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1  | INTRODUC TION

The latest form of computer-based automation that self-captures 
and self-analyzes a wide variety of data is advancing and rapidly 
penetrating all aspects of daily life, represented by self-driving cars1; 

artificial intelligence (AI) is being used to make this large amount of 
data interpretable and usable. Technology has advanced surgery, 
especially minimally invasive surgery (MIS), including laparoscopic 
surgery and robotic surgery. It has led to an increase in the number 
of technological devises in the operating room. They can provide 
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Abstract
Technology has advanced surgery, especially minimally invasive surgery (MIS), includ-
ing laparoscopic surgery and robotic surgery. It has led to an increase in the number 
of technologies in the operating room. They can provide further information about 
a surgical procedure, e.g. instrument usage and trajectories. Among these surgery-
related technologies, the amount of information extracted from a surgical video cap-
tured by an endoscope is especially great. Therefore, the automation of data analysis 
is essential in surgery to reduce the complexity of the data while maximizing its utility 
to enable new opportunities for research and development. Computer vision (CV) is 
the field of study that deals with how computers can understand digital images or 
videos and seeks to automate tasks that can be performed by the human visual sys-
tem. Because this field deals with all the processes of real-world information acquisi-
tion by computers, the terminology “CV” is extensive, and ranges from hardware for 
image sensing to AI-based image recognition. AI-based image recognition for simple 
tasks, such as recognizing snapshots, has advanced and is comparable to humans in 
recent years. Although surgical video recognition is a more complex and challeng-
ing task, if we can effectively apply it to MIS, it leads to future surgical advance-
ments, such as intraoperative decision-making support and image navigation surgery. 
Ultimately, automated surgery might be realized. In this article, we summarize the 
recent advances and future perspectives of AI-related research and development in 
the field of surgery.
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further information about a surgical procedure, e.g. instrument 
usage and trajectories. Among these surgery-related technologies, 
the amount of information extracted from a surgical video captured 
by an endoscope is especially great. Therefore, the automation of 
data analysis is also essential in surgery to reduce the complexity of 
the data while maximizing its utility to enable new opportunities for 
research and development.

Computer vision (CV) is the field of study that deals with how 
computers can understand digital images or videos and seeks to au-
tomate tasks that can be performed by the human visual system. 
Because this field deals with all the processes of real-world infor-
mation acquisition by computers, the terminology “CV” extends 
to include hardware for image sensing to AI-based image recogni-
tion.2 AI-based image recognition for simple tasks such as recog-
nizing snapshots has advanced to the point where it is comparable 
to humans in recent years.3 Although surgical video recognition is a 
more complex and challenging task, it could lead to future surgical 
advancements, such as intraoperative decision-making support and 
image navigation surgery, if effectively applied to MIS. Ultimately, 
automated surgery might be realized. In this article, we summarize 
the recent advances and future perspectives of AI-related research 
and development in the field of surgery.

2  | AI IN MINIMALLY INVA SIVE SURGERY

Technical errors are the leading cause of preventable harm in 
surgical patients.4 Although individual surgeons’ skills vary sig-
nificantly, their technical skills can have a drastic impact on pa-
tient outcomes.5-8 On the other hand, diagnostic and judgment 
errors also play important roles in patient outcomes. The causes 
of a notable proportion of surgical complications can be traced 
back to a lapse in judgment or an error in decision-making dur-
ing the surgery.9, 10 A previous analysis of surgical errors in closed 
malpractice claims at several liability insurers found that the most 
frequent factors that contributed to surgical errors were related 
to cognition, such as judgment errors and vigilance or memory fail-
ures.9 A separate analysis of the causes of bile duct injuries during 
laparoscopic cholecystectomy also found that the main sources of 
error were visual perceptual illusions; however, faults in techni-
cal skills were only present in 3% of these injuries.10 Furthermore, 
time constraints and uncertainty forces individuals to rely on cog-
nitive shortcuts that could lead to errors in judgement, and sur-
geons have identified this as one of the most common causes of 
major error.11, 12 However, the surgeon's decision-making process 
depends on the circumstances of the surgery; usually, there is no 
obvious answer, and this creates a significant complexity around 
defining and measuring the process.

