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Abstract
Sample- and gene- based hierarchical cluster analyses have been widely adopted as tools

for exploring gene expression data in high-throughput experiments. Gene expression val-

ues (read counts) generated by RNA sequencing technology (RNA-seq) are discrete vari-

ables with special statistical properties, such as over-dispersion and right-skewness.

Additionally, read counts are subject to technology artifacts as differences in sequencing

depth. This possesses a challenge to finding distance measures suitable for hierarchical

clustering. Normalization and transformation procedures have been proposed to favor the

use of Euclidean and correlation based distances. Additionally, novel model-based dissimi-

larities that account for RNA-seq data characteristics have also been proposed. Adequacy

of dissimilarity measures has been assessed using parametric simulations or exemplar

datasets that may limit the scope of the conclusions. Here, we propose the simulation of

realistic conditions through creation of plasmode datasets, to assess the adequacy of dis-

similarity measures for sample-based hierarchical clustering of RNA-seq data. Consistent

results were obtained using plasmode datasets based on RNA-seq experiments conducted

under widely different conditions. Dissimilarity measures based on Euclidean distance that

only considered data normalization or data standardization were not reliable to represent

the expected hierarchical structure. Conversely, using either a Poisson-based dissimilarity

or a rank correlation based dissimilarity or an appropriate data transformation, resulted in

dendrograms that resemble the expected hierarchical structure. Plasmode datasets can be

generated for a wide range of scenarios upon which dissimilarity measures can be evalu-

ated for sample-based hierarchical clustering analysis. We showed different ways of gener-

ating such plasmodes and applied them to the problem of selecting a suitable dissimilarity

measure. We report several measures that are satisfactory and the choice of a particular

measure may rely on the availability on the software pipeline of preference.
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Introduction
Hierarchical cluster analysis has been a popular method for finding patterns in data and for
representing results of gene expression analysis [1]. Clustering algorithms have been widely
studied for analyzing microarray data [2,3], however, such technology is being rapidly replaced
by RNA sequencing technology (RNA-seq) [4]. In contrast to microarray experiments, RNA-
seq generates count data of discrete nature that may call for different analysis methods. One of
the most obvious differences between clustering gene expression data from RNA-seq or micro-
array is the choice of a dissimilarity measure, or the need to transform and normalize RNA-seq
data in order to use dissimilarity measures commonly used for microarray data [1].

Before implementing any statistical analysis of RNA-seq data, normalization and transfor-
mation have to be performed. [1,5,6]. Normalization aims at reducing non-systematic variation
within and between samples, such as sequencing depth and library preparation. Data transfor-
mation could be very important because it aims at reducing the effects of skewness, scale and
presence of outliers that can be found in read count data that usually follow a Poisson [7] or
negative binomial distribution [8,9]. Through appropriate transformation, dissimilarity mea-
sures that are sensitive to asymmetric distributions and scale magnitude, such as Euclidean and
1 –Pearson correlation [1,2,10] could be used for clustering RNA-seq data.

Although a Gaussian distribution assumption is not required to compute Euclidean and
correlation based distances, transformations that convert count data into a continuous and
almost Gaussianly distributed variable [6] could be used for hierarchical clustering. For
instance, besides the classical logarithmic transformation, several functions have been pro-
posed to model the mean-variance relationship of RNA-seq data [6,9,11], while accounting for
over-dispersion. But the properties of those transformations need to be tested.

Finally, instead of using transformations to approximate the data to a pre-specified distribu-
tion where available dissimilarity measures perform well, model based methods can be directly
used to compute dissimilarity measures [12].

Evaluating the adequacy of alternative dissimilarity measures for hierarchical clustering
requires the fundamental step of choosing reference datasets [13]. An ideal reference dataset
should mimic the technical and biological variability found in experimental data, and it should
also have some a priori known structure in order to assess the goodness of results from alterna-
tive analyses. Parametric simulations, exemplar datasets, and permutation sampling have been
used to generate such datasets in clustering analysis of biological data [14]. Similarly, plasmode
datasets [15] have been proposed for evaluating differential expression analysis in RNA-seq
experiments [16]. A plasmode is a dataset obtained from experimental data from which some
truth is known, thus, it is an ideal way to generate data with an a priori defined structure that
realistically mimics RNA-seq data. Plasmodes were originally proposed for assessing multivari-
ate analysis methods [17] and have been used in behavioral science [18] and also in genomics
[19,20].

In this paper, we propose the use of plasmode datasets to assess the properties of dissimilar-
ity measures for agglomerative hierarchical clustering or RNA-seq data. We present two possi-
ble ways of creating plasmode datasets that depend on the available data structure, and we use
the resulting reference datasets to compare several commonly used dissimilarity measures.

