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Machine Learning and Feature
Selection Applied to SEER Data
to Reliably Assess Thyroid Cancer
Prognosis

Moustafa Mourad?!, Sami Moubayed?, Aaron Dezube?, Youssef Mourad*, Kyle Park?,
Albertina Torreblanca-Zanca®’, José S. Torrecilla’, John C. Cancilla®* & Jiwu Wang?®*

Utilizing historical clinical datasets to guide future treatment choices is beneficial for patients and
physicians. Machine learning and feature selection algorithms (namely, Fisher’'s discriminant ratio,
Kruskal-Wallis’ analysis, and Relief-F) have been combined in this research to analyse a SEER database
containing clinical features from de-identified thyroid cancer patients. The data covered 34 unique
clinical variables such as patients’ age at diagnosis or information regarding lymph nodes, which were
employed to build various novel classifiers to distinguish patients that lived for over 10 years since
diagnosis, from those who did not survive at least five years. By properly optimizing supervised neural
networks, specifically multilayer perceptrons, using data from large groups of thyroid cancer patients
(between 6,756 and 20,344 for different models), we demonstrate that unspecialized and existing
medical recording can be reliably turned into power of prediction to help doctors make informed and
optimized treatment decisions, as distinguishing patients in terms of prognosis has been achieved
with 94.5% accuracy. We also envisage the potential of applying our machine learning strategy to other
diseases and purposes such as in designing clinical trials for unmasking the maximum benefits and
minimizing risks associated with new drug candidates on given populations.

Machine learning as algorithmic advancement in the past few years dramatically improved our range of potential
implementation of artificial intelligence for tasks such as learning and playing the Go game, environment feature
recognition for self-driving, and in medical applications2. Within the machine learning scope, artificial neural
networks (ANNS) are a set of algorithms that recognize patterns and learn from inputs and outputs to make useful
connections without pre-set rules®. Furthermore, ANNs and their performance correlate well with the training
data size and are more adept at pattern recognition and classification when analysing large hospital records than
traditional statistical modelling applied in some of the more recent cancer prognostication applications**. ANN
models are designed in layers to learn increasingly higher-dimension and remote representations of the input data
and devise meaningful outcomes to feed the next layer.

In this work, we tested three separate neural network models to determine the outcomes of thyroid cancer
patients after diagnosis from distilling the U.S. Surveillance Epidemiology and End Results (SEER) database.
Although back in 2015 thyroid cancer cases in the United States were predicted to increase to 92,000 by 2020°,
and current estimates indicate that in 2019 around 52,000 are projected instead, these numbers still signify that
thyroid cancer incidence rates continue to increase’. Specifically, regarding women, thyroid cancer ranks sixth
compared to other types of cancer in terms of incidence with almost 38,000 new estimated cases per year’. These
trends can be mainly attributed to an increase in incidence of well differentiated thyroid cancers (WDTC) and
may be in part due to the increasing use of neck ultrasonography or other imaging modalities leading to early
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Patients

Alive

COD-TC

Number of participants (% of total)

24,025 (95.9%)

1,038 (4.1%)

Gender (male/female; % of each)

4,896/19,129 (20.4%/79.6%)

426/612 (41.0%/59.0%)

Race (white/black/American Indian, Alaska

Native, Asian, Pacific Islander/unknown; % of
each)

19,774/1,295/2,777/179
(82.3%/5.4%/11.6%/0.7%)

829/70/137/2 (79.9%1/6.7%1/13.2%/0.2%)

Grade (I (well differentiated)/II (moderately
differentiated)/III (poorly differentiated))

3,671/1,143/175 (grades for remaining cases
were unrecorded)

75/69/189 (grades for remaining cases
were unrecorded)

Age + standard deviation 40.5+12.8 65.9+13.4
Age groups (top); proportion of each group 20-29 30-39 | 40-49 |50-59 |60-69 70-79 | >80
(Alive/COD-TC) in % (bottom) 16/0.8 28/1.8 |27/7.3 | 1717 | 7.2/22 2.9/29 |0.3/22

Table 1. Demographic and clinical information regarding the 25,063 thyroid cancer patients that met the
requirements for the main modelling phase.

diagnosis and treatment®. The steady rise in incidence of thyroid cancer prompts the development of improved
methodologies for accurate tumour staging and prognostication to guide treatment and predict survival.

In this line, recent research has revealed the existence of potential biomarkers that show the ability to aid
in thyroid cancer prognosis prediction including proteins, DNA copy number amplifications (CNAs), and
non-coding RNA, such as glycoprotein Wnt inhibitor dickkopf-1, CNAs of LINC01061, and ZFAS1, respec-
tively-!'. On the other hand, the Manual for Staging of Cancer by the American Joint Committee on Cancer
Staging (AJCC) states that a “classification scheme for cancer must encompass all attributes of the tumour that
define its life history”'2. Modern day cancer staging is largely based on clinical criteria used to model and predict
tumour prognostication. The most commonly utilized staging schema for WDTC is the TNM system that utilizes
tumour size (T), nodal status (N), and presence/absence of metastatic disease (M). Other prognostic indices
include the AMES (Age, Metastases, Extent, and Size) and MACIS (Metastasis, Age, Completeness of resection,
local Invasion, and Size)'*!*. These described indices are largely based on retrospective clinical data that utilize
univariate and multivariate statistical analysis.

