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Antiferromagnetic skyrmion 
crystals in the Rashba Hund’s 
insulator on triangular lattice
Arnob Mukherjee*, Deepak S. Kathyat & Sanjeev Kumar

Motivated by the importance of antiferromagnetic skyrmions as building blocks of next-generation 
data storage and processing devices, we report theoretical and computational analysis of a model 
for a spin-orbit coupled correlated Hund’s insulator magnet on a triangular lattice. We find that two 
distinct antiferromagnetic skyrmion crystal (AF-SkX) states can be stabilized at low temperatures in 
the presence of external magnetic field. The results are obtained via Monte Carlo simulations on an 
effective magnetic model derived from the microscopic electronic Hamiltonian consisting of Rashba 
spin-orbit coupling, as well as strong Hund’s coupling of electrons to classical spins at half-filling. The 
two AF-SkX phases are understood to originate from a classical spin liquid state that exists at low but 
finite temperatures. These AF-SkX states can be easily distinguished from each other in experiments 
as they are characterized by peaks at distinct momenta in the spin structure factor which is directly 
measured in neutron scattering experiments. We also discuss examples of materials where the model 
as well as the two AF-SkX states can be realized.

Strongly correlated electrons residing on geometrically frustrated lattices lead to intriguing ordered as well as 
disordered  phases1–5. While such systems are extremely challenging to study, suitably motivated approximate 
treatments not only lead to predictions of remarkable new phases of electronic matter, but also provide new para-
digms for understanding the observed electronic properties of solids. Some examples of such phases are quantum 
and classical spin  liquids6–11, non-coplanar, non-collinear magnetic  states12–16 and partially ordered  states17,18. 
Furthermore, the competition between spin-orbit coupling (SOC) and electronic correlations has emerged as 
one of the most interesting area of fundamental research in recent  years19–25. In particular, the possibility to 
tune Rashba SOC via a suitable material growth and design in terms of thin-film multilayers or interfaces has 
allowed for a realization of SOC induced effects in real materials. One important consequence, with potential 
applications in data storage and processing technologies, is the observation of skyrmions, antiskyrmions and 
antiferromagnetic skyrmions in various metals and  insulators26–30. Indeed, such topological spin textures are 
considered as building blocks of information storage in the race-track memory  devices31–34. Antiferromagnetic 
skyrmions are considered superior to skyrmions as the former do not exhibit skyrmion Hall effect which affects 
the device performance in case of  skyrmions35–37.

In this report, we present the results of our investigations of a prototype model that combines three of the 
most interesting aspects of electronic problems, namely, geometrical frustration, strong correlations and Rashba 
SOC. Our main motivation is to understand the physics of antiferromagnetic skyrmion formation in a micro-
scopic electronic Hamiltonian. Most theoretical investigations of formation of skyrmion-like quasiparticles use 
suitable spin Hamiltonians as a starting  point38–41. Instead, here we begin with a microscopic model with itiner-
ant electrons coupled to localized magnetic moments via Hund’s rule coupling in the presence of Rashba SOC. 
Such a model can be realized in thin films or interfaces of transition metal or heavy fermion  compounds42–48. 
We explicitly derive a low-energy magnetic Hamiltonian for the triangular lattice for the half-filled insulating 
case. Given the complex and competing nature of different terms in the Hamiltonian we investigate the low-
temperature phases with varying external field via unbiased Monte Carlo simulation technique. In addition to the 
expected 120° state and the single-Q spiral states, we identify three non-trivial magnetic phases in the model: (1) 
a classical spin liquid (CSL) characterized via a diffuse ring pattern centered at the K points of the first Brillouin 
zone (BZ), (2) a 3Q AF-SkX1 characterized by hexagonal peak pattern in spin structure factor (SSF), and (3) 
a qualitatively distinct 6Q AF-SkX2 phase that has never been reported before. The degeneracy-induced CSL 
state can be understood as the parent of both the AF-SkX phases. Our study reports, that not only the AF-SkX 
states can be described within a microscopic electronic model, but also two distinct AF-SkX phases exist in the 
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triangular lattice model. These two phases can be easily detected in experiments as they lead to qualitatively 
different peak structure in the neutron scattering data.