Materials and Methods

Datasets
Two experimental datasets were used in this study to create reference datasets. The first dataset,
“Bottomly”, corresponds to an experiment described elsewhere [21]. Briefly, 21 samples of
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striatum tissue from two inbred mouse strains (C57BL/6J (B6), n = 10; and DBA/2J (D2),
n = 11) were sequenced in three Illumina GAIIx flowcells. Data were downloaded from
ReCount website [22]. After filtering out genes with zero counts in all samples, the count
matrix contained 13932 rows (transcripts) and 21 columns (samples). The second dataset,
“MSUPRP”, corresponds to 24 samples of longissimusmuscle selected from the MSU Pig
Resource Population [23] and sequenced by our collaborators [24]. Total RNA from 24 F2
female pigs of Duroc by Pietrain ancestry was barcoded and sequenced on Illumnina HiSeq
2000. Read mapping, gene modelling and read counting were performed using Tophat [25],
Cufflinks [26] and HTSeq [27], respectively. After processing the sequence reads, we obtained
a count matrix with 26740 rows (transcripts) and 24 columns (samples). (For details, see file S1
Text). The count matrix of the five samples (animals) used in this paper is available as support-
ing information in S1 File.

Plasmodes
Plasmodes are synthetic datasets generated from experimental data for which some true char-
acteristic is known [15]. For instance, we may know a priori which genes are not differentially
expressed or we may know group membership of each sample. Then, we build a plasmode by
re-shuffling the existing data without assuming any probability distributions or correlation
structures. Thus, we can use the known characteristic of the synthetic dataset to assess proper-
ties of analysis methods. For instance we can apply resampling-based methods to create plas-
modes consistent with the null hypothesis (no differential expression) and use them to evaluate
the type I error rate hypothesis of testing procedures [28], or we can use the known group
memberships to assess the accuracy of clustering methods, as we do in this paper. Thus, plas-
modes need to be constructed according to the validation objectives (i.e. considering the statis-
tical method that is being evaluated) and considering the available experimental data.

In this paper, we present two examples on how to create plasmodes to assess the effect of
choice of dissimilarity measures on the results of hierarchical clustering of RNA-seq data. In
the first experimental dataset, the natural structure of the data is known a priori and it was gen-
erated through the experimental design (sequencing flowcells and mice strains), while in the
second experimental dataset there is not an a priori known structure, so we create a set of artifi-
cial samples where the structure is generated by construction.

Plasmodes from Bottomly dataset
We built plasmodes for this dataset by using samples from B6 strain, partitioning them in two
groups and adding known effects for selected genes taken from the difference in gene expres-
sion with strain D2. Fig 1 presents the algorithmic steps used to generate the plasmodes. Two
main effects, strain and flowcell, were used to classify the 21 samples (Step 2.1 in Fig 1) given
the importance of both sources of variation has been described before [6,16]. Then, a differen-
tial expression analysis including all the samples (both strains) was conducted with edgeR [8]
and transcripts with q-value<0.05 were identified as differentially expressed (set G1 in step 4
of Fig 1). Subsequently, samples from strain B6 were randomly assigned to two groups (A or B)
within each flowcell, and a subset (S1) of effects randomly selected from G1 was added to the
corresponding genes in samples labelled as B (Steps 5–6). Therefore, samples from group A
and B differ due to the strain effect added by the subset (S1) of differentially expressed genes,
while samples within each group differ due to the flowcell effect. We generated 50 plasmodes
with 10% of differentially expressed transcripts by defining p = 50 and π = 0.10 in step 3 and by
randomly assigning 2 samples to group B and one or two samples, if available, to group A
within each flowcell (Step 5.2 in Fig 1). As a result, in each plasmode generation we obtained a
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total of 10 samples under two artificial treatments (A or B) and three flowcell effects (1, 2 or 3),
resulting in a set of samples indexed by such factors as:{(A1, A1, B1, B1),(A2,B2,B2),(A3,B3,B3)}.
If we use only differentially expressed genes, we expect the samples with same letter to cluster
together because of the treatment effect, but as we add a large number of non differentially
expressed genes, we can expect that samples with the same subindex (flowcell) will tend to clus-
ter together because it has been shown before that there is a strong flowcell effect in this experi-
ment [6,16]. To evaluate the performance of dissimilarity measures under various differentially
expressed / non differentially expressed ratios (DE/nonDE), we analyzed three scenarios for
each plasmode: 1) only DE transcripts (DE[100%]), 2) DE transcripts + all nonDE transcripts
(DE[10%]+nonDE[90%]), and 3) DE transcripts + a random sample of 50% from nonDE tran-
scripts (DE[20%]+nonDE[80%]).

Plasmodes from MSUPRP dataset
Since this dataset did not have a natural sample structure derived from experimental condi-
tions, a structure had to be induced in order to know a priori the expected clustering configura-
tion. From a descriptive multidimensional scaling analysis of the 24 pig samples (animals), we
selected 5 dissimilar samples (A, B, C, D, E) according to their configuration in the main plane
(Fig 2). Synthetic samples were generated by combining a known proportion of randomly sam-
pled read counts of individual genes from each of two of the five selected samples. For instance,
a new synthetic sample named AAC was generated combining 2/3 and 1/3 of read counts of
individual genes from A and C respectively. A full plasmode consisted of 12 samples that
included the five selected samples {AAA, BBB, CCC, DDD, EEE}, five synthetic samples {AAC,
BBC, CCB, DDE, EED} obtained by combining 2/3:1/3 proportions from two of the selected
samples, and two synthetic samples {CxB, ExD} obtained by combining 1/2:1/2 proportions of
two of the selected samples (see S2 Fig in S2 Text with a representation of the relationships
among the 12 samples of each plasmode). Following this procedure, a total of 50 replicated

Fig 1. Algorithm used to generate plasmodes from Bottomly dataset.

doi:10.1371/journal.pone.0132310.g001
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plasmodes were generated. As a result we created a synthetic dataset where the samples were
expected to resemble each other to a known degree given the proportions of shared reads.