Our study design was based on the reasoning that recent advancements in machine learning have provided
opportunities to uncover variable relationships otherwise inaccessible through other more common statistical
approaches in modelling datasets like the thyroid cancer records within the U.S. SEER database. Our study has
led to the most accurate method to date utilized to predict thyroid cancer survival using data compiled from the
SEER program registry. We validated our network through a direct comparison to an ANN generated using the
AJCC TNM staging system, further demonstrating the power of our artificial intelligence system when coupled
with relevant clinical features. Consequently, we believe our findings reveal the need for change in current thyroid
cancer assessment standards, coinciding with new studies in the field'>.

Results

Database and artificial neural networks used in this study. During this research, non-linear algo-
rithms known as multilayer perceptrons (MLPs; in our case consisting of 3 layers: an input layer, a hidden layer,
and an output layer) have been employed to interpret the databases'. In total, 25,063 thyroid cancer entries were
extracted from the initial SEER database that met the inclusion criteria set for the novel models (MLP-1 and
MLP-2). Relevant demographic and clinical data regarding these patients are shown in Table 1, which is subdi-
vided into patients who survived more than ten years since diagnosis (alive) and those who passed away within
the first five years due to the disease (cause of death thyroid cancer; COD-TC). Within the employed database,
several thyroid cancer risk factors are covered including gender, as there are three times more women patients
than men, and age, where risk peaks vary depending on gender (in their 40 s and 50 s for women, 60s and 70 s for
men). On the other hand, certain hereditary conditions are also risk factors, but to a lesser extent as most thyroid
cancer patients do not develop the disease due to inheritance or even have affected family members (not covered
in the database used). Other risk factors include diets with low iodine content, exposure to radiation, and even
height and weight (data not recorded)’.

The data entries corresponding to thyroid cancer patients were used to train and validate three different MLPs
differing in terms of independent variables (vide infra) and number of available samples (Table 2), as not all var-
iables were available or registered for every patient (as soon as one of the employed independent variables was
incomplete, the corresponding sample was removed; the variables employed, original names, their values after
pre-processing, legend, and missing rates are included in the Supplementary Information section (Excel sheet:
“Database of Variables Used”)). Regarding the designed, optimized, and validated MLPs, the final selected func-
tions and optimized network architectures and parameters can be seen in Table 2 (further explained in Materials
and Methods).

MLP-1 - seven independent variables. The independent variables employed to train this model were
age, race, gender, tumour size, primary disease extent, location of nodal disease, and number of positive lymph
nodes (Fig. 1). In total, 8,477 entries were available for this model (Table 2) and were subsequently used to train
MLP-1 to classify cases into alive or thyroid-related death. In total, the network was able to correctly estimate
94.49% of outcomes (correct hits divided by total data points) when applied to entries with blinded classes. The
accuracies are reported with confidence intervals (CIs) of 95% in Table 3, which were calculated following Eq. (1).
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Figure 1. Architecture of MLP-1. The independent variables, number of hidden neurons, and output are
shown.

(oo Xe]

MLP-1 MLP-2 MLP-3
Training function Levenberg-Marquardt backpropagation
Transfer function Sigmoid
gﬁf&’fé gg*%g’omts 8,477 (8,256/221) 20,344 (19,848/496) | 6,756 (6,515/241)
Input nodes 7 3 3
Hidden neurons 19 18 4
Output neurons 1 (all binary classifiers)
Learning coefficient (Lc) | 0.001 0.001 0.5005
Lc-decrease 1 0.001 0.5005
Lc-increase 100 100 51

Table 2. Selected functions, optimized parameters, MLP architecture, as well as data points employed during
the design of MLP-1, MLP-2, and MLP-3.

MLP-1 MLP-2 MLP-3
Accuracy =+ 95% CIR (%) 94.49+0.88 |91.09+£0.71 |80.87+1.71
Alive (Specificity x 100) £ 95% CIR (%) 94.45+0.90 |91.08+0.72 |80.84+1.75
COD-TC (Sensitivity x 100) 4 95% CIR (%) | 96.36+4.95 |91.41+4.86 |81.40+8.22
Threshold 0.0447 0.028 0.0319
MCC 0.501 0.383 0.304
PPV 0.277 0.180 0.158
NPV 0.999 0.998 0.990
F1 Score 0.431 0.301 0.265

Table 3. Statistical results of MLP-1, MLP-2, and MLP-3 for their independent test datasets (n = 3). Accuracy,
specificity x 100, and sensitivity x 100 reported with 95% confidence interval radius (CIR).

int = zA/(acc(l — acc))/n) (1)

where int represents the radius of the CI, z is the number of standard deviations from the Gaussian distribution
(1.96 in this case, to reach 95% confidence), acc is the reported accuracy of a given model, and # symbolizes the
amount of data points from the test datasets evaluated.