Derivation of the low energy spin hamiltonian
The Rashba Hund’s model (RHM) describing Rashba electrons coupled to localized magnetic moments residing 
on a triangular lattice is described by the lattice  Hamilonian49,

Operator c†iσ ( ciσ ) creates (annihilates) an electron at site i with spin σ ∈ {↑,↓} . τ is a vector operator with the 
three Pauli matrices as components. Si denote the localized spins which we assume to be classical vectors with 
|Si| ≡ 1 . t, � and JH denote the strengths of hopping amplitude, Rashba coupling and Hund’s rule coupling, in 
that order. Assuming the lattice constant to be unity, γ̂ ∈ {a1, a2, a3} denotes the basis unit vector of the trian-
gular Bravais lattice with a1=(1,0), a2=(1/2,

√
3/2 ) and a3=(-1/2,

√
3/2 ). si is the electronic spin operator. hz is the 

strength of Zeeman field applied along z axis, and i =
√
−1.

The Hamiltonian specified in Eq. (1) above can be realized in a variety of magnetic compounds comprising 
of transition metal or rare-earth ions where more than one bands are partially filled. In addition, the existence of 
Rashba SOC requires inversion symmetry breaking which can be realized in thin films or at  interfaces42–46,50–55. 
We are interested in a situation where charge degree of freedom is completely frozen due to strong correlations 
and the low energy physics is described in terms of an effective magnetic Hamiltonian. Such a condition is met in 
Mott insulators where strong Hubbard term disfavours any transfer of charge. In the Hund’s model, a similar sce-
nario is realized for large JH at half filling. For large JH , it is useful to work in a site-dependent spin-quantization 
basis achieved via local SU(2) rotations, given by,

Here, dip(dia) annihilates an electron at site i with spin parallel (anti-parallel) to the localized spin. The polar and 
azimuthal angle pair { θi ,φi } specifies the orientation in three dimensions of the local moment Si.

The transformed Hamiltonian takes the form,

where σ ∈ {p, a} . The transformation to local basis puts the interaction term in a diagonal form. However, the 
spin dependence now resides in the hopping parameters. The projected hopping amplitudes gσσ ′

i,γ = tσσ
′

i,γ + �
σσ ′
i,γ  

have contributions from standard tight-binding hopping integral t and the Rashba SOC � . Following the 2nd 
order perturbation approach applied to an isolated pair of sites, we derive the classical super-exchange (CSE) 
model for the triangular  lattice56.

The parallel to anti-parallel hopping contributions gpai,γ , are given by,

The anti-parallel to parallel contributions, gapij  , are given by,

In the above equations, j = i + γ . The general expression for the second order perturbative energy correction,
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involves modulus squares of the hopping amplitudes which are obtained from Eqs. (3) and (4) in the following 
form:

Substituting the expression from Eq. (6) into Eq. (5) and taking the sum over all nn pairs, we arrive at the clas-
sical super-exchange (CSE) Hamiltonian on a triangular lattice,

with γ̂ ′ = ẑ × γ̂ . We also note that the Hamiltonian is written in a general form which is valid for any Bravais 
lattice.

We parameterize by α the relative strength of the Rashba coupling as compared to hopping parameter as 
t = (1− α)t0 and � = αt0 , where t0 = 1 sets the reference energy scale. The resulting model consists of antiferro-
magnetic coupling terms along with anisotropic terms resembling Dzyaloshinskii–Moriya (DM) and Kitaev-like 
 interactions56–58 . The ground state of the Hamiltonian Eq. (7) for α = 0 is the well known three-sublattice 120° 
state which stabilizes due to geometrical frustration. In absence of external magnetic field ( hz = 0 ), increasing 
α favours non-collinear spin arrangement due to the presence of DM terms. However, the frustrating nature 
of the DM and Kiteav-like terms leads to a large degeneracy of states, as discussed by us for the case of square 
 lattice56. One consequence of this large degeneracy is the presence of entropically stabilized filamentary domain 
states at low temperatures.