AI can play an important role in generalizing the high-quality 
MIS in every hospital, and there are several reasons for this. First, 
in MIS, both the surgical procedure and the intraoperative decision-
making heavily rely on visual information compared to open surgery. 
Therefore, future technological improvement of AI-based image 

recognition might reduce the burden of intraoperative decision-
making on surgeons. Second, many surgical videos can be acquired 
through MIS. These videos can be utilized as a training dataset to cre-
ate an algorithm for machine learning (ML), one of the subdomains 
of AI. Third, fine anatomical structures, such as vessels or nerves, 
can be visualized during MIS under magnified view. Surgery should 
be performed more skillfully than ever with the understanding of 
these complicated structures. AI-based image navigation would also 
be invaluable for these demands.

In an era of increased emphasis on patient safety, issues related 
to human error have become more pronounced. Because the capac-
ity of human decision-making is biologically limited, developing an 
approach to support surgeons’ decision-making processes during 
surgery would be highly valuable. It might lead to technology-
augmented, real-time intraoperative decision-making support. Many 
surgical videos could be the foundation for creating an AI with col-
lective surgical consciousness that comprises the knowledge and 
experience of global expert surgeons.

3  | AI- BA SED COMPUTER VISION

Technological innovations have been linked to clinical benefits 
within the field of surgery. The navigation and planning of complex 
surgeries has been made possible through the use of both preop-
erative and intraoperative imaging techniques, such as ultrasonog-
raphy, computed tomography, and magnetic resonance imaging.13 
Furthermore, the development of surgical devices and instruments 
related to endoscopic surgery have greatly contributed to the intro-
duction and penetration of MIS.14 Postoperative care has also been 
improved through the use of sophisticated sensors and monitors.15 
Following the introduction of these measures, AI will play an impor-
tant role in intraoperative surgical decision-making and automation. 

F I G U R E  1   Relationships between the terminologies mentioned 
in this article. AI, artificial intelligence; CNN, convolutional neural 
network; CV, computer vision; DL, deep learning; ML, machine 
learning
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The recent introduction of AI-based CV in MIS focuses on imaging, 
navigation, and guidance.16, 17

As shown in Figure 1, deep learning (DL) is part of ML methods 
that is based on neural networks, and the most important feature 
of DL is that it automatically extracts the features that should be 
focused on for analysis during the learning process. Convolutional 
neural networks (CNNs) are the most commonly applied DL models 
to CV. Major CV tasks that use CNNs can broadly be divided into 
image classification, object detection, semantic segmentation, and 
instance segmentation.

3.1 | Image classification

In an image classification task, the DL model is provided example 
classes (i.e. training data with annotation labels). From this informa-
tion, it develops learning algorithms that review the examples and 
learn about the visual appearance of each class (Figure 2A). Current 
efforts towards image classification that uses CV in MIS focus on 
automated step identification in surgical videos. Due to their readily 
available video feed and stable field of view, laparoscopic surgeries 
lend themselves to CV analysis, with work currently being done with 
cholecystectomies,18 sleeve gastrectomies,19 sigmoid colectomies,20 
and peroral endoscopic myotomies.21 Real-time automatic surgical 
workflow is considered an essential technology for the development 
of context-aware, computer-assisted surgical systems.

3.2 | Object detection

In an object detection task, the DL model outputs bounding boxes 
and labels for individual objects within images, i.e. when there are 

multiple objects in an image, the same number of bounding boxes 
appears in the image (Figure 2B). A typical example of the applica-
tion of object detection in the medical field is AI-assisted diagnosis, 
such as polyp detection during colonoscopy22; it has attracted in-
creased attention for its potential to reduce human error. In surgery, 
there have been several reports on surgical instrument detection.23, 

24 Besides, kinematic information of a surgeon can be useful for 
workflow recognition and skill assessment,25, 26 and intraoperative 
tracking of surgical instruments is a prerequisite for computer-and 
robotic-assisted interventions26-28; and to extract such data, object 
detection approach for surgical instruments can be utilized.