Clustering
Defining a dissimilarity measure and a linkage method are the two key decisions for perform-
ing hierarchical cluster analysis. We focused on assessing the adequacy of dissimilarity mea-
sures that have been commonly used for clustering gene expression data. We also include a
recently proposed dissimilarity measure for RNA-seq count data [12]. As linkage method, we
decided to use complete linkage because it is invariant under monotone transformations [29],
and hence dissimilarity measures that have the same relative ranking result in the same cluster
structure [1]. This robustness reduces the effect of linkage method when comparing dendro-
grams and allowed us to concentrate in the evaluation of dissimilarity measures. Hierarchical
cluster analysis was applied to each plasmode using the agglomerative procedure implemented
in function hclust from R [30] to concatenate samples and to generate dendrograms.

Eight dissimilarity measures were compared, including 4 variants based on Euclidean dis-
tance, 3 correlation based approaches, and one Poisson based measure. Euclidean distances
were computed between samples following one of 4 approaches: i) using raw count data (raw),
ii) after normalizing samples using the median ratio size factor proposed by Anders and Huber

Fig 2. Multidimensional scaling analysis of MSUPRP dataset. Twenty four samples were represented in
the main plane (dimension 1 and dimension 2 explained 22.4% and 13.8% respectively) and five distant
samples (A, B, C, D, E, marked with ovals) were selected as input samples to generate plasmode datasets.

doi:10.1371/journal.pone.0132310.g002
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[9] (rnr), iii) after applying a variance stabilizing transformation computed with DESeq2 [31]
(vsd), and iv) after applying a regularized logarithm transformation implemented in DESeq2
[31] (rld). Correlation based dissimilarities comprised: i) 1- Pearson correlation between sam-
ples using raw counts (pea), ii) 1- Pearson correlation between samples using counts trans-
formed by logarithm of raw counts +1 (plg), and iii) 1- Spearman correlation between samples
using raw counts (spe). The Poisson dissimilarity (poi), which is based on a log likelihood ratio
statistic for a Poisson model [12], was computed on data that were transformed by a power
function to account for overdispersion, and normalized by total sum of counts for each sample.

Cluster validation using results from plasmodes
Cluster validation can be assessed using several indices [32,33] and the choice of a particular
measure is application dependent [2]. Cophenetic distances provide a way to quantify similari-
ties among dendrograms in hierarchical clustering. The cophenetic distance is the distance
from the bottom of the tree at which two elements (samples in this paper) are grouped in the
same cluster for the first time in the hierarchy. To represent a dendrogram in terms of a set of
cophenetic distances, the distances between all pairs of elements is computed and arranged
into a matrix called cophenetic matrix that represents the whole hierarchy, as illustrated in S5
and S6 Figs in S2 Text. Cophenetic matrices can be used to compare dendrograms [34]. For
instance, to compare how similar are two dendrograms, the Pearson correlation between the
lower triangular portions of two cophenetic matrices can be used.

We computed the correlation between cophenetic matrices [13] to compare dendrograms
obtained with different dissimilarity measures (between dissimilarity measure comparison) as
well as to compare all dendrograms obtained with a particular dissimilarity measure (within
dissimilarity measure comparison). Mean and standard deviation of correlations between dis-
similarity measures were used as a measure of agreement while mean and standard deviation
of correlations within a dissimilarity measure were used as a measure of consistency.

We also visually compared the obtained dendrograms to a reference dendrogram built
according to the sample structure known a priori from the plasmode generation process in the
MSUPRP dataset. For the MSUPRP dataset, we defined the expected similarity between two
samples (sij) as the maximum proportion of shared reads, and we defined 1- sij as a reference
dissimilarity (see S3 Fig in S2 Text). With the correlation between each of the dissimilarity
matrices and the reference dissimilarity, we assessed how well each dissimilarity measure
recovered the expected sample structure. An equivalent reference dissimilarity matrix and ref-
erence dendrogram cannot be easily built for the Bottomly dataset because we did not exploit
relationships between samples to build the plasmode, except for their group membership. In
this case, we compared typical dendrograms obtained from plasmodes to the known strain and
experiment membership in the original data.

