines have been developed
[38, 58, 61, 65–71], but there is one fundamental differ-
ence between these studies/pipelines and the vision pre-
sented here. These studies tended to show that MinION
sequencing can be done in the field. Thus only a very
small number of specimens were analyzed (< 150 with
the exception of > 500 in Chang, Ip et al. [65]). The po-
tential use in the field is an attractive feature for time-
sensitive samples that could degrade before reaching a
lab. However, it is unlikely to help substantially with
tackling large-scale biodiversity discovery and monitor-
ing because obtaining few MinION barcodes per flow
cell is too expensive. Additionally, the bioinformatic
pipelines that were developed for these small-scale pro-
jects were not suitable for large-scale, decentralized bar-
coding. For example, some used ONT’s commercial
barcoding kit that only allows for multiplexing up to 96
samples in one flow cell [69, 71]; i.e., each amplicon has
very high read coverage which influenced the design of
the analysis pipelines (e.g. coverage recommendations
for ONTrack is 1000x: [69]). The high coverage require-
ments also meant that the pipelines were only tested for
small numbers of samples (< 60: [61, 66, 69, 71]) which
were unlikely to represent the complexities of large,
multiplexed amplicon pools (e.g., nucleotide diversity,
uneven coverage).
This concern is confirmed by our test of the most re-

cently introduced bioinformatics pipeline (NGSpeciesID
[61]). It requires minibar/qcat and nanofilt, isONclust
SPOA, Parasail, and optionally, Medaka [68, 72, 73] and
often yields multiple consensus barcodes for the same
set of reads because it relies on an intermediate cluster-
ing step. To assess the performance of NGSpeciesID, we
used the consensus barcode with the highest coverage
and only compared the results for those barcodes for
which we had reference barcodes obtained with Sanger
and Illumina (Table 3). We find that under optimal set-
tings, NGSpeciesID yields 3–23 times the number of er-
roneous barcodes than ONTbarcoder (Table 3). One
reason is that NGSpeciesID does not use ambiguity
codes in consensus sequences; i.e., ONTbarcoder will
place an “N” when the evidence is ambiguous while
NGSpeciesID will opt for one of the nucleotides. In
addition, NGSpeciesID does not use barcode length
or translatability as QC criteria. This has the down-
side that the software is more likely to yield errone-
ous barcodes. For example, NGSpeciesID proposes

consensus barcodes for very small read sets for which
ONTbarcoder proposes no barcodes because they failed
the QC or did not meet the minimum read threshold. An
upside of not using barcode length and translatability as
QC is that NGSpeciesID can propose consensus barcodes
for genes that are non-coding (e.g., ITS) or have high
length variability (e.g., ribosomal genes). However, the
user should be aware that 3-5% of these barcodes will in-
clude errors if the results for COI also hold for other genes
(see Table 3).

Biodiversity monitoring with MinION barcodes
Despite the widespread use of metabarcoding for analyz-
ing samples consisting of hundreds or thousands of
specimens [74, 75], large-scale barcoding of individual
specimens remains essential for discovering and describ-
ing species. It associates barcodes with individual vou-
cher specimens, which can be used for further research.
This is essential for taxonomic research, which is the
only way to fix systematic errors caused by COI which
lumps recently diverged species and splits species with
deep allopatric splits [76]. High-quality barcode data-
bases are also important for the analysis of metabarcod-
ing data because they facilitate the identification of
numts, heteroplasmy, contaminants, and errors. Further-
more, large-scale barcoding will also be critical for devel-
oping AI-assisted biodiversity monitoring of
invertebrates using images [77]. Such monitoring re-
quires neural networks that are trained with large num-
bers of images. These images are best obtained from
specimens that were identified/grouped into species
based on barcodes. Note that it appears likely that AI-
assisted biodiversity monitoring will be the method of
choice in the future because it can have the potential to
quickly identify and count common species and high-
light which specimens may belong to new/rare species
[78].