In predicting alive cases, the network was 94.45% accurate (correct alive cases divided by total alive cases;
specificity x 100), with 96.36% accuracy in predicting thyroid-related deaths (correct COD-TC cases divided by
total COD-TC cases; sensitivity x 100). CIs of 95% have also been calculated for these two metrics via Eq. (1), by
changing acc for the respective values of specificity x 100 or sensitivity x 100 (Table 3)'3. The presented results
or model performances were reached after using an independent and randomly separated test dataset, which
contains “blinded” samples that have never been seen by the optimized MLP. Furthermore, in order to define
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Figure 2. ROC curves regarding the binary classifiers MLP-1 (AUC = 0.988), MLP-2 (AUC = 0.966), and
MLP-3 (AUC = 0.914). Baseline shown with discontinuous line (“AUC = 0.500”). These curves with 95% CIs
can be seen in the Supplementary Information section (Excel sheet: “ROC Curves”).

the threshold of all of our models (to decide which predicted result is considered as an alive or COD-TC case),
our main criterion was to reach comparable specificity and sensitivity values while giving priority to sensitivity,
as identifying cases with worse prognosis is a critical point of the algorithms (low false negative rate sought). In
other words, the threshold was set at the exact point where sensitivity surpassed specificity.

These results led to a receiver operating characteristic (ROC) curve with a notably large area under the curve
(AUC) of 0.988 (Fig. 2; in Supplementary Information section shown with 95% CIs (Excel sheet: “ROC Curves”)).
Other standard metrics including Matthews correlation coefficient (MCC; known for being a suitable parameter
to handle unbalanced data, as is the case (vide infra), leading to values ranging from —1, absolute disagreement
between prediction and real observation, to +1, perfect prediction, where 0 means random prediction'?), preci-
sion or positive predictive value (PPV), negative predictive value (NPV), and F1 score (harmonic mean of PPV
and sensitivity) are also shown in Table 3. As can be noticed, all the metrics reveal solid results except for the
precision (and related F1 score) or, in other words, the percentage of true positives among all those classified as
positives. This a direct reflection of the unbalanced nature or low prevalence found in the database (24,025 alive
versus 1,038 COD-TC cases (Table 1); 4% prevalence) and the fact that the threshold has been set to prioritize the
correct classification of thyroid cancer patients with poor prognosis, i.e. the COD-TC group, which shows very
high sensitivity (96.4 & 5.0%, Table 3).

MLP-2 - three independent variables via feature selection. In order to identify the three variables
that contain the strongest prediction power (exactly three variables were selected to employ the same amount as
the TNM model, thus reaching a comparable MLP architecture; vide infra), a second MLP model was trained.
Three different filter-based feature selection (FS) algorithms (Fisher’s discriminant ratio®, Kruskal-Wallis test*,
and Relief-F??), which rank variables according to their discriminative power for a successive task (further
detailed in Materials and Methods section)?’, were used on the features of the initial database. The functions
which represent each of the filter-based FS methods are shown in Eqs. (2-4). Fisher’s discriminant ratio (FDR; Eq.
(2)) uses linear calculations to determine the discriminative power of a variable. It operates by searching for a line
that can separate the data samples into their corresponding classes the best way possible®.

(x) — (7))

FDR = ————M———=~
Var(x,) + Var(x,) (2)

where % and X, represent the means of the values of a certain feature for classes x; and x,, respectively, while
Var(x;) and Var(x,) are the variances of these datasets.

The Kruskal-Wallis test (KW; Eq. (3)) relies on non-parametric calculations to rank features by comparing
the medians of the different classes. It is able to interpret non-linear relations between the values of the variable
evaluated and the class label and determines whether the medians of the values of a feature of two or more classes
are equal or not to rank them in terms of discriminative capability?'.

12 "
W=—"SuFE? —3N+1
NN T l)gﬂ,(n) (N+1) 3)

where N is the amount of observations or samples in all the groups, n; is the number of observations in group 4,
and F; represents the mean of the ranks of observations in group i.
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Feature selection algorithm Ranking
Fisher’s discriminant ratio 3,5,4,6,1,7,2
Kruskal-Wallis test 5, 6, all others
Relief-F 3,7,6,2,4,5,1

Table 4. Results of the three feature selection processes carried out. The variables are ranked from left to right
in terms of discriminative power according to each algorithm. Variables are labelled as: (1) gender, (2) race, (3)
age, (4) tumour size, (5) primary disease extent, (6) location of nodal disease, and (7) number of positive lymph
nodes. Variables 3, 5, and 6 are the overall highest ranked clinical variables.

Input layer Hidden layer Output layer

- B0
> s
Primary disease @ "Q( Alive

extent

Location of %
nodal disease
Figure 3. Architecture of MLP-2. The selected independent variables (through FS algorithms), number of
hidden neurons, and output are shown.