Before proceeding with the investigations of the magnetic properties of the electronic Hamiltonian Eq. (1) in 
terms of the effective low energy CSE Hamiltonian Eq. (7), we explicitly check the validity of CSE Hamiltonian 
by comparing energies of different magnetic states obtained within the exact and approximate Hamiltonians. 
The energies calculated via the CSE Hamiltonian match very well with the exact values, provided 1/JH < 0.1 
(see Fig. 1). Note that the large JH expansion is only valid when the parallel and antiparallel bands are split and 
the chemical potential resides in the gap. For the triangular lattice tight-binding bands, such splitting will occur 
for JH = 9 for the largest bandwidth corresponding to ferromagnetic background. Therefore, the comparison 
in Fig. 1 shows that the effective Hamilonian is quantitatively accurate as long as the gap-opening condition is 
satisfied. In order to further demonstrate the validity of the derived model, we compare the energy differences 
between various pairs of magnetic states calculated within exact and approximate models (see Fig. 2). Given that 
the CSE model is explicitly derived via perturbation theory, it is not surprising that this serves as an accurate 
model for describing magnetism of the HRHM in the large JH limit.

Results and discussion
Phases in the absence of external magnetic field. In this section, we present the Monte Carlo simu-
lation results for the CSE Hamiltonian Eq. (7) (see “Methods” section). We begin by studying the model in the 
absence of external magnetic field. In the limit α → 0 , the Hamilonian reduces to a simple antiferromagnetic 
Heisenberg model and the lowest energy is obtained for a three-sublattice 120° arrangement of spins. We track 
the temperature dependence of the spin structure factor (SSF), as obtained in simulations, at relevant value of 
q . The 120° state is characterized by a SSF peak at q0 = (2π/3, 2π/

√
3) , and the symmetry related points (see 

Fig. 3f). For small values of α , the SSF at q0 exhibits an order parameter like rise upon lowering temperature (see 
Fig. 3a). The sharp upturn point is identified as the ordering temperature, which is further verified via specific 
heat calculations (filled symbols in Fig. 3a). Beyond a critical value of α , the 120° ground state is destabilized in 
favour of a single-Q (SQ) spiral state with SSF peak located at ±q for one specific q (see Fig. 3h). In contrast to 
the 120° state, the SQ state lifts the three-fold degeneracy as one pair of K points is spontaneously selected from 
three equivalent choices. The ordering temperature for the SQ state, as inferred from the temperature depend-
ence of SSF at relevant q , monotonically decreases upon increasing α (see Fig. 3b). For α > 0.43 , a specific SQ 
state which consists of ferromagnetic (FM) chains oriented antiferromagnetically, labelled as spin stripe (SS) 
state, is stable over a wide range of α . This is characterized by a peak in the SSF at a pair of M points (see Fig. 3i). 
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Similar to the SQ state, the SS state is also three-fold degenerate and the degeneracy is spontaneously lifted. 
Furthermore, the specific heat displays a sharp peak at the temperature corresponding to the on-set of SSF peak 
(see Fig. 3c) allowing us to reliably infer the ordering temperatures. Eventually a FM state, characterized by mag-
netization, becomes the ground state in the limit of strong Rashba coupling. As discussed above, the transitions 
from the high temperature paramagnetic (PM) state to any of the ordered states can be described with the help 
of the relevant peak in the SSF. These transitions are also identified as sharp peaks in the specific heat as shown 
in Fig. 3a,c. We find that for most of the α values, the sharp rise in the order parameter is accompanied by a peak 
in the specific heat. However, for 0.07 < α < 0.25 we find a broad hump feature in the specific heat in addition 
to a sharp peak (see Fig. 3d). On a careful observation of the SSF, we find the presence of diffuse circular pat-
terns centered about the K-points of the first BZ (see Fig. 3g). This allows us to identify this finite-temperature 
phase as a classical spin liquid, similar to the one reported in the square  lattice56. We summarize our results of 
Monte Carlo simulations in the absence of magnetic field as a T − α phase diagram (see Fig. 3e). While there is a 
similarity with the square lattice phase diagram, it is surprizing to note that the geometrical frustration inherent 
in the triangular geometry disfavors the zero-field skyrmion state found in the square  lattice56. The zero-field 
skyrmion state reported in the square-lattice model consists of skyrmions packed in a square geometry which 
is not compatible in a triangular lattice. Therefore, the SS state is preferred over the zero-field skyrmion crystal 
state for 0.43 < α < 0.67.