Results

Bottomly
Fig 3 shows the typical dendrograms obtained for plasmode datasets using two dissimilarity
measures, poi and rnr, which are representative examples of two sets of results under the three
different scenarios (DE[100%], DE[10%]+nonDE[90%], and DE[20%]+nonDE[80%],). On the one
hand, scenario 1 (DE[100%]) uses only differentially expressed transcripts, therefore the
expected hierarchy should arrange samples in two separate groups according to main treat-
ment labels. Such is the structure obtained utilizing the Poisson (poi) dissimilarity measure
(Fig 3a). Using the Poisson dissimilarity measure, samples were clustered in two groups corre-
sponding to treatments A or B, and within each of the groups, samples were arranged
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according to block numbers (4, 6, or 7). Differently, the dendrogram based on Euclidean dis-
tance calculated from raw normalized data (rnr) (Fig 3b) mixed treatment labels and did not
recover any expected structure. On the other hand, scenario 2 (DE[10%]+nonDE[90%]), uses
information from differentially (10%) and non differentially expressed (90%) transcripts. As a
result, we expected that the dissimilarity measures would tend to represent other aspects of
samples in addition to the treatment effect. In concordance with such expected structure, den-
drogram obtained using the Poisson dissimilarity (Fig 3c) firstly separated samples according
to block labels, block 4 being the most different group. Subgroups for treatments A and B were
arranged within each block. Conversely, dendrogram based on Euclidean distance calculated
from raw normalized data (rnr) (Fig 3d) did not present any expected structure. Finally, sce-
nario 3 (DE[20%]+nonDE[80%]) represents an intermediate case that is useful to further explore
the performance of dissimilarity measures because it is enriched in DE genes with respect to
scenario 1, but it still conserves 80% of background (nonDE) genes. The dendrogram based on
the Poisson dissimilarity (Fig 3e) presented an intermediate structure where we observed that
samples from block 4 were clustered together while the remaining samples were clustered in a
separate group mainly classified by treatment effect. Yet again, dendrogram based on rnr (Fig
3f) did not characterize any expected configuration. To sum up, for this dataset, dendrograms
generated from a Poisson dissimilarity resemble the expected hierarchical structures in all
three scenarios, however, dendrograms based on Euclidean distance computed on raw

Fig 3. Typical dendrograms obtained for plasmode datasets from Bottomly experimental data with
two dissimilarity measures under three scenarios.Dendrograms obtained using complete linkage
hierarchical clustering based on Poisson dissimilarity (poi) are presented in the left column (a, c and e), and
dendrograms based on Euclidean distance calculated from raw normalized data (rnr) are presented in right
column (b, d, f). The rows correspond to three scenarios with different percentage of differentially expressed
(DE) transcripts: 1) DE[100%] (a and b), 2) DE[10%]+nonDE[90%] (c and d), and 3) DE[20%]+nonDE[80%] (e and f).
Sample labels correspond to main treatment (A or B) and flowcell number (4, 6 or 7). Dendrograms based on
poi separates samples according to the expected sources of variation; in (a), only DE transcripts, samples
are arranged in two separate groups following treatment labels; in (c), with a predominant number of non DE
transcripts, the structure of groups is dominated by flowcell characteristics in addition to main treatment: and
in (e) an in-between scenario, the dendrogram presents an intermediate group structure. Dendrograms
based on rnr do not resemble any expected configuration.

doi:10.1371/journal.pone.0132310.g003
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normalized data did not. Comparison of hierarchies between clusters constructed using poi
and rnr dissimilarities across 50 plasmodes presented correlation of cophenetic matrices with
low means and high standard deviations (0.52±0.24, 0.65±0.17, 0.59±0.23, for scenarios 1, 2
and 3, respectively) (Fig 4). These results emphasize a poor correspondence between hierar-
chies constructed upon poi and rnr dissimilarities.

Correlations between hierarchies obtained with the eight dissimilarity measure approaches
for each of three scenarios (DE[100%], DE[10%]+nonDE[90%] and DE[20%]+nonDE[80%]) are pre-
sented in Fig 4. Each matrix contains means and standard deviations of correlations between
cophenetic matrices, in the upper and lower triangle respectively. Regardless of the scenario,
dissimilarity measures can be apportioned to three groups with common patterns. First,
Euclidean distance computed on raw data (raw) is poorly related to any other dissimilarity
measure. Second, Euclidean distance computed on normalized data (rnr) and 1- Pearson corre-
lation dissimilarity (pea) presented medium to high correlations of cophenetic matrices (mean
from 0.67 to 0.89) with high variability (standard deviation from 0.13 to 0.29) with each other
and low correlation values with other dissimilarity measures. Third, there is a subset compris-
ing 1-Pearson correlation dissimilarity computed on log-transformed counts (plg), 1-Spearman
correlation dissimilarity (spe), Euclidean distance computed on transformed counts after
applying either a variance stabilizing function (vsd) or a regularized logarithm (rld), and the
Poisson dissimilarity (poi). This last group of dissimilarity measures presents high correlations
of cophenetic matrices (mean from 0.82 to 0.99) with low to medium variability (standard
deviation from 0.01 to 0.2). Only hierarchies obtained with dissimilarity measures from the
third group consistently presented the expected natural structure created by design in the plas-
mode generation process, being rld, vsd, spe and plg the more consistent across all scenarios
(Table 1, columns 2, 3 and 4).