Conclusions
Many biologists would like to have ready access to bar-
codes without having to send specimens halfway around
the world or run large, complex, and expensive molecu-
lar laboratories. Many have been impressed by MinION’s
low cost, portability, and ability to deliver real-time se-
quencing, but they were worried about the high cost and
complicated bioinformatics pipelines. We here demon-
strate that these concerns are no longer justified. Min-
ION barcodes obtained by R10.3 flow cells are virtually
identical to barcodes obtained with Sanger and Illumina
sequencing. Barcoding with MinION is now also cost-
effective and the new “ONTbarcoder” software makes it
straightforward to analyze the data on a standard laptop.
Add the simplified and cheaper methods for obtaining
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amplicons and biodiversity discovery will become more
scalable and accessible to all.

Methods
MinION and Flongle sequencing were here tested for six
amplicon pools (Table 5). For two of the pools, Mixed
Diptera (N=511) and Afrotropical Phoridae (N=4275),
we already had amplicons and comparison barcodes that
were obtained with Sanger, Illumina, and older versions
of MinION flow cells that used a different chemistry
(see below). These two pools were here used to assess
the accuracy of barcodes generated using the new Min-
ION flow cell using the R10.3 chemistry. Two additional
datasets were used to test the capacity of R10.3 flowcells
for mini- and full-length barcodes by sequencing bar-
codes of different lengths for the same specimens and
obtained with the same DNA template (Palaearctic
Phoridae, 658 and 313 bp for ca. 9930 specimens). Lastly,
we tested the performance of Flongle flow cells using a
Chironomidae dataset (313 bp mini-barcodes for 191
specimens) and a Mixed Diptera Subsample (full-length
barcodes for 257 specimens) of the aforementioned
Mixed Diptera amplicon pool for which we had Sanger
barcodes for comparison.
The methods for obtaining the reference barcodes

with Sanger and Illumina are described in Srivathsan
et al. [33, 35]. Briefly, for Sanger sequencing (Mixed Dip-
tera sample set), the same PCR products sequenced with
MinION were individually cleaned using SureClean Plus
(Bioline, London) and subjected to cycle sequencing
using BigDyeTM. The products were precipitated using
PureSeq (Aline BioSciences, Woburn) and analyzed in
ABI 3730xl 96 capillary sequences. The resulting chro-
matograms were edited using Sequencher v4 (Gene-
Codes, Ann Arbor). For Illumina sequencing of products
of the Afrotropical Phoridae dataset, an independent
PCR was conducted using the DNA extract for the same
specimens to amplify a short 313-bp fragment of COI
using 9-bp tagged versions of the primers described by
Leray et al. [79]. The products were pooled and se-
quenced using HiSeq2500 (250 bp PE sequencing). The
data processing followed Wang et al.’s protocol [25]. for
obtaining a set of consensus barcodes.

DNA extraction
For all newly barcoded specimens, we used DNA template
obtained with 10–15 μL HotSHOT per specimen [82], but
other buffers like PBS could have also been used (see [83]).
Small specimens were submerged within the well of a mi-
croplate while larger specimens were placed head-first into
the well. Note that the specimen need not be entirely sub-
merged in HotSHOT. The placement of 95 specimens
takes approximately 17min and the DNA is obtained
within 20min in a thermocycler via two heating steps [82]

(https://www.youtube.com/watch?v=y1qGzL5PraQ&t=3s).
After neutralization, > 20 μl of template is available for
amplifying COI and the voucher can be recovered. The ad-
vantages of HotSHOT are low cost and speed. The disad-
vantages are fast degeneration of the leftover template
within days. Some alternatives to DNA extraction with
HotSHOT are described in Table 6. We consider them too
costly or time-consuming given that COI is a mitochondrial
gene and thus naturally enriched. Indeed, the small mito-
chondrial genome (16 kbp) usually contributes 0.5–5% of
the DNA in a genomic extraction [84, 85]. Therefore
obtaining sufficient template for DNA barcoding need not
take >20min, does not require DNA purification, and
should cost essentially nothing as long as the specimens
contain DNA of reasonable quality (e.g., < 20-year-old Mal-
aise trap samples). Note that the methods described here
are designed for metazoan species. Plants and fungi pose
additional challenges, including the presence of cell walls
and a high amount of secondary compounds.