Phases in the presence of external magnetic field. Having established the zero-field phase diagram 
for the triangular lattice, we now discuss the effect of Zeeman field on the magnetic states. In Fig. 4a–d, we show 
temperature dependence of SSF, CV and topological susceptibility (see “Methods” section) at finite hz . We discuss 
the case of α = 0.2 as a representative of finite Rashba SOC. For small hz , the ground state remains a three-fold 
degenerate SQ spiral state discussed in the previous subsection (Fig. 4e displays another choice of the degener-
ate q point). The ordering temperature, as inferred from the SSF at the relevant q (see Fig. 4a), decreases with 
increasing hz . Interestingly, over a moderate range of hz values ( 0.07 < hz < 0.14 ) the SSF does not display any 
prominant peak. Specific heat also shows only a broad hump and no sharp anomaly (see Fig. 4b). We confirm 
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Figure 1.  1/JH dependence of energy per site calculated via exact diagonalization of the Rashba Hund’s 
Hamilonian (red circles) and that calculated from the low-energy spin Hamilonian (blue triangles) for different 
magnetic states and for different α : (a) 120° state, (b) random configuration representative of a paramagnetic 
state, (c) single-Q spiral state, and (d) ferromagnetic state. All energies are measured in units of the bare 
hopping parameter t0 = 1.
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the existence of diffuse circular pattern in SSF at low temperatures in this range of hz , similar to that shown in 
Fig. 3g (see Fig. 4f). Therefore, we conclude that the CSL state gets stabilized down to very low temperatures for 
finite Zeeman field. This stabilization of a short-range ordered spin-liquid state by application of external mag-
netic field is unusual and is analogous to melting of a solid under pressure as magnetic field in spin systems is 
analogous to external pressure in real solids. Upon increasing hz further, we find two exotic ordered states: a 3Q 
antiferromagnetic skyrmion crystal, henceforth labelled as AF-SkX1, (see Fig. 4g) and a novel antiferromagnetic 
skyrmion crystal, henceforth labelled as AF-SkX2, with SSF peaks on the boundaries (straight line joining near-
est pairs of K and M points) of the first BZ (see Fig. 4h)41,59 .

We further characterize the two multi-Q states with the help of skyrmion density ( 〈T 〉 ) and topological sus-
ceptibility ( χT ) (see “Methods” section). Indeed, the topological susceptibility peaks at the on-set temperature 
of the multi-Q order as inferred from the SSF (see Fig. 4c,d) in both the skyrmion states, AF-SkX1 and AF-SkX2. 
The peaks in χT are clear indications of non-topological to topological phase transitions.

In Fig. 5 we show the evolution with increasing Zeeman field of low temperature magnetic states via repre-
sentative spin configurations. The SQ state consists of spins spiraling in the xz plane with the ordering wavevec-
tor residing on the x axis in the reciprocal space (the corresponding SSF is shown in Fig. 4e). Upon increasing 
magnetic field the system enters a short-range ordered CSL phase. A typical spin configuration in the CSL state 
consists of filamentary domain segments (see Fig. 5b). The existence of such a disordered state relies on the pres-
ence of an unusual degeneracy of the SQ spirals that involved a simultaneous change of the spiral wavevector 
and the spin plane. This is discussed by us in recent  papers56,57. Indeed, the CSL state is similar to the antifer-
romagnetic string state discussed  in56, with the difference that the CSL state emerges in the background of 120° 
state on triangular lattice. It is interesting to note that some of the filaments existing in the CSL state are short, 
and hence acquire a skyrmion-like modulations of the spins. This is suggestive that the CSL state is unstable 
towards a state hosting skyrmions.