Mean and standard deviation of correlation between cophenetic matrices of dendrograms
(N = 50 plasmode datasets) for each of eight dissimilarity measures: Euclidean distances using
raw count data (raw), Euclidean distances using normalized samples (rnr), Euclidean distances
using regularized logarithm (rld) Euclidean distances using variance stabilizing transformation
(vsd), 1- Pearson correlation using raw counts (pea), 1- Pearson correlation using counts trans-
formed by logarithm (plg), and 1- Spearman correlation using raw counts (spe), and Poisson
dissimilarity (poi). Columns correspond to the three scenarios generated for Bottomly (with
different proportion of DE genes) and the MSUPRP dataset. We considered a clustering from a
dissimilarity measure to be consistent if hierarchies obtained for different plasmode datasets
within each dissimilarity measure were highly correlated and presented a low standard devia-
tion. Clustering based on raw, rnr and pea were generally inconsistent presenting a number of
very different hierarchical structures.

We considered a dissimilarity measure to be consistent if hierarchies obtained for different
plasmode datasets within each dissimilarity measure were highly correlated and presented a
low standard deviation. Consequently, we computed correlations of cophenetic matrices for
dendrogram within each dissimilarity measure and calculated the mean and standard deviation
for each ensemble of 50 plasmodes (Table 1, columns 2, 3 and 4). Dissimilarity measures raw,
rnr and pea were generally inconsistent, resulting in a number of different hierarchical struc-
tures. For instance, rnr presented mean correlation values of 0.35±0.27, 0.43±0.28, and 0.33
±0.28 for the three respective scenarios. Conversely, all the other dissimilarity measures were
much more consistent. For example, rld presented mean correlation values of 0.98±0.01, 0.90
±0.11, and 0.88±0.13 for the three respective scenarios. Such high values mean that hierarchies
obtained with rld for the 50 plasmodes were all very similar to each other.
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Fig 4. Agreement between dissimilarity measures using Bottomly plasmode datasets. Each matrix
contains means (upper triangle) and standard deviations (lower triangle) of correlation between cophenetic
matrices of dendrograms (N = 50 plasmode datasets) for eight dissimilarity measures: Euclidean distances
using raw count data (raw), Euclidean distances using normalized samples (rnr), Euclidean distances using
variance stabilizing transformation (vsd), Euclidean distances using regularized logarithm (rld).) 1- Pearson
correlation using raw counts (pea), 1- Pearson correlation using counts transformed by logarithm of raw
counts +1 (plg), and 1- Spearman correlation using raw counts (spe), and Poisson dissimilarity (poi). Panel
labels (a), (b) and (c) correspond to one of three scenarios of proportion of differential expressed genes:
DE[100%], DE[10%]+nonDE[90%], and DE[20%]+nonDE[80%], respectively. In all scenarios, we identified three
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MSUPRP
Plasmodes from MSUPRP were constructed by combining known proportions of sequence
reads from pairs of samples, including nonDE as well as potentially DE transcripts across indi-
vidual. We expect that dendrograms cluster the samples according to the known proportions
of shared reads as presented in the reference dendrogram in Fig 5c (see S3 Fig in S2 Text with
the corresponding reference dissimilarity matrix). Fig 5a and 5b present the typical dendro-
grams obtained for plasmode datasets using rnr and poi, which are representative examples of
the 8 dissimilarity metrics. Dendrogram based on the Poisson dissimilarity (Fig 5a) clustered
the original samples A, B and C and their synthetic combinations in one group, and original
samples E and D and their synthetic combinations in a distinct group. The hierarchical struc-
ture of each of these two groups represented the degree of shared reads between samples by
joining first samples that shared⅓ of reads and then samples that shared ½ of reads. Addition-
ally, the separation between samples {A, B, C} and {D,E} agreed with positions along the most
important dimension (dim1) in Fig 2. In contrast, dendrogram based on rnr (Fig 5b) did not
cluster samples according to the anticipated configuration. Comparison of hierarchies between
clusters constructed from rnr and poi dissimilarities for all plasmodes presented low mean and
high standard deviations (0.44±0.22) of correlation between cophenetic matrices (Fig 6).

Correlations between hierarchies for the eight dissimilarity measures are summarized in Fig
6. It contains mean and standard deviations, in the upper and lower triangle respectively, of
correlations between cophenetic matrices computed on 50 plasmode datasets. As observed in
the three scenarios for the Bottomly experiment, dissimilarity measures can be apportioned to
three groups: 1) raw, 2) rnr and pea, and 3) poi, rld, vsd, plg and spe. Dendrograms from raw
did not agree with dendrograms from other groups. Hierarchies from dissimilarity measures in
group 2 presented a medium correlation of cophenetic matrices with high variability (0.69
±0.22). Dendrograms from the dissimilarity measures in group 3 presented high correlation
values with each other (>0.98) and low variation (<0.01).

The correlation of hierarchies within each of the dissimilarity measures (Table 1, column 5)
was low for raw, rnr and pea, whereas clusters were much more consistent (r>0.98) for poi, rld,
vsd, plg and spe dissimilarities. Additionally, dissimilarity measures raw, rnr, and pea were
poorly correlated with the reference dissimilarity (0.57±0.07, 0.53±0.07, and 0.51±0.04, respec-
tively) while poi, rld, vsd, plg, and spe were highly correlated with the reference dissimilarity
(r>0.8±0.001, see S1 Table in S2 Text). Consequently, dissimilarities raw, rnr, and pea did not
resemble the expected sample structure and resulted in dendrograms that were very inconsis-
tent over repeated sampling of the same dataset. In contrast, dissimilarities poi, rld, vsd, plg,
and spemaintained the sample structure and produced highly reproducible results in hierarchi-
cal dendrograms.