Amplification of COI via PCR
Obtaining amplicons for DNA barcodes does not require
high-fidelity polymerases, which are mostly needed for
amplifying low copy-number nuclear genes based on
low-concentration template. Standard polymerases are
sufficient. We exclusively used CWBio 2x master mix in
14–16 μl PCR reactions (see Table 5 for details). The
set-up of one plate requires < 15min [86]. In order to
save time, only a small number of reactions per micro-
plate need to be checked via gel electrophoresis (N = 8–
12, including the negative control). Running out add-
itional amplicons is not necessary because failed ampli-
cons do not add to the MinION sequencing cost and
can be recovered via re-sequencing [35] or re-
amplification.
Amplicon sequencing with all second- and third-

generation sequencing technologies (including MinION)
involves amplicon pools. This means that the amplicon
for each specimen has to be tagged/indexed/barcoded
with short DNA sequences at the 5’ ends of the ampli-
cons. This allows for the assignment of each read ob-
tained during sequencing to a specific specimen during
the “demultiplexing” bioinformatics step. We use 13 bp
tags that are distinct (> 4 bp from each other including
insertions/deletions) and lack homopolymers (see Add-
itional File 1). This tag length is a compromise given
that longer tags have the disadvantage of reducing PCR
success rates [35] while having the advantage of increas-
ing the proportion of reads that can be demultiplexed
with confidence.
Numerous dual-PCR tagging techniques for amplicons

have been described in the literature [31, 69, 87, 88], but
we only use single-PCR tagging [30]. It is here described
for a microplate with 96 templates, but the same
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principle can be applied to strip tubes or partial micro-
plates. What is needed is a 96-well primer plate where
each well contains a differently tagged reverse primer.
This “primer plate” can yield 96 unique combinations of
primers once the 96 reverse primers are combined with
one forward primer (f-primer ×96 differently tagged r-
primers = 96 unique combinations). This also means
that if one purchases 105 differently tagged forward
primers, one can individually tag 10,800 specimens (105
× 96 = 10,800 amplicons). This is the number of ampli-
cons that we consider appropriate for a MinION flow
cell (R10.3; see the “Results” section). In the laboratory,
we assign the tag combinations as follows. For each plate
with 96 PCR reactions, we add the same f-primer to a
tube with the PCR master mix to be used for the entire
plate. We then dispense the “f-primed” master mix into
the 96-wells. Afterwards, we use a multichannel pipette
to add the DNA template and the tagged r-primers from
the r-primer plate into the PCR plate. All 96 samples in
the plate now have a unique combination of tagged
primers because they only share the same tagged for-
ward primer. This makes tracking of tag combinations
simple because each PCR plate has its own tagged f-
primer, while the r-primer is consistently tied to a well
position. Each plate has a negative control that is used
to detect contamination. The tagging information for
each plate is recorded in the demultiplexing file that is
later used to demultiplex the reads obtained during se-
quencing (see Additional File 2 for an example).
We prefer single-PCR tagging over two-PCR tagging

[31, 69, 87, 88] because it is cheaper (requires half the
amount of primer), less error-prone (fewer PCR reac-
tions and cycles), and saves time (no need to clean-up
the first-round amplicons). The only downsides of
single-PCR tagging are an initially higher investment in
primers and the need to manage the primer stock more
carefully because it is used for a longer time. Long-term
storage should thus be at − 80 °C and the number of
freeze-thaw cycles should be kept low (< 10).

Amplicon sequencing
PCR is followed by pooling, purification of the ampli-
cons via the removal of unused PCR reagents, the ad-
justment of DNA concentration, and sequencing. We
only pool 1 μl of each PCR product. The pools in our ex-
periments described here were cleaned using SPRI bead-
based clean-up with Ampure beads (Beckman Coulter),
but Kapa beads (Roche) or the more cost-effective Sera-
Mag beads (GE Healthcare Life Sciences) in PEG [89]
are also viable options [35]. For barcodes longer than
300 bp, we recommend the use of a 0.5X ratio for
Ampure beads since it removes a larger proportion of
primers and primer dimers. However, this ratio is only
suitable if amplicon yield is not a concern (e.g., pools
consisting of many and/or high concentration ampli-
cons). Increasing the ratio to 0.7–1X will improve yield
but renders the clean-up less effective. The pooling and
clean-up of three 96-well plates takes about 40 min [90],
but the time per plate is lower when large numbers of
amplicons are pooled. Amplicon pools containing large
numbers of amplicons may require multiple rounds of
clean-up, but only a small subset of the initial pool has
to be purified because most library preparation kits re-
quire only small amounts of DNA. We confirm the suc-
cess of the clean-up procedures via gel electrophoresis,
which should show only one strong band of expected
length. After the clean-up, the pooled DNA concentra-
tion is measured in order to use an appropriate amount
of DNA for library preparation. We use Qubit, but less
precise techniques are probably also suitable.
Obtaining a cleaned amplicon pool according to the