COD-TC

Finally, the Relief-F algorithm (Rg; Eq. (4)) is based on evaluating features by the extent of their ability to
distinguish the values of instances or samples that are near to each other. When analysing a sample value, it seeks
for the nearest neighbours, one per class (same and different), and adjusts the feature weighting vector to enable
ranking variables according to their ability to discriminate neighbour samples from others corresponding to
different classes?.

RF(f;) = %;d(ftz _fNM(xr),i) - d(ft,i _fNH(xt),i) (4)

where f;; represents the value of the sample analysed (x;) of a specific feature (f;), while fyprs); and fiyper; are the
values of the i feature corresponding to the nearest neighbours of different and same classes, respectively. Finally,
d(-) is the function employed as a distance measurement between the sample and the nearest neighbours.

Considering the results provided by the three presented FS methods?°~%, the variables were ranked from
most relevant to least, in terms of classifying power (Table 4). The scores provided by the FS algorithms for every
variable are shown in the Supplementary Information section (Excel sheet: “FS Scores”). We found that the most
predictive variables from MLP-1 were age, location of nodal disease, and primary disease extent. The number of
positive lymph nodes, race, tumour size, and gender were identified as variables with less predictive value and
were not included. The model was subsequently reduced to three independent variables (Fig. 3). In total, 20,344
entries were used to train MLP-2 (Table 2). The network had an overall accuracy of 91.09%, predicting 91.08% of
alive cases, and 91.41% of thyroid-related death (Table 3), and its ROC curve revealed a very high AUC of 0.966
(Fig. 2; in Supplementary Information section shown with 95% CIs (Excel sheet: “ROC Curves”)). MCC, PPV,
NPV, and F1 score are also shown for MLP-2 in Table 3.

MLP-3 —=TNM model. Finally, a third model was designed only using the variables that are based on the
TNM staging system (tumour size (T), number of positive nodes (N), and presence of metastases (M)) estab-
lished by the AJCC (Fig. 4). In total, 6,756 entries were used to train the network (Table 2), and it must be
noted that the range of the group of alive patients (good prognosis) was changed from 10 to 7.5 years survived
since diagnosis due to data being unavailable concerning the three independent variables (T, N, and M) inevi-
tably needed to train this model (see Supplementary Information section (Excel sheet: “Database of Variables
Used”)). The overall network accuracy was seen reduced to 80.87%, correctly identifying 80.84% of alive
cases, and 81.40% of thyroid-related deaths (Table 3), leading to a ROC curve with an AUC of 0.914 (Fig. 2; in
Supplementary Information section shown with 95% Cls (Excel sheet: “ROC Curves”)), agreeing with the FS pro-
cess results, which reveal the weaker relevance of these variables used by the AJCC. Values regarding MCC, PPV,
NPV, and F1 score are also shown for MLP-3 in Table 3. Comparing the results of the three MLPs illustrates the
usefulness of filter-based FS algorithms, as well as their strength when combined with machine learning-based
models like ANNG.

The labels (alive and COD-TC) and predictions regarding the randomized test datasets (in triplicate) for
the three MLPs and three PLS-DAs (partial least squares-discriminant analysis, see below) are shown in the
Supplementary Information section, as well as true positives and negatives, and false positives and negatives for
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Figure 4. Architecture of MLP-3. The independent variables (TNM), number of hidden neurons, and output
are shown.

PLS-DA-1 PLS-DA-2 PLS-DA-3
Accuracy £ 95% CIR (%) 87.16£1.30 |89.27+£0.78 |78.80+1.78
Alive (Specificity x 100) £ 95% CIR (%) 87.05+1.32 |89.23+0.78 |78.71+1.81
COD-TC (Sensitivity x 100) & 95% CIR (%) 91.18+£6.74 |91.13£5.00 | 81.54+9.43
Threshold 0.086268 0.102 0.113
MCC 0.353 0.344 0.251
PPV 0.162 0.149 0.112
NPV 0.997 0.998 0.992
F1 Score 0.275 0.256 0.198

Table 5. Statistical results of PLS-DA-1, PLS-DA-2, and PLS-DA-3 for their independent test datasets (n = 3).
Accuracy, specificity x 100, and sensitivity x 100 reported with 95% confidence interval radius (CIR).

each model (Excel sheets: “MLP Predictions” and “PLS-DA Predictions”). These tests were carried out three times
in order to further validate the reproducibility and plasticity or flexibility of the MLPs.

Partial least squares-discriminant analysis models. In order to further validate the use of machine
learning-based models for predicting thyroid cancer patient outcomes, we then compared our results with those
generated by three analogous partial least squares-discriminant analysis (PLS-DA) models, which represent a
classic mathematical approach based on the creation of linear regressions to estimate categorical variables (alive
and COD-TC in this scenario). They have been developed with the same sets of independent variables (PLS-DA-1
is comparable to MLP-1, and so on). The same validation strategy has been employed (10% of randomized sam-
ples were used to test the linear regressions three different times; analogous to the procedure used for the MLPs).
The results provided by these linear models can be seen in Table 5, revealing a weaker performance when com-
pared to their corresponding MLPs (Table 3; a quantitative comparison is shown in the following subsection).
Also, their ROC curves, with AUCs of 0.963, 0.958, and 0.885 for PLS-DA-1, PLS-DA-2, and PLS-DA-3, respec-
tively, are shown in the Supplementary Information section with 95% Cls (Excel sheet: “ROC Curves”).