Discussion
Hierarchical cluster analysis is one of the most used techniques for exploring expression pat-
terns in sequencing data [1]. In this paper, we showed how to assess the adequacy of

sets of dissimilarity measures: 1) raw, 2) rnr and pea, and 3) poi, rld, vsd, plg and spe. Results from raw, set 1,
were poorly related to results from any other dissimilarity measure. Dendrograms from dissimilarity measures
in set 2 presented correlation of cophenetic matrices with medium to high means and high variability with
each other, and low correlation with dendrograms from other dissimilarity measures. Dendrograms from
dissimilarity measures in set 3 exhibited high correlations of cophenetic matrices and low to medium
variability when compared to each other.

doi:10.1371/journal.pone.0132310.g004
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Fig 5. Typical dendrograms obtained for plasmode datasets fromMSUPRP experimental data with
two dissimilarity measures. Dendrograms using complete linkage based on (a) Poisson dissimilarity (poi),
(b) Euclidean distance calculated from raw normalized data (rnr), and (c) reference dissimilarity based on
maximum proportion of shared reads. Original samples are labeled with 3 same letters (AAA, BBB, CCC,
DDD or DDD), synthetic samples are labelled with 2 or 3 letters symbolizing the proportion of transcripts,½ or
⅓ respectively, taken from the original samples. Dendrogram (a) clustered original samples A, B and C and
their synthetic combinations in one group, and original samples E and D and their synthetic combinations in
another group. The hierarchical structure of each of these two groups represented the degree of shared
reads between samples by joining first samples that shared ⅓ of reads and then samples that shared½ of
reads. Dendrogram (b) did not cluster samples according to the expected configuration.

doi:10.1371/journal.pone.0132310.g005

Fig 6. Agreement between dissimilarity measures using MSUPRP plasmode datasets. The matrix
contains means (upper triangle) and standard deviations (lower triangle) of correlation between cophenetic
matrices of dendrograms (N = 50 plasmode datasets) for eight dissimilarity measures: Euclidean distances
using raw count data (raw), Euclidean distances using normalized samples (rnr), Euclidean distances using
variance stabilizing transformation (vsd), Euclidean distances using regularized logarithm (rld) 1- Pearson
correlation using raw counts (pea), 1- Pearson correlation using counts transformed by logarithm of raw
counts +1 (plg), and 1- Spearman correlation using raw counts (spe). We identified the same three sets of
dissimilarity measures described before: 1) raw, 2) rnr and pea, and 3) poi, rld, vsd, plg and spe.

doi:10.1371/journal.pone.0132310.g006
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dissimilarity measures for clustering samples from RNA-seq experiments by generating plas-
mode datasets from experimental data.

Plasmode datasets are useful alternatives to parametric simulations for assessing statistical
methodologies as data are generated on more realistic conditions and do not depend on a spe-
cific parametric model [19]. The algorithm used to build a plasmode dataset depends on the
characteristics of the experimental data and the objective of the study. We presented two exam-
ples on how to build plasmode datasets from two experiments with different conditions.

The Bottomly dataset had an experimental design with two main sources of variation and
used highly inbred individuals. Such context allowed us to generate plasmode datasets with
known proportions of differentially expressed transcripts (Fig 1) and focused on assessing the
adequacy of dissimilarity measures in recovering the main sources of variation in the hierarchi-
cal structure (Fig 3). Analogous plasmode generation algorithms have been used with different
objectives, for example to validate differential expression methods for RNA-seq [16], microar-
ray analysis[19], and qPCR [20], but this is the first time that they are used to assess the proper-
ties of sample-based clustering. These procedures are by no means exhaustive of the possible
ways of creating plasmodes for clustering. For instance, the algorithm presented in Fig 1 pre-
serves the correlation among genes [16] when generating plasmodes, but other sampling strate-
gies could purposefully select groups of genes with specific correlation patterns. For instance,
instead of sampling from DE and nonDE groups, transcripts could be sampled from blocks of
co-expressed genes, resulting in more realistic datasets especially if the study is focused on
gene-based clustering and co-expression analysis [35,36].

Different from the Bottomly dataset, the MSUPRP did not present any experimental treat-
ment, and individual characteristics were more important. Under these circumstances, we built
plasmodes creating synthetic individuals, by combining known proportions of read counts from
original individuals and we evaluated the adequacy of dissimilarity measures in resembling the
different mixture proportions in the hierarchical sample structure (Fig 5). A similar plasmode
generation algorithm was proposed [37] to evaluate admixture estimation methodologies where
the objective is to estimate the proportion of an individual’s genome that originates from differ-
ent founding populations, but using SNP genotypes instead of sequence read counts.