outlined protocol is not time-consuming, but many
studies retain “old Sanger sequencing habits”. For ex-
ample, they use gel electrophoresis to test for each PCR
reaction whether an amplicon has been obtained. After-
wards, they clean and measure all amplicons—one at a
time—for normalization (often with very expensive tech-
niques: Ampure beads: [69]; TapeStation, BioAnalyzer,
Qubit :[71]). This is presumably done to obtain a pool of

Table 6 Alternative DNA extraction methods

Commonly used alternative DNA extraction methods Advantages Disadvantages

“directPCR”: “contaminating” a PCR reaction with the DNA of the target
organism by adding the entire specimen or a tissue sample into the PCR
reagent mix (Wong, Tay et al. 2014).

• No cost
• No waiting time obtaining for
template

• Time-consuming when sub-
sampling is needed (antenna,
leg)

• Low success rate for heavily
sclerotized specimens

• No DNA template left after PCR

Commercial DNA extraction buffers: e.g., QuickExtract: 10 μl sufficient for
obtaining DNA template from most insect specimens (Srivathsan, Hartop
et al. [35])

• Long shelf life of buffers
• Template stays viable for weeks
• Additional DNA can be obtained
through re-extraction of specimen

• Moderate costs (< 0.20 USD)
• DNA in leftover templates
degrades within weeks/months

Commercial DNA extraction kits: e.g., DNeasy Blood & Tissue Kits • Template is stable • High cost (> 1 USD)
• Time-consuming
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amplicons where each has equal representation. How-
ever, reads are cheap while the clean-up and measure-
ment of many amplicons are expensive and unnecessary
because weak products that failed to yield a barcode in
the first sequencing run can be re-sequenced [35].

Library preparation and sequencing
We prepare our MinION libraries using ligation-based
kits and 200 ng of DNA for full flow cells and 100 ng for
Flongle (see Table 6 for details). We generally follow kit
instructions, but exclude the FFPE DNA repair mix in
the end-repair reaction, as this is mostly needed for
formalin-fixed, paraffin-embedded samples. The reaction
volumes for the R10.3 flow cell libraries consist of 45 μl
of DNA, 7 μl of Ultra II End-prep reaction buffer (New
England Biolabs), 3 μl of Ultra II End Prep enzyme mix
(New England Biolabs), and 5 μl of molecular grade
water. For the Flongle, only half of the reagents are used
to obtain a total volume of 30 μl. We further modify the
Ampure ratio to 1x for all steps as DNA barcodes are
short whereas the recommended ratio in the manual is
for longer DNA fragments. The libraries for the experi-
ments in this study were loaded and sequenced on a
MinION Mk 1B. Data capture involved a MinIT or a
Macintosh computer that meets the IT specifications
recommended by ONT. The bases were called using
Guppy (versions provided in Table 1), under the high-
accuracy model in MinIT taking advantage of its GPU.
We here only used MinION and Flongle flow cells for

barcoding. This preference was based on four consider-
ations: (1) Scaling; i.e., ability to accommodate projects
of different sizes, (2) turnaround times, (3) cost, and (4)
amplicon length. Flongle can be used for small amplicon
pools (< 300 products) because it has low fixed costs per
experiment (library and flow cell: ca. $120 USD) and the
turnaround time is fast, so the MinION Flongle is argu-
ably the best sequencing option for small barcoding pro-
jects with > 50 barcodes. Full MinION flow cells also
have fast turnaround times, but the minimum run cost
is closer to 1000 USD for most users (flow cell cost
drops with bulk purchase), so this option only becomes
more cost-effective than Flongle when > 1800 amplicons
are sequenced. As illustrated in the Results section of
the manuscript, one MinION flow cell can comfortably
sequence 10,000 amplicons.
Alternatives to MinION/Flongle are sequencing bar-