Indeed, this is confirmed as increasing magnetic field leads to the formation of AF-SkX1 state. A typical con-
figuration of spins in the AF-SkX1 state is shown in Fig. 5c where a triangular arrangement of antiferromagnetic 
skyrmions is observed in the background of 120° state. With a further increase in the strength of Zeeman field, 
we find the AF-SkX2 as the ground state (see Fig. 5d). While it is difficult to distinguish between AF-SkX1 and 
AF-SkX2 looking at the real-space spin configurations, the SSF for AF-SkX2 is qualitatively different from that 
for AF-SkX1 (compare Fig. 4g,h). This can be interpreted as a superposition of two counter-rotated triangular 
arrangements of the skyrmions. In order to understand the underlying spin structure Fig. 5c,d, we plot the sublat-
tice resolved spin  configurations41,60. The spin textures for AF-SkX1 and AF-SkX2 on three-sublattices (A, B, C) 
are shown in Fig. 6. The Néel type nature of skyrmion states on each sublattice is clear from Fig. 6. These plots 
also clarify that the difference between AF-SkX1 and AF-SkX2 is purely in terms of how the three-sublattices are 
oriented relative to one another. This is what generates a very different skyrmion density map for the two states 
(see Fig. 7b,c). Another interpretation is that the AF-SkX1 state is closer to SQ (SSF peaks on the Ŵ -K line) while 
the AF-SkX2 is closer to SS (SSF peaks on the K–M line). Therefore, AF-SkX1 and AF-SkX2 can be visualized 
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Figure 2.  Energy difference, �E , between different pairs of magnetic states, calculated within exact RHM 
and the derived classical super-exchange model (CSE), for various α values. The magnetic phases considered 
to calculate the energy differences are antiferromagnetic (AFM), ferromagnetic (FM), single-Q (SQ), and 
antiferromagnetic skyrmion states (AF-SkX1, AF-SkX2) states. All energies are measured in units of the bare 
hopping parameter t0 = 1.
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as originating from the underlying classical spin liquid state with circular pattern in SSF (see Fig. 5f) by lifting 
the degeneracy in two different ways.

Our main findings are summarized in the form of T vs. hz phase diagram shown in Fig. 7a. We discover 
three non-trivial states in our study. A liquid-like short range ordered state existing between the PM and the 
SQ state at zero magnetic field becomes stable at low temperatures with increasing magnetic field. The AF-SkX1 
becomes the ground state near hz = 0.14 which then destabilizes in favour of AF-SkX2 near hz = 0.21 . The 
boundaries seperating different phases were inferred from a combination of temperature dependence of relevant 
components of SSF, specific heat and topological susceptibility as discussed before. The open circles display the 
variation of skyrmion density ( 〈T 〉 ) as a function of applied field at low temperatures. Note that the presence 
of phase boundaries is clearly reflected in the sharp changes in the skyrmion density. The existence of a finite 
skyrmion density in the CSL state indicates the existence of a isolated skyrmions in this phase when the filaments 
lengths become of the same order as their width (see Fig. 5b). The sharp jump within AF-SkX2 state does not 
represent a phase transition as the SSF remains qualitatively identical on two sides of the discontinuity. Inset 
in Fig. 7a shows magnetization, Mz , (blue) and magnetic susceptibility, χM , (red) as a function of applied field. 
Note that the phase changes affect the manner in which magnetization increases with applied field and this gets 
clearly reflected in the peak structure in χM that exactly matches the indicative phase transitions shown by the 
skyrmion density variation.