Comparing results of the classifiers.  Firstly, we wanted to analyse the effect of the different variables on
the performance of the MLP classifiers. As can be seen in the ROC curves (Fig. 2; in Supplementary Information
section shown with 95% CIs (Excel sheet: “ROC Curves”)) and statistical performance (Table 3), the classifiers
trained with new independent variables (MLP-1 and MLP-2), different to the standard TNM ones (MLP-3), are
more reliable and accurate (94.49 £ 0.88% and 91.09 4 0.71% versus 80.87 £ 1.71%, respectively (narrow 95% Cls
further strengthen the results); AUCs from ROC curves of 0.988 and 0.966 versus 0.914, respectively), revealing
the stronger prognostic power of these medical attributes. It is worth mentioning that MLP-2, although slightly
weaker than MLP-1, possesses the same number of variables as the TNM-model (three variables) and yet vastly
outperforms it (over 10% better accuracy, as well as improved sensitivity and specificity). Nevertheless, due to the
availability of such a large database, there is no reason not to select the best performing MLP (MLP-1) if all seven
variables are accessible, as it shows an improved sensitivity when compared to MLP-2 (0.964 versus 0.914), which
means that it properly identifies COD-TC cases more consistently (although a slim overlap can be seen when
looking into the 95% ClIs regarding sensitivity). Furthermore, the values of MCC, PPV, NPV, and F1 score also
indicate a stronger performance by MLP-1. It must be noted that even though MLP-1 was trained with a database
containing less than half the number of samples than MLP-2 (8,477 vs. 20,344, respectively; Table 2), this amount
is more than enough to ensure proper training and avoid over-fitting effects considering the dimensions of MLP-
1, as a very high sample-to-weight ratio is maintained (further explained in Materials and Methods).

On the other hand, when comparing the performance of the MLPs with the PLS-DA models with the same
inputted variables, it can be noticed that the non-linear neural network is better suited for predicting medical
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outcomes than the classic linear method. Although the PLS-DA classifiers are still accurate tools (Table 5), the
MLPs provide stronger results for all three models, validating the use and optimization of these more powerful
algorithms. Specifically, MLP-1, MLP-2, and MLP-3 presented an increase in total accuracy when compared to
their PLS-DA counterparts of 7.3%, 1.8%, and 2.1%, respectively, justifying the use of ANNs for the risk assess-
ment of thyroid cancer, especially concerning MLP-1. Finally, the other calculated metrics (MCC, PPV, NPV, and
F1 score) all favour the MLP models when compared to the performance of the PLS-DA ones.

Discussion

The ability to model tumour behaviour has large implications in the staging and prognostication of cancer. Recent
advancements in the field of oncology have led to a massive expansion of clinical and genomic information that
can be utilized for better understanding of the life history of a tumour. However, limitations in statistical analysis
have hindered our ability to accurately understand relationships between these variables that are known to hold
prognostic value, precluding their use as part of a staging system. Consequently, the method by which tumours
are staged is still largely based on a system devised in 1953 by Pierre Denoix*. Current AJCC guidelines utilize
gross clinical and pathological information to predict tumour behaviour (size, lymphatic metastases, and distant
metastases). The value of this information is based on multivariate statistical analysis demonstrating prognostic
impact, which is based largely in part on linear relationships between variables and does not account for par-
tial and/or non-linear relationships or multiple co-existent states. ANNs are specifically designed to elucidate
non-linear relationships, with an inherent ability to self-teach from training sets. Such algorithms are optimized
to carry out image, facial, voice, and handwriting recognition, and now they have begun to be used in oncology
research [*°, and this work].

The increasing incidence of thyroid cancer has highlighted the need for better prognostication and under-
standing of tumour behaviour®. Through the current study, we have harnessed the power of ANNSs to generate
a set of models that can predict thyroid cancer survival with significantly improved accuracy. Our most accurate
model, MLP-1, showed an accuracy of 94.49% (94.45% of alive cases and 96.36% of thyroid cancer related death;
Table 3). Moreover, utilizing feature selection algorithms, we determined that the most useful clinical predictors
of thyroid cancer are age of the patient when diagnosed, the extent of thyroid disease present (e.g. encapsulated,
gross extra thyroidal extension, or pathological extra capsular extension), in addition to location of nodal disease
(MLP-2). It is also worth noting that, due to high survivability rate of thyroid cancer, the databases used to train
these MLPs are unbalanced in terms of number of data points per group to be classified (shown in Table 2; about
97.5% alive versus 2.5% COD-TC cases, respectively). Despite this fact, which typically affects the performance
of MLPs, remarkable classification accuracies are achieved for both classes, signifying that strong relationships
have been found between the independent and dependent variables employed?®. In other words, variables with
significant prognostic power have been identified and employed to reach reliable classifiers by our preferred
models, MLP-1 and MLP-2. On the other hand, MLP-3, which was generated based on the TNM tumour staging
system was not able to predict survival (80.84%) nor death (81.40%) at the same rate as the other models, as its
global accuracy is 13.6% and 10.2% lower than MLP-1 and MLP-2, respectively (Table 3), also supporting current
limitations in thyroid cancer modelling based on AJCC guidelines'. It is worth mentioning that in the present
research, a classification problem has been carried out to serve as a prognosis assessment. This is not the typical
methodology employed for such studies, which are usually evaluated via Cox proportional hazards analysis®.