code amplicons with Sanger, Illumina [33], or PacBio
(e.g., Sequel: [31]). Sanger sequencing has fast turn-
around times but high sequencing cost per amplicon
($3–4 USD). PacBio’s Sequel flow cells have a similar
capacities as full MinION flow cells [31] and the con-
sumable costs are also similar for most users who
have to outsource Sequel sequencing due to the high
instrument cost for PacBio. However, Sequel does not

allow for flexible scaling like Flongle/MinION and
most users will have to wait several weeks until the
data are returned from the service provider. By far
the most cost-effective sequencing method for bar-
codes is Illumina’s NovaSeq sequencing. The fixed
costs for library and lanes are high (3000–4000 USD),
but each flow cell yields 800 million reads which can
comfortably sequence 800,000 barcodes at a cost of <
$0.01 USD per barcode. Note that Illumina reads are
only suitable for generating mini-barcodes of up to
420 bp length (using 250 bp PE sequencing using SP
flow cell). “Full-length” COI barcode (658 bp) can only
be obtained by sequencing two amplicons per
specimen.

Bioinformatics: Development and application of
ONTbarcoder
One of the most significant barriers to widespread bar-
coding with MinION has been complex bioinformatics
pipelines that were needed for fixing the high error rates
of ONT reads. However, after obtaining data from a new
R10.3 flow cell, we noticed major improvements in read
quality, the total number of raw reads, and the number
of demultiplexed reads. This led to the development of
“ONTbarcoder”, which has a graphical user interface
(GUI) and is suitable for all major operating systems
(Linux, Mac OS, Windows10). The use of the software is
illustrated in a video tutorial: https://www.youtube.com/
channel/UC1WowokomhQJRc71FmsUAcg.

ONTbarcoder
ONTbarcoder (available at : https://github.com/
asrivathsan/ONTbarcoder) has three modules. (a) The
first is a demultiplexing module which assigns reads to
specimen-specific bins. (b) The second is a barcode call-
ing module which reconstructs the barcodes based on
the reads in each specimen bin. (c) The third is a bar-
code comparison module that allows for comparing bar-
codes obtained via different software and software
settings.

a. Demultiplexing. In order to obtain barcodes three
pieces of information and two files have to be
provided to ONTbarcoder via the GUI: (1) primer
sequence, (2) expected fragment length, and (3)
demultiplexing information (=tag combination for
each specimen). The latter is summarized in a
demultiplexing file (see Additional File 2 for
format). The only other required file is the FASTQ
file obtained from MinKNOW/Guppy after
basecalling. Demultiplexing by ONTbarcoder starts
by analyzing the read length distribution in the
FASTQ file. Only those reads that meet the read
length threshold are demultiplexed (default= 658 bp
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corresponding to metazoan COI barcode).
Technically, the threshold should be the amplicon
length plus the length of both tagged primers, but
ONT reads have indel errors such that they are
occasionally too short or too long. We therefore
advise to specify the amplicon length without
primer amd tag as threshold. ONTbarcoder will
split reads that are twice the expected fragment
length into two parts whose lengths are determined
based fragment size, primer and tag lengths, and a
window to account for indel errors (default=100
bp).
Once all reads with a suitable length for
demultiplexing have been identified, ONTbarcoder
finds the primers via sequence alignment of the
primer sequence to the reads (using python library
edlib). Up to 10 deviations from the primer
sequence are allowed because this step is only
needed for determining the primer location and
orientation within the read. For demultiplexing
based on the tags, the flanking region of the primer
sequence is retrieved whereby the number of
retrieved bases is equal to the user-specified tag
length. The flanking sequences are then matched
against the tags from the user-provided tag combi-
nations that are stored in the demultiplexing file. In
order to account for sequencing errors, not only
exact matches are accepted, but also matches that
differ by up to 2 bps from the tag sequence (substi-
tutions/insertions/deletions). Note that accepting
tag variants does not lead to demultiplexing error
because all tags differ by > 4 bp. All reads with the
same tag combination thus identified belong to the
same specimen and are pooled into the same bin.
To increase efficiency, demultiplexing is parallelized
and the search space for primers and tags are re-
stricted to the beginning and end of the reads (win-
dow is user-specified).