We observe that the total skyrmion density remains almost unchanged in the hz window corresponding to 
the AF-SkX1 state. This suggests that the AF-SkX1 state is highly incompressible, and is similar to the packed 
skyrmion phase discussed by us in a recent  paper58. In contrast, the skyrmion density in the AF-SkX2 state 
gradually decreases upon increasing magnetic field. The step wise reduction of 〈T 〉 in AF-SkX2 is a finite size 
effect, which can accommodate only particular number of skyrmions with the imposed periodic conditions. In 
continuum limit it is expected that 〈T 〉 should smoothly go to zero. The qualitative difference between the two 
antiferromagnetic skyrmion states, AF-SkX1 and AF-SkX2, is clearly observed in the corresponding skyrmion 
density map plots (see Fig. 7b,c) in terms of the opposite polarity of 〈T 〉 in the skyrmion cores.

Figure 3.  (a)–(c) Temperature dependence of spin structure factor (open symbols) at different values of q , 
and for different values of relative Rashba coupling strength α . The right y-axis in (a) and (c) is for specific heat 
(filled symbols) corresponding to one of the α values. (d) Specific heat as a function of temperature showing a 
broad hump followed by a sharp peak for two values of α . (e) Phase diagram obtained by tracking the features 
in the SSF and the specific heat with the different phases described as follows: the 120° denotes the well known 
three-sublattice order on triangular lattice. Single-Q (SQ) denotes a state where SSF displays peak only at a pair 
±q of momentum. Spin stripe (SS) phase consists of ferromagnetic lines oriented antiferromagnetically w.r.t. 
neighboring lines. Classical spin liquid (CSL) denotes a phase with short-range correlations but no long-range 
ordering. (f)–(i) SSF plots for the four non-trivial phases displayed in the phase diagram. Note that the CSL state 
is characterized by a diffuse ring-like pattern centered at the K point. A zoomed in view is shown in panel (g). 
Inset in (e) shows variation in the magnitude q of the relevant wave-vector q with α for SQ state.
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Conclusion
Starting from a microscopic Rashba-Hund’s model on a triangular lattice in large Hund’s coupling limit, we 
derived an effective magnetic model in the insulating limit. A comprehensive Monte Carlo simulation study 
of the model uncovers a variety of intriguing magnetic phases. In particular, we find two distinct antiferro-
magnetic skyrmion crystals as the ground states of the model in the presence of external magnetic field. The 
sublattice resolved spin configuration analysis reveals that the antiferromagnetic skyrmion phases consist of 

Figure 4.  (a) SSF peak as a function of temperature for SQ state, (b) specific heat variation with temperature 
to identify CSL state transition, (c,d) variation of SSF peak (left axis) and topological susceptibility (right axis) 
for AF-SkX1 and AF-SkX2 states respectively. (e–h) SSF peak locations for four magnetic states displayed in the 
phase diagram (Fig. 7) SQ, CSL, AF-SkX1 and AF-SkX2 respectively.

Figure 5.  Low-temperature spin configurations for (a) single-Q spiral, (b) classical spin liquid, (c) AF-SkX1 
and (d) AF-SkX2 states. The z-component is represented by the color bar and the planar components by the 
arrow lengths and directions. For clarity, we only display a 30× 30 section of the simulated lattice in panels (a), 
(c), (d) and 60× 60 for (b). The insets in (c) and (d) show the zoomed-in view of spins in the core of skyrmions. 
The inset of (a) denotes the three-sublattices (A, B, C) in a single triangular plaquette.
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three interpenetrating Néel skyrmion states of usual types observed in many multilayer  systems61–63. The effec-
tive magnetic model allows us to understand the origin of these two AF-SkX states. Existence of a short-range 
ordered state characterized by circular diffuse pattern in the SSF serves as the parent of the two SkX states. These 
two states correspond to two different ways of breaking the degeneracy present in the classical spin liquid. A 
realization of the model studied here can be achieved in the interfaces and heterostructures of transition-metal 
oxides (TMOs) along (111) direction. The transition-metal (TM) ions with large moment, such as Mn, Fe etc., 
are particularly relevant for validating our approximation of a classical spin. The neccessary features to realize 
our model can be found in many real  materials64–67. One candidate material is GdI2 , in which Gd ions in the 
4f 75d1 state form a triangular lattice arrangement and electrons from partially filled d bands are coupled to local-
ized f  bands68,69. In a recent study by Chakhalian et al., the complex oxides A2 B2 O7 in [111] directional growth 
opens up a new route where triangular arrangement of high atomic number transition metal ions induce strong 
spin-orbit  coupling70. Other potential candidate materials are LaFeO3 , LaMnO3 , LaFeO3/LaCrO3