Regarding the identified variables with the highest prognostic value for thyroid cancer (via feature selection),
age was first described as such by Byar et al. in 1979%. Since then, multiple studies and indices have employed age
as an important component when staging and predicting disease behaviour in thyroid cancer, including the Mayo
Clinic’s MACIS index and the Lahey Clinic’s AMES index'****. The AJCC Cancer Staging Manual has utilized age
since its 3" Edition, based on a 55-year old cut-off’!, and since then, large-scale retrospective studies have rein-
forced its prognostic role®. In 2015, Ganly et al. recognized age as a predictive variable and established a nom-
ogram using regression analysis to predict survival®?, promoting the use of age as a continuous variable. As age
increases, the prognosis declines, however, this may not necessarily correlate in a linear relationship, especially
when considering its combination with other clinical factors (e.g. with the presence of lymph node metastases or
a tumour with gross extracapsular extension). By utilizing ANNS, the inter-variable relationships and their influ-
ence on prognosis can be handled by giving a weighted impact of inputs and their combinations. This allows age
to be a dynamic influencer on prognosis that may change from patient to patient and be affected by the presence
of differences in other variables, as opposed to nomograms that only identify static influences. This notion is epit-
omized by the new AJCC staging system that acknowledges the changing impact of age in patients over the age of
55, especially when determining the prognostic role of lymph node location®. Our model accurately predicts this
ideal, but without using cut-offs, allowing for age to be dynamic and continuous in its impact.

The 2015 American Thyroid Association’s guidelines determined lymph node number, size, and presence of
extranodal extension as being prognostic drivers in impacting risk of persistent/recurrent disease, whereas some
studies, including the most recent AJCC 8" Edition guidelines, disregard location of lymph nodes as impacting
prognosis in patients younger than 55%>"*. Recently, in 2017, Sapuppo et al. did however demonstrate that
lymph node status was the best prognostic factor in predicting thyroid cancer-related death for particular kinds
of thyroid cancer***>. Our devised MLP-2 and FS algorithms support the conclusion by Sapuppo et al., finding a
high predictive value of lymph node location.

Lastly, the extent of primary disease has also been recognized as having prognostic value in thyroid cancer®.
In 2010, Baek et al. found that extrathyroidal extension was correlated with recurrent cervical neck disease®”.
Riemann et al., in 2010, demonstrated an improvement in disease free events in patients with minimal extrathy-
roidal extension when compared to those patients with sizable extrathyroidal extension®. Ito et al. utilized uni-
variate statistical analysis to determine that massive extrathyroidal extension decreased relapse free survival when
compared to minimal extension®. Consequently, the amount of primary disease extension has been incorporated
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in the AJCC cancer staging manual®'. The aforementioned studies however are limited in determining the exact
impact of disease extent on prognosis by utilizing univariate and multivariate statistical methods that do not
demonstrate a dynamic relationship with other variables. Our MLP-1 and MLP-2 have validated the relevance
of extrathyroidal spread leading to more accurate prognostic modelling by allowing it to have variable weighting
depending on the value of other clinical variables, most notably age and location of positive nodes.

By applying the FS algorithms to the seven variables used for MLP-1, the three aforementioned variables were
identified as the ones with the greatest prognostic power and used to train MLP-2. The prediction of thyroid
cancer outcomes was still possible, while maintaining a strong statistical performance in terms of global accuracy
(from 94.5% (MLP-1) to 91.1% (MLP-2); Table 3), although the correct estimation of COD-TC cases (sensitivity)
was slightly lower (from 96.4% to 91.4%; Table 3). Therefore, MLP-2 showcases the power of ANNs as they were
able to correlate primary disease extension, inherent within its algorithmic design, without having to directly link,
for example, with size dimension of the primary tumour, which was removed after the FS process. Furthermore,
an accurate prognosis predicting system with only three required variables should be highly beneficial for both
patients and physicians.

Through our research we were able to utilize artificial intelligence to predict thyroid cancer patient survival
and related deaths. However, given the mostly indolent nature and high percentage of survival of thyroid cancer
patients, the standard has shifted from predicting survival to predicting risk of recurrence?. The currently prevail-
ing staging method, TNM, has an inherent shortcoming in predicting recurrence as is known in the field. Moreover,
and unfortunately, the SEER database does not include status on cancer recurrence. Large-scale recurrent data
would allow for a more clinically useful ANN to be derived that could be used to predict disease recurrence instead
of survival. Hopefully, our results will prompt others to include medically important features such as recurrence
when building their future patient database, as ANNs provide an invaluable method by which to utilize oncological
data, enabling forthcoming research that can incorporate diverse types and large amounts of data. Machine learn-
ing can be employed for much more beyond the incorporation of clinical data as we proposed, including mining
and utilizing genomic data, a current focus of thyroid research as well as of many other medical fields*.