b. Barcode calling: Barcode calling uses the reads
within each specimen-specific bin to reconstruct
the barcode sequence. The reads are aligned to each
other and a consensus sequence is called. Barcode
calling is done in three phases: “Consensus by
Length”, “Consensus by Similarity” and “Consensus
by barcode comparison”. The user can opt to only
use some of these methods.
“Consensus by Length” is the main barcode calling
mode and has to rely on efficient alignment in
order to provide reasonable speed for thousands
of bins each containing many reads. ONTbarcoder
delivers speed by using an iterative approach that
gradually increases the number of reads

(“coverage”) per bin that is used during alignment.
However, reconstructing barcodes based on few
reads could lead to errors which are weeded out by
ONTbarcoder by applying four Quality Control
(QC) criteria. The first three QC criteria are applied
immediately after the consensus sequence has been
called: (1) the barcode must be translatable, (2) it
has to match the user-specified barcode length, and
(3) the barcode has to be free of ambiguous bases
(“N”). To increase the chance of finding a barcode
that meets all three criteria, we subsample the reads
in each bin by read length (thus the name “Consen-
sus by Length”); i.e., initially only those reads closest
to the expected length of the barcode are used. For
example, if the user specified coverage = 25x for a
658 bp barcode, ONTbarcoder would only use the
25 reads that have the closest match to 658 bp. The
fourth QC measure is only applied to barcodes that
have already met the first three QC criteria. A mul-
tiple sequence alignment (MSA) is built for the bar-
codes obtained from the amplicon pool, and any
barcode that causes the insertion of gaps in the
MSA is rejected. Note that if the user suspects that
barcodes of different length are in the amplicon
pool, the initial analysis should use the dominant
barcode length. The remaining barcodes can then
be recovered by re-analyzing all data or only the
failed read bins (“remaining”, see below) and bins
that yielded barcodes that had to be “fixed”. These
bins can be reanalyzed using a different pre-set bar-
code lengths.
“Consensus by Similarity”. Barcodes that failed the
QC during the “Consensus by Length” stage are
often very close to the expected length and have
few ambiguous bases, and/or cause few gaps in the
MSA. These “preliminary barcodes” can be
improved through “Consensus by Similarity”. This
method eliminates outlier reads from the read pool
in the bins. Such reads can differ considerably (see
below) from the signal of the consensus barcode
and ONTbarcoder identifies them by sorting all
reads by similarity to the preliminary barcode. Only
the top 100 reads (this default can be changed) that
differ by < 10% from the preliminary barcode are
retained and used for calling the barcodes again
using the same techniques described under
“Consensus by Length” (including the same QC
criteria). This improvement step converts many
preliminary barcodes found during “Consensus by
Length” into barcodes that pass all four QC criteria by
filling/removing indels or resolving an ambiguous base.
“Consensus by barcode comparison”. The remaining
preliminary barcodes that still failed to convert into
QC-compliant barcodes tend to be based on read
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bins with low coverage, but some can yield good
barcodes after subjecting them to a further im-
provement step that fixes the remaining errors.
ONTbarcoder identifies these errors by finding the
20 most similar QC-compliant barcodes that have
already been reconstructed for the other amplicons.
The 21 sequences are aligned and ONTbarcoder
finds the errors because they cause insertions and
deletions in the MSA. Insertions are deleted, gaps
are filled with ambiguous bases (“N”), but mis-
matches are retained. The number and kinds of
“fixes” are recorded and added to the FASTA
header of the barcode. Large numbers of fixes imply
that the barcode should not be used (see below).
Rare taxa are disadvantaged by this method, but the
barcode for very few if any will ever reach the
“Consensus by barcode comparison” stage because
most/all will be resolved earlier. We added the “con-
sensus by barcode comparison” step because it
helps with resolving weak barcodes for specimens
that represent abundant species.
Output. ONTbarcoder produces a summary table
(Outputtable.csv) and FASTA files that contain the
different classes of barcodes. Each barcode header
contains information on coverage used for barcode
calling, coverage of the specimen bin, length of the
barcode, number of ambiguities and number of
indels fixed. Five sets of barcodes are provided, here
discussed in the order of barcode quality: (1) “QC_
compliant”: The barcodes in this set satisfy all four
QC criteria without correction and are the highest
quality barcodes. (2) “Filtered_barcodes”: this file
contains the barcodes that are translatable, have <
1% ambiguities, and have up to 5 indels fixed during
the last step of the bioinformatics pipeline. These
filtering thresholds were calibrated based on the
two datasets for which we have Sanger/Illumina
barcodes and the resulting MinION barcodes were
found to be highly accurate. Note that the file with
filtered barcodes also includes the QC_compliant
barcodes and that all results discussed in this
manuscript are based on filtered barcodes given
that they are of much higher quality than the
average barcode in BOLDSystems (assessment in
Srivathsan, Baloğlu et al. [33]).
The remaining files include barcodes of lesser and/
or suspect quality. (3) “Fixed_barcodes_XtoY”: these
files contain barcodes that had indel errors fixed
and are grouped by the number of errors fixed.
Only the barcodes with 1–5 errors overlap with
Filtered barcodes file, if they have < 1% ambiguities.
(4) “Allbarcodes”: this file contains all barcodes in
sets (1)–(3). (5) “Remaining”: these are barcodes
that fail to either translate or are not of predicted