3.3 | Semantic segmentation

The process of segmentation, which divides whole images into pixel 
groupings that can then be labeled and classified, is central to CV. 
In particular, semantic segmentation attempts to specifically under-
stand the role of each pixel in an image. The boundaries of each ob-
ject can be delineated; therefore, dense pixel-based predictions can 
be achieved (Figure 2C). Semantic segmentation is incredibly useful 
for intraoperative guidance, and one application is to avoid biliary 
tract injury during laparoscopic cholecystectomy.16, 17 Urethral injury 
is also a crucial intraoperative adverse event that is related to transa-
nal total mesorectal excision (TaTME). During TaTME, the prostate is 
used as a landmark to determine the dissection line, and information 
on the location of the prostate can help surgeons recognize the lo-
cation of the urethra and avoid urethral injury. Previously, our team 
developed a real-time automatic prostate segmentation system to 
reduce the risk of urethral injury29 (Figure 3). Although developing 
AI that can recognize anatomical structure is quite challenging com-
pared to surgical instruments, applying semantic segmentation to 

F I G U R E  2   Reference images of A, 
Image classification, B, Object detection, 
C, Semantic segmentation, and D, 
Instance segmentation
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anatomical structures as surgical landmarks is a promising approach; 
therefore, further developments are expected.

3.4 | Instance segmentation

The only available information in an object detection task is whether 
the object is inside or outside the bounding box (Figure 2B), and it is 
impossible to distinguish between overlapped objects with the same 
label in a semantic segmentation task (Figure  2C). In an instance 
segmentation task, even multiple overlapping objects with the same 
label, including their boundaries, differences, and relationships to 
one another, can be recognized (Figure 2D). This approach is highly 
useful to recognize surgical instruments, which intersect in a com-
plex manner during surgery.27

AI technology is advancing daily, and new AI-based CV ap-
proaches will continue to emerge. To pursue novel surgical treat-
ments using AI, cooperation with medical professionals, engineers, 
and other multidisciplinary professionals, i.e. medical-industrial co-
operation, is expected to become increasingly important in future 
surgical research and development fields.

4  | TR AINING DATA SET CONSTRUC TION

Surgical data science was recently defined as an interdisciplinary 
research field that aims to improve the quality and value of inter-
ventional healthcare through the capture, organization, analysis, and 
modeling of data.30 The ultimate goal is to derive an AI-based ap-
proach that provides physicians with the right assistance at the right 
time. One active field of research explores the analysis of surgical 
video data to provide context-aware intraoperative assistance to the 
surgical team during MIS.31

In our previous studies on laparoscopic colorectal surgical step 
classification that used 60 cases from a single institution and 240 
cases from multiple institutions as the training datasets, the overall 
accuracies were 91.9% and 81.0%, respectively.20, 32 Despite the fact 
that the latter training dataset was four times larger than the former, 
the accuracy of the latter was lower than the former. These results 
demonstrated that the execution of an image recognition task on a 
multi-institutional surgical video dataset, i.e. closer to the real-world 
setting, was more difficult due to the data diversity. Therefore, to 

realize the aforementioned goal, large (in terms of the number of im-
ages), diverse (in terms of the different institutions, procedures, and 
image quality levels included), and extensively annotated (e.g. surgical 
step data or anatomical area segmentations) datasets are required; 
this should accelerate the development of robust AI algorithms. 
Currently, publicly available large annotated surgical video datasets 
include the Cholec120,33 Bypass170,33 and HeiCo datasets.31 These 
datasets contain videos of 120 laparoscopic cholecystectomies, 170 
laparoscopic bariatric bypass surgeries, and 30 laparoscopic colorec-
tal surgeries, respectively. However, these were all single-institution 
datasets; thus, the complexity of the data is limited to the variability of 
the procedures that are executed by surgeons from the same institu-
tion. Training an AI with a dataset from a single institution can reduce 
generalizability and overfitting. Overfitting implied that although AI 
can analyze and output with high accuracy in a known training data-
set, its accuracy may be low in a new dataset, and AI with overfitting 
is useless in a real-world setting. To obtain more generalizable net-
works, videos from multiple medical institutions should be included 
to ensure higher variability within the dataset.

At the National Cancer Center Hospital East (Chiba, Japan), we 
have worked on the “S-access Japan” project to construct a large multi-
institutional laparoscopic surgical video database. This study was sup-
ported by the Japan Agency for Medical Research and Development 
and Japan Society for Endoscopic Surgery. Based on the large amount 
of video data that have been collected from all over the country, large, 
diverse, and high-quality training datasets for AI algorithms can be 
constructed. This will accelerate the development of generalizable 
solutions for numerous AI-based image recognition tasks.