Although the utility of plasmode datasets has been recently highlighted in RNA-seq studies
[16,38], only parametric simulations or exemplar experimental datasets have been used to
compare dissimilarity measures and clustering methods [12,39]. While extremely useful,
parametric simulations are often criticized as being too simplistic to appropriately capture the
complexity in gene expression data [40], thus limiting the scope and validity of the resulting
conclusions. On the other hand, using a single exemplar dataset with unknown properties is

Table 1. Consistency for each dissimilarity measure.

Dissimilarity Bottomly MSUPRP

DE[100%] DE[10%]+nonDE[90%] DE[20%]+nonDE[80%]

raw 0.58 (0.22) 0.91 (0.13) 0.75 (0.20) 0.56 (0.23)

rnr 0.35 (0.27) 0.43 (0.28) 0.33 (0.28) 0.40 (0.22)

rld 0.98 (0.01) 0.90 (0.11) 0.88 (0.13) 0.99 (0.01)

vsd 0.96 (0.04) 0.91 (0.10) 0.86 (0.15) 0.99 (0.01)

pea 0.37 (0.31) 0.53 (0.30) 0.45 (0.30) 0.43 (0.28)

plg 0.98 (0.01) 0.89 (0.13) 0.75 (0.19) 0.98 (0.01)

spe 0.99 (0.01) 0.86 (0.14) 0.88 (0.14) 0.99 (0.01)

poi 0.86 (0.21) 0.92 (0.09) 0.88 (0.14) 0.99 (0.01)

doi:10.1371/journal.pone.0132310.t001
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not an appropriate approach for comparing statistical methods [15]. As a partial solution to
these limitations, in this paper we show that plasmodes can supplement the evaluation of clus-
tering algorithms by including agreement and consistency measures based on datasets that
mimic read count distributions more realistically. One likely criticism of plasmode is that the
results may heavily depend on the original dataset [16]. However, this does not invalidate their
use. Moreover, as shown in this paper, using two very different datasets, some properties of
alternative metrics remain consistent, which encourages the use of the plasmode generation
methods presented here using alternative datasets.

We built plasmodes to evaluate alternative dissimilarity measures. The selected dissimilarity
measures allowed i) the comparison of traditional dissimilarity measures and dissimilarity
measures based on discrete count distributions specifically proposed for RNA-seq, and ii)
studying the effect of normalization and transformation prior to computing dissimilarities.

The Euclidean distance or the Pearson correlation based dissimilarity computed after trans-
forming data is a routine method adopted from microarray gene expression analysis [1,2]. In
fact, the Pearson correlation based dissimilarity is equivalent to squared Euclidean distance of
standardized data [41]. On the other hand, the most common transformations used for RNA-
seq are the logarithm of counts, or logarithm of counts plus a constant [42], but other variance
stabilizing and regularized logarithm transformation functions have been proposed to model
the mean-variance relationship of RNA-seq counts [6,9,31]. The Spearman correlation based
dissimilarity uses the rank of the read count instead of the counts themselves to compute corre-
lation; consequently it could be applied without transforming the data. Although the use of
Spearman correlation based dissimilarity has been discouraged for gene-based clustering of
RNA-seq data [1], because it uses a small number of grouped samples to compute ranks, we
have used it for sample-based clustering where the number of genes is potentially large enough
to obtain more precise ranks. Finally, the Poisson dissimilarity [12] was specifically proposed
for clustering of sequencing data based on a Poisson log-linear model of normalized counts,
and thus, it is a natural candidate to be included in this comparison.

The eight evaluated dissimilarity measures presented a common pattern of agreement and
consistency in recovering the expected sample structure for both plasmode datasets. Dissimi-
larity measures with high level of agreement between them—correlations between cophenetic
matrices with high mean and low standard deviation (Figs 4 and 6)—produce dendrograms
with very similar hierarchical structures. However, if dissimilarity measures have correlations
of cophenetic matrices with either low mean or high standard deviation (Figs 4 and 6), they
generate dendrograms with different hierarchical structures. In addition, correlation between
dendrograms obtained with a particular dissimilarity measure summarizes the consistency of
such dissimilarity measure. If a dissimilarity measure has a within cophenetic correlation with
high mean and low standard deviation, it consistently generates similar dendrograms.

To assess the adequacy of a dissimilarity measure, both agreement and consistency are
important. We showed this with poi, rld, vsd, plg and spe dissimilarities, which presented simi-
lar level of agreement in both datasets (Figs 4 and 6). However, dendrograms based on these
dissimilarity measures were consistent in the MSUPRP dataset, but showed different consis-
tency under the three scenarios in the Bottomly datasets (Table 1). A counter example is dis-
similarity measures rnr and pea that agreed with each other but were very inconsistent. This
means that rnr and pea tended to reproduce similar clusters on each plasmode, and wide range
of dendrograms structures. This has not been reported before, because consistency of clustering
under repeated sampling has not been studied in previous works. But a reason for the agree-
ment is that both rnr and pea are focusing on the same features, because they are essentially
normalized Euclidean distances. The reason for the low consistency could be that these mea-
sures are expected to behave well with heterogeneous approximately Gaussian data, but not too
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well with extremely non-Gaussian data. On the other side, the measure raw is expected to be
better suited for homogenous Gaussian data (all variances are of similar magnitude).