ANNSs are exciting algorithmic tools that allow for an improved modelling of variable relationships that can be
applied to cancer prediction research. We were able to design, train, and optimize a 3 variable ANN (MLP-2) that
was able to predict thyroid cancer outcome accurately. The attained 91.1% of correct classifications represents a
~10% increase in accuracy when compared to traditional TNM (also 3 variables; Table 3) tumour staging meth-
odology (MLP-3). Furthermore, these classifications showed an enhanced performance when compared to the
results provided by a more classic modelling approach such as PLS-DA.

Nevertheless, it is relevant to note that the present study is limited to the analysis of a single thyroid
cancer-related SEER database, not considering any other data source or omics derived information. Future algo-
rithms could benefit from the inclusion of, for instance, data collected from genomics, proteomics, or metab-
olomics studies. Furthermore, the presented MLP models would improve and become more generalizable if
successfully validated or even reoptimized with data from multiple sources and/or populations combined.

As final remarks, we have shown that models based on MLPs can be used to interpret and extract underlying
relationships between clinical variables and a thyroid cancer patient’s outcome or prognosis. Straightforward
databases from unspecialized and existing medical records have been converted into cognitive algorithmic
tools that can reliably estimate a vital characteristic such as disease prognosis, which can guide doctors towards
informed and optimized treatment decisions. In the future, the principle behind our machine learning approach
can be implemented to predict, during the design of clinical trials, the likelihood of beneficial effects among cer-
tain subpopulations representing certain traits, while minimizing the risks associated with others when testing
new drug candidates.

Materials and Methods

Database. The database for the study was obtained from the November 2014 submission of the U.S. SEER-
18 database®!. A cohort of thyroid cancer cases was created by the International Classification of Diseases for
Oncology, 3" Edition (ICD-3). The data was restricted to the select histologic subtypes papillary carcinoma and
follicular carcinoma. Only thyroid cancer cases diagnosed between 1988 and 2007 were included to allow for ade-
quate follow up, leading to a total of 61,362 data entry points. The database excluded data from Louisiana during
the periods of Hurricanes Katrina and Rita from July to December 2005.

Demographic data on date of diagnosis, patient age, gender, and race were obtained. Surgery type was cate-
gorized into total thyroidectomy, subtotal thyroidectomy, lobectomy, and no surgery. Radiation was classified as
beam radiation, radioactive isotope, combination of beam and implant or radioactive isotope, other (radiation
not otherwise specified, radioactive implants), and none. Both number and location of lymph nodes were sub-
classified as none, regional, distant, and unknown for the purpose of analysis. Extent of disease was then exam-
ined and classified into in-situ/no evidence of primary disease, intrathyroidal spread, pathological extrathyroidal
spread, gross extrathyroidal spread, metastasis, and unknown. Size of the primary tumour was also stored as
pathological size. This information led to a database containing 34 clinical variables (e.g. age, cancer grade, radi-
ation in relation to surgery, primary tumour size, regional nodes examined, survived months, and so on) which
were all analysed, and several employed as independent variables in the modelling phase.

Data arrangement and pruning. In first place, as many of the clinical parameters present in the database
were categorical, they were transformed into mathematical variables by labelling each class within a parameter
accordingly (e.g. for the gender variable, “0s” were assigned to males and “1s” to females). Then, an initial reduc-
tion of the number of samples, guided by the end goal of this research, took place. In this first pruning stage, only
the information from patients which were still alive or had died due to thyroid cancer were kept, leading to a
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decrease from 61,362 to 57,157 samples (55,437 alive cases and 1,720 “cause of death-thyroid cancer” (COD-TC)
cases; this pre-processed dataset is shown in the Supplementary Information section (Excel sheet: “Database of
Variables Used”)). Afterwards, to further ascertain the purpose of the novel mathematical models (MLP-1 and
MLP-2), the samples were limited to people that have been alive for over ten years since the diagnosis, and people
that passed away within the first five years, leading to a database containing 25,063 entries (24,025 alive cases and
1,038 COD-TC cases) (Table 1).

ANNs used and feature selection.  The ANNs employed are MLPs, which are composed of several layers,
covering from input data to output information, in an end-to-end estimation mode. An input layer defined by
a set of independent variables (or nodes) that are used to train the network. The second layer is a hidden layer,
which is formed by artificial neurons where the bulk of the calculations take place. The final layer is the output
layer and consists of the dependent variables that the network is trained to predict, and also is formed by artificial
neurons (as many as dependent variables; only one for each of the three models in this study, as they are binary
classifiers (Table 2)). MLPs are trained with a set of known independent and dependent variables, to “teach” the
network the desired outcome based on the inputs. Through iterative calculations, the network will learn to model
the dynamic interactions of the variables'®.