71, ( LaMnO3)2

Figure 6.  Sublattice resolved spin configuration plots for AF-SkX1 (upper panels) and AF-SkX2 (lower panels) 
states. All three-sublattices, denoted as (A), (B) and (C) on the vertices of a triangular plaquette, display perfect 
Néel skyrmion textures.

Figure 7.  (a) The temperature versus magnetic field phase diagram of the Hamilonian Eq. 7. The different 
phase boundaries are inferred from the order parameter plots shown in Fig. 4. The right axis shows the 
variation of skyrmion density 〈T 〉 with external magnetic field hz . Field dependence of magnetization (blue) 
and that of its derivative (red) are shown in inset. The real-space maps of the skyrmion density for the two 
antiferromagnetic skyrmion phases (b) AF-SkX1, (c) AF-SkX2.
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/(LaScO3)472,73 bilayers [111]. In LaMnO3 half-filled t2g electrons and eg are coupled via Hund’s coupling and the 
bilayers of LaScO3 provide significant spin-orbit coupling. Given that the low-energy magnetic Hamilonian for 
a Rashba coupled Mott insulator will have the identical form to what we derived here for the Hund’s model, our 
results regarding the existence of AF-SkX states are also relevant to Mott-insulators on triangular lattices. Since 
these two skyrmion states can be easily distinguished based on the spin structure factor, our results provide a 
clear prediction for their observation in neutron scattering experiments.

Methods
We simulate the spin Hamiltonian Eq. (7) via the Classical Monte Carlo technique based on conventional heat 
bath  method74. Periodic boundary conditions are implemented along each direction. Temperature parameter is 
reduced in small steps starting at high temperature to capture the phase transition from paramagnetic to ordered 
state. For a given value of T and hz , single spin updates are performed by proposing a new spin configuration 
from a set of uniformly distributed points on the surface of a unit sphere. Note that the option for picking a 
completely new orientation for spin reduces the tendency of the system to get stuck in the metastable state. 
The new configuration is accepted based on the standard Metropolis  algorithm75,76. A Monte Carlo run at each 
magnetic field and temperature consist of ∼ 1× 105 Monte Carlo steps (MCSs) for equilibration and twice the 
number for calculations of the desired observables. For detailed exploration of parameter space we used lattice 
size N = 60× 60 , and the stability of results is ensured by simulating sizes up to N = 120× 120 for some selected 
parameter values. For simulations in the presence of external magnetic field, we use the field cooled protocol, 
where the temperature is lowered in the presence of finite external field.

The various phases, obtained via Monte Carlo simulations, can be distinguished from the corresponding 
real-space spin textures (see Fig. 5). Additionally, we have calculated various physical observables to precisely 
identify the phase transitions. We calculate the magnetization (M), magnetic susceptibility ( χM ), specific heat 
( CV ) and the topological susceptibility ( χT)77, defined as,

The angular brackets denote the Monte-Carlo average of the quantity, �E� = 1
N �HCSE� , and T denotes the 

discretized skyrmion density, given  as41,
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Figure 8.  Schematic diagram showing locations of nn sites of a central site in the triangular lattice.
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where, A(ab)
i = ||(Sia − Si)× (Sib − Si)||/2 is the local area of the surface spanned by three spins on every 

elementary triangular plaquette ri , ra, rb . Here L (ab)
i = Si .(Sia × Sib ) is the so-called local chirality and ri , r1 − r5 

(see Fig. 8) are the sites involved in the calculation of 〈T 〉.
Most importantly, we also compute the component resolved spin structure factor (SSF) to characterize the 

conventional ordered magnetic phases. The SSF is given by,

with µ = x, y, z.
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