5  | QUALIT Y A SSUR ANCE OF 
ANNOTATION DATA

As shown in Figure 1, ML-based approach is divided into the follow-
ing three types of learning: supervised, unsupervised, and reinforce-
ment learning.

5.1 | Supervised learning

In supervised learning, AI learns the rules and patterns based on a 
substantial amount of data that has been annotated with labels of 

F I G U R E  3   Endoscopic images of 
semantic segmentation for prostate 
during transanal total mesorectal excision
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the ground truth in advance. After that, unknown data is newly in-
putted, and recognition and prediction are performed based on the 
output of the rules and patterns determined during the learning pro-
cess (e.g. regression, classification).

5.2 | Unsupervised learning

Unlike supervised learning, unsupervised learning does not require 
the training process with a large amount of annotated data. Instead, 
unsupervised learning analyzes the structure and characteristics of 
the data itself to group and simplify the data (e.g. clustering, dimen-
sion reduction).

5.3 | Reinforcement learning

Reinforcement learning is an approach to learning a mechanism to 
reinforce the strategies of actions taken by AI. A reward is set for 
each result of a series of actions taken, and AI improves its accu-
racy through trial and error and repeated learning to maximize the 
reward.

Supervised learning is considered the most suitable approach 
for teaching expert surgeons’ tacit surgical knowledge to AI. With 
regards to supervised learning in the field of MIS, a standardized an-
notation process that is performed by an expert surgeon or an anno-
tator with appropriate surgical knowledge is essential to ensure the 
quality of the training dataset, and data quantity and diversity alone 
are insufficient. In most previous studies that applied supervised 
learning approach-based CV to MIS (e.g. surgical step recognition 
in laparoscopic colorectal surgery,32 laparoscopic sleeve gastrec-
tomy,19 and POEM21; surgical instrument recognition in laparoscopic 
gastrectomy23; and prostate recognition in TaTME29), the annotation 
procedure was performed by two or three surgeons. Although the 
annotation in the HeiCo dataset was performed by non-surgeons, 
i.e. 14 engineers and four medical students,31 the annotation target 
was a surgical instrument; therefore, deep surgical knowledge may 
not have been essential for the annotation task to be completed; 
however, when the annotation targets are surgical workflow or 
anatomical information, the annotation task may be too difficult 
to perform without surgeons. In addition, the ways in which inter-
annotator consensus was achieved also varied in each study and this 
is one of the future issues that needs to be standardized in this field. 
Although most studies managed the inter-annotator discrepancies 
through discussion or double checking, several papers calculated the 
inter-annotator reliability/agreement using concordance correlation 
coefficients, such as Krippendorff's alpha or Fleiss’ kappa.19, 21

The research field of “AI in surgery” is relatively new, and how to 
assure the quality of surgical annotation data (e.g. who performs the 
annotation, how many annotators there are, and how inter-annotator 
consensus is achieved) has not yet been standardized. The standard-
ization of surgical annotation process is unmistakably an important 
future challenge in the research field related to AI in surgery.

6  | ETHIC AL AND LEGAL 
CONSIDER ATIONS

Ethical and legal considerations will play a major role in the research 
field of AI in surgery and should be carefully considered. Acquiring 
large amounts of surgical video data is paramount to the scalability 
and sustainability of the use of AI in surgery.34 The considerations 
are as follows.

6.1 | Privacy

Patients’ medical records, including diagnosis, operation process, and 
intra-/postoperative complication data must be highly protected. In 
addition, whether the surgical video itself should be included in the 
private information is controversial.

6.2 | Verification

The impact of AI-based surgical system failures on patients must be 
minimized. AI-based surgical systems should be verified and certified 
with full consideration of all the possible risks. Currently, it is nec-
essary to consider appropriate methods for each AI-based surgical 
system, other than clinical trials, to evaluate its safety and efficacy.