Three different MLP models were created and the captured clinical variables were used as input. The first
network (MLP-1; Fig. 1) utilized seven clinical variables including age, race, gender, tumour size, number and
location of positive lymph nodes, and primary disease extent, which were taken from the original 34 based on
findings in the literature!®2428-394243 Qubsequently, three different filter-based FS algorithms (Fisher’s discrimi-
nant ratio®®, Kruskal-Wallis’ analysis?!, and Relief-F algorithm??), based on unique mathematical criteria, were
independently tested on the seven variables to locate the three most predictive variables that were utilized to
create a second MLP (MLP-2; Fig. 3). Only three variables were selected to reach an architecture that is compara-
ble to MLP-3. The overall performance of the variables for the three methods was analysed to reach an informed
selection. Filter-based FS algorithms analyse the variables individually and rank them according to their discrim-
inative power for a successive task. These methods do not consider potential redundant information that different
variables may possess, reason why they are mainly used as a fast pre-processing tool**. Finally, utilizing the AJCC
tumour staging guidelines, a third network (MLP-3; Fig. 4) was created using tumour size (T), nodal status (N),
and presence of metastases (M) as three predictive clinical variables.

ANNs —training and optimizing MLPs.  MLPs are the most employed type of ANN*, and as any super-
vised model, they require each data point to be labelled (“0s” for alive cases and “1s” for COD-TC cases). Inside
every MLP there is a set of weighted parameters (or weights) that connect every unit (nodes and neurons) from one
layer with all units in neighbouring layers. These weights are initially given a random number (between 0 and 1),
and during the training process, they are modified to lower the error of the MLP (increase the patient classifica-
tion accuracy). Therefore, training a MLP can be understood as optimizing the weights during the learning phase
of the model. In this phase, the database is divided randomly into two datasets, namely training and verification.
The MLP uses the training set to modify the weights, and the verification set to evaluate the performance of the
model intrinsically with data not employed to change these weights. In other words, the verification dataset is a
group of samples that the MLP utilizes to ensure it avoids overfitting for the training dataset and is able to gener-
alize for external data®s.

Besides the weights, other parameters also have to be optimized or selected before reaching an optimized
MLP. They are the training and transfer functions, the number of hidden neurons (NHN), and the learning coef-
ficients. The training function embodies the equation that is in charge of the weight modification. In this study,
the Levenberg-Marquardt backpropagation has been implemented, as it is the quickest training algorithm for
moderate-sized MLPs, possessing a memory reduction feature for large training datasets*’. The transfer function
restricts the range of the values given by every neuron. In this case, the non-linear sigmoid function has been
employed, which limits data between 0 and 1*°.

Another crucial parameter is the NHNs. These hidden neurons must be optimized adequately as MLPs
with a low NHN may have a hampered learning capability, and, therefore, may not be able to fully interpret the
non-linear relations between variables, resulting in inaccurate models*’. On the other hand, a high NHN could
lead to overfit systems that are not able to generalize well for data that is external to the learning dataset. A heuris-
tic method has been employed to optimize the NHNG, testing all possibilities within a logical window that would
never lead to models with NHNs lower than 3 or less than a 50-to-1 sample-to-weight ratio (to avoid overfitting)*.

Finally, an adequate combination of the learning coefficient or Marquardt adjustment parameter (Lc), and its
decrease (Lcd) and increase (Lci) factors, has to be used in the MLPs. The Lc embodies the learning coefficient
in classic backpropagation algorithms*, and it is decreased and increased by Lcd and Lci, respectively, until the
changes lead to a deteriorated statistical performance. The evaluated values ranged from 0.001 to 1 for Lc and Led,
and from 2 to 100 for Lci*.

Validating the MLPs. Independent testing, which utilizes “blind” samples to determine the performance
and generalization capability of the MLPs, has been performed. For this process, the databases are randomly
divided into three: training, verification, and test (“blind”) datasets, containing approximately 70%, 20%, and
10% of the samples, respectively. Furthermore, this process was carried out three times for each model to ensure
robustness and flexibility (three different random divisions of data) and the final reported statistical performances
result from the averages of these three tests (Table 3)*. Also, ROC curves for each classifier have been depicted
for further evaluation (Fig. 2). The AUCs of ROC curves are proportional to the performance of the classifiers,
where an AUC of 1 means 100% accuracy (best performance) and of 0.5 signifies absolute random classification®.
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PLS-DA for Comparison with MLPs.  Asa final step, in order to justify the use of machine learning-based
algorithms to carry out this classifying task, PLS-DA models have been calculated for statistical comparison.
PLS-DA is a classic mathematical approach based on creating linear regressions to estimate categorical variables.
Three PLS-DA models have been calculated using the same independent variables and datasets as MLP-1, MLP-2,
and MLP-3.

All calculations performed for this manuscript have been completed via MATLAB version 9.3.0.713579
(R2017b)'S.

Data availability
The database analysed during the present research is available from the corresponding author upon request.
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