length. Note that all barcodes should be checked
via BLAST against comprehensive databases in
order to detect lab contamination. There are several
online tools available for this and we recommend
the use of GBIF sequence ID tool [91] which gives
straightforward output including a taxonomic
summary.
The output folder also includes the FASTA files
that were used for alignment and barcode calling.
The raw read bins are in the “demultiplexed” folder,
while the resampled bins (by length, coverage, and
similarity) are in their respective subfolders named
after the search step. Note that the raw reads are
encoded to contain information on the orientation
of the sequence and thus cannot be directly used in
other software without modifications (see
ONTbarcoder manual on Github). Lastly, for each
barcode FASTA file (1–5), there are folders with
the files that were used to call the barcodes. This
means that the user can, for example, reanalyze
those bins that yielded barcodes with high numbers
of ambiguous bases. Lastly, a “runsummary.xlsx”
document allows the user to explore the details of
the barcodes obtained at every step of the pipeline.
Algorithms. ONTbarcoder uses the following
published algorithms. All alignments utilize
MAFFTv7 (Katoh and Standley 2013). The MinION
reads are aligned using an approach similar to
lamassemble [92] with parameters optimized for
nanopore data by “last-train” [93] which accounts
for strand-specific error biases. The MAFFT param-
eters can be modified in the “parfile” supplied with
the software which helps with adjusting the values
given the rapidly changing nanopore technology.
All remaining MSAs in the pipeline (e.g., of prelim-
inary barcodes) use MAFFT’s default settings. All
read and sequence similarities are determined with
the edlib python library under the Needle-Wunsch
(“NW”) setting, while primer search is using the in-
fix options (“HW”). All consensus sequences are
called from within the software. This is initially
done based on a minimum frequency of 0.3 for each
position. This threshold was empirically determined
based on datasets where MinION barcodes can be
compared to Sanger/Illumina barcodes. The thresh-
old is applied as follows. All sites where > 70% of
the reads have a gap are deleted. For the remaining
sites, ONTbarcoder accepts those consensus bases
that are found in at least > 30% of the reads. If no
base/multiple bases reach this threshold, an “N” is
inserted. To avoid reliance on a single threshold,
ONTbarcoder allows the user to change the con-
sensus calling threshold from 0.2 to 0.5 for all bar-
codes that fail the QC criteria at 0.3 frequency.
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However, barcodes called at different frequencies
are only accepted if they pass the first three QC cri-
teria and are identical. If no such barcode is found,
the 0.3 frequency consensus barcode is used for fur-
ther processing.