6.3 | Ethics

The responsible use of new technologies and gradual building of 
trust between human and AI, e.g. effect of over-reliance on the AI-
based surgical system and negative impact on surgical education, 
should be considered. The handling of short- or long-term adverse 
events caused by AI-based surgery should also be ensured.35

To address these issues, it is advocated that broad policies gov-
erning the acquisition, storage, sharing, and use of data need to be 
developed and agreed upon by surgeons, engineers, lawmakers, eth-
icists, patients, etc.34

7  | FUTURE CHALLENGES

AI-based image recognition, such as anatomical landmark navigation, 
is expected to bring value to future surgery in recognizing the cor-
rect dissection plane and avoiding accidental organ injury. However, 
current AI in supervised learning has the following challenges to 
demonstrate the value in actual surgery.

7.1 | Anatomical factors

Although anatomical structures are easy for surgeons to recognize, 
they can also be recognized by AI with high accuracy and vice versa 
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for difficult targets. The more difficult anatomical structures for sur-
geons to recognize, such as tiny nerves and vessels covered by fat 
tissue, the more valuable it is for AI-based image navigation. One 
of the future challenges is annotating targets that are difficult for 
even surgeons to recognize and making AI learn them. Integrating 
with other technologies, such as indocyanine green (ICG) and near-
infrared light, could be necessary to improve the recognition accu-
racy for difficult targets.

7.2 | Patient factors

Compared to standard cases, AI-based image navigation could be 
valuable in difficult cases, such as patients with severe obesity, se-
vere adhesions, and anatomical abnormalities. However, considering 
the statistics, it is assumed that most data in the training set consists 
of standard cases, and AI trained on such datasets will not be ap-
plicable in cases that deviate from the standard. In particular, the 
accumulation of cases with anatomical abnormalities could be an 
extremely difficult future challenge.

7.3 | Surgeon factors

As mentioned in patient factors, it is assumed that most datasets in 
training consist of standard scenes, i.e. a situation where the surgery 
is performed properly and without trouble, and AI trained on such 
datasets will not be sufficient in a trouble-shooting situation, such as 
the occurrence of massive bleeding and straying into the wrong dis-
section plane. To ensure sufficient recognition accuracy in difficult 

cases mentioned earlier and trouble-shooting situations, it could be 
necessary to strategically select cases and scenes from the phase of 
training dataset construction.

Despite these challenges, surgeons’ vision, especially novice sur-
geons, tends to be narrow and focused on the operating point during 
MIS. We believe that highlighting target anatomical structures in the 
peripheral vision has a certain value even if they are fully exposed 
in standard cases and scenes. Besides, in any research and devel-
opment field, advances in technology will surely follow. Therefore, 
we believe it is important first to implement the new technology to 
standard cases and scenes, identify issues, and then continue to ex-
pand the application.

8  | FUTURE PERSPEC TIVES

A shown in Figure 4, when the future of surgery is likened to techno-
logical innovation in automobiles, we believe that autonomous sur-
gery will be waiting for us beyond image navigation surgery. There is 
no doubt that AI-based image recognition will become an essential 
fundamental technology to realize autonomous surgery.

In the automobile field, autonomy level 1 is defined as “vehicle 
is controlled by the driver, but some driving assist features may 
be included in the vehicle design.” Similarly, AI-based image nav-
igation and robot-assisted surgery still fall under autonomy level 
1. For surgery to achieve the next level of autonomy, AI should 
at least analyze and output surgical steps, anatomy, instruments, 
etc., with real-time and robust accuracy in every situation. A much 
higher level of autonomy must be required to replace the opera-
tor's function, and it is expected that the most recent challenge 

F I G U R E  4   Autonomy level of surgery likened to autonomy level of automobile
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in the field of AI in surgery will be aiming partially to replace the 
function of assistant and scopist.

9  | SUMMARY

In this article, we summarized the recent advances and future 
perspectives of AI-related research and development in the field 
of surgery. There are several issues that need to be addressed be-
fore AI can be seamlessly integrated into the future of surgery in 
terms of technical feasibility, accuracy, safety, cost, and ethical and 
legal considerations. However, it is reasonable to expect that fu-
ture surgical AI and robots will be able to perceive and understand 
complicated surroundings, conduct real-time decision-making, and 
perform desired tasks with increased precision, safety, and effi-
ciency. Moreover, we believe that this vision will be realized in the 
not-so-distant future.
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