As mentioned before, we used plasmode to study the effect of normalizing data. Normaliza-
tion is an essential data processing step in RNA-seq analysis that aims at removing systematic
biases in order to make consistent comparisons within and between samples[43]. Although
several methods[5,9,44] have been proposed to normalize data, especially for differential
expression analysis, the impact of a particular normalization method seemed to be less impor-
tant in classification and clustering analyses [12]. We confirmed this, showing that normalizing
counts to equal library sizes was not enough to capture the natural structure of samples when it
was the only transformation applied. For instance, dissimilarity measures raw and rnr had low
agreement with dissimilarity measures that resemble better the true structure of data, e.g. rld,
vsd, spe or plg or poi (Figs 4 and 6).

Accounting for the discrete nature of read counts in RNA-seq data is the most important
issue to consider when computing dissimilarity measures. For instance, Euclidean distance and
Pearson correlation based measures are known to be influenced by scale, skewness and outliers,
thus, they may not work well for count data [1]. In support of this, we found that dissimilarity
measures raw, rnr, pea, based directly on counts, regardless of normalization or standardiza-
tion, did not resemble the expected dendrogram and were generally inconsistent. Dendrograms
obtained with Pearson based correlation resembled the expected structures only when data
were previously log-transformed. However, we found that the Spearman correlation based dis-
similarity measure (spe) was suitable to represent the natural structure of samples even without
normalizing data, possibly because it preserves the relative rank relationships, and it is less
influenced by skewness and outliers [45] when it is based on a large number of genes. The vari-
ance stabilizing (vsd) and regularized logarithm (rld) approaches consistently retrieved the
expected dendrogram structure. Both transformations model the mean-variance relationship
across all genes to stabilize the variance of counts across samples [9,31]. The regularized loga-
rithm transformation also accounts for variation in sequencing depth across samples [31].
Both functions have been suggested as appropriate transformations for clustering and classifi-
cation of RNA-seq data with less ambiguous results in hierarchical clustering than using simply
log-transformed counts [31]. Finally, directly using the Poisson dissimilarity (poi) generated
dendrograms with the expected structure. This is not surprising considering that read counts
are usually assumed to fit over dispersed Poisson distributions[46]. Similarly, Witten [12]
obtained dendrograms with lower clustering error rates when using the Poisson dissimilarity
rather than vsd or Euclidean distances on normalized data, but using overdispersed Poisson
simulations. Our results are encouraging because we did not use a parametric model to produce
similar outcomes.

Sample-based hierarchical cluster analysis can be used as a tool to present results after dif-
ferential expression analysis or it can be used as an explorative technique for finding patterns
in data. In the first approach only informative genes, i.e. differentially expressed genes (called
signal in data mining literature) are used while in the second approach informative as well as
non informative genes (also known as noise) are utilized [2]. As the signal-to-noise ratio (pro-
portion of DE to nonDE genes) is usually less than 1:10 [2], particular methods are applied to
diminish the influence of non informative genes that can degrade the reliability of clustering
results [2]. In RNA-seq analysis, cluster analysis is commonly applied only to differentially
expressed genes or a subset of them [1]. We have assessed dissimilarity measures under sce-
narios that include not only a set of differentially expressed transcripts but we also combined
differentially and non differentially expressed transcripts (signal-to-noise ratio 1:9 and 1:4), as
well as a mixture of individuals. We found that rld, vsd, plg, spe and poi were highly consistent
under all scenarios with a tendency to diminish consistency as the number of non informative
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genes increases. Although we focused our comparison on the effect of dissimilarity measures
on hierarchical clustering results, the same plasmodes could be used to investigate the effect of
other decisions made when performing sample-based clustering as the selection of the hierar-
chical clustering algorithm per-se or even the effect of pre-filtering transcript according to
their level of expression [47–49]. We did not explore those aspects of sample clustering, but
their investigation will be facilitated by the plasmode building strategies described in this
paper.

Conclusions
Generating plasmode datasets from experimental data is a reliable tool for evaluating dissimi-
larity measures in agglomerative hierarchical cluster analysis of RNA-seq data. Depending on
the characteristics of the available datasets, several scenarios can be established to compare dis-
similarity measures upon a broad spectrum of more realistic conditions than using other simu-
lation approaches. Similar methodologies can be applied to study gene-based clustering as well
as other clustering analysis methods.

Explorative sample-based hierarchical clustering of RNA-seq data needs as an input a dis-
similarity matrix that accounts for the mean-variance relationship of the discrete nature of
read counts. Euclidean distance calculated either on data that have been previously logarithm-
transformed or regularized with more complex ad hoc functions, as well as model-based dis-
similarity for RNA-seq data, were consistent in reproducing the expected sample structure in
hierarchical dendrograms.

Supporting Information
S1 File. MSUPRP dataset. This file contains raw count data (6 columns x 25798 rows) for the
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design and bioinformatics tools used for mapping reads and obtaining the count matrix for
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S2 Text. MSUPRP plasmodes. This file presents figures describing the plasmode generation
process as well as the calculation of reference dissimilarity and reference dendrogram for
MSUPRP plasmodes.
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