c. Barcode comparison. Many users may want to call
their barcodes under different settings and then
compare barcode sets. The ONTbarcoder GUI
simplifies such comparisons. A set of barcodes can
be dragged into the window and the user can select
a barcode set as the reference. The barcode
comparisons are conducted using edlib library. The
barcodes in the sets are compared and classified
into three categories: “identical” where sequences
are a perfect match and lack ambiguities,
“compatible” where the sequences only differ by
ambiguities, and “incorrect” where the sequences
differ by at least one base pair. Several output files
are provided. A summary sheet, a FASTA file each
for “identical,” “compatible,” and the sequences only
found in one dataset. Lastly, there is a folder with
FASTA files containing the different barcodes for
each incompatible set of sequences. This module
can be used for either comparing set(s) of barcodes
to reference sequences, or for comparing barcode
sets against each other. It furthermore allows for
pairwise comparisons and comparisons of multiple
sets in an all-vs-all manner. This module was here
used to get the final accuracy values presented in
Table 2.

Quality of Flongle and MinION barcodes
We first used ONTbarcoder to analyze the data for all
six datasets by analyzing all specimen-specific read bins
at different coverages (5–200x in steps of 5x). This
means that the barcodes for a bin with 27 reads would
be called five times at 5x, 10x, 15x, 20x, and 25x cover-
ages while bins with > 200x would be analyzed 40 times
at 5x increments. Instead of using conventional rarefac-
tion via random read subsampling, we used the first
reads provided by the flow cell because this accurately
reflects how the data accumulated during the sequencing
run and how many barcodes would have been obtained
if the run had been stopped early. This rarefaction ap-
proach also allowed for mapping the barcode success
rates against either coverage or time.
In order to obtain a “best” estimate for how many bar-

codes can be obtained, we also carried out one analysis
at 200x coverage with the maximum number of “Com-
parison by Similarity” reads set to 100. All analyses pro-
duced a “filtered” set of barcodes (barcodes with < 1%
Ns and up to 5 fixes) that were used for assessing the

accuracy and quality via comparison with Sanger and
Illumina barcodes for Mixed Diptera (MinION R10.3),
Afrotropical Phoridae (MinION R10.3), and Mixed Dip-
tera Subsample (Flongle R9.4). For the comparisons of
the barcode sets obtained at the various coverages, we
used MAFFT and the assess_corrected_barcode.py script
in miniBarcoder [35].

Bioinformatics: Application of minibar and NGSpeciesID
We compared the barcodes obtained with ONTbarcoder
with those reconstructed with the recently published
NGSpeciesID [61]. This comparison was carried out for
the datasets that have the reference barcodes obtained
with Sanger and Illumina (Mixed Diptera (MinION
R10.3), Afrotropical Phoridae (MinION R10.3), and
Mixed Diptera Subsample (Flongle R9.4)). Two compari-
sons were made. Firstly, we used the same demultiplexed
reads that were used for calling the barcodes using
ONTbarcoder. Secondly, we demultiplexed the data
using minibar (git commit: 938ae51) and applied
NGSpeciesID (Git commit: 24afc6c) for consensus bar-
code calling. This approach allowed for software com-
parisons for consensus calling and demultiplexing.
minibar was run using the parameters (-e 2 -E 10 -T),
i.e. maximum number of errors in tag region was set to
2, in primer alignment was set to 10 and primer and tags
were trimmed from the sequences. NGSpeciesID was
run with both full datasets as well as by subsampling the
data to 200 reads (--sample_size 200) to keep it compar-
able with our analysis using ONTbarcoder. Other pa-
rameters settings were: intended target length = 658
(--m) and maximum deviation from target length = 50
(--s). Lastly, for the R10.3 datasets, the medaka model
was specified by using --model r103_min_high_g345,
which was the only available for R10.3.

Supplementary Information
The online version contains supplementary material available at https://doi.
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Additional file 1. Tag sets developed for MinION barcoding.

Additional file 2. Sample demultiplexing file.
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videos tutorials can be found in the YouTube channel Integrative Biodiversity
Discovery: https://www.youtube.com/channel/UC1WowokomhQJRc71
FmsUAcg.
Others
The datasets have been uploaded to NCBI, under BioProject: PRJNA745481 [95],
SRA accession numbers: SRR15185964, SRR15098600, SRR15098599,
SRR15188571, SRR15188570, SRR15188569. The datasets, demultiplexing files
and reference barcodes are also available via doi:10.5281/zenodo.5115258 [96].
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