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1  | INTRODUC TION

Diabetes mellitus (DM), a metabolic syndrome characterized by 
high blood glucose, has been linked to multiple organ damage and 
dysfunction. At present, it has become the most prevalent chronic 
disease in the world (Guariguata et al., 2014). On 6 March 2016, 
the world health organization released global diabetes report for 
the first time. The number of patients suffering from the disease 
was triple increased since 1980, and this number was predicted 

to rise to 642 million by 2040 (Cho, 2016). Type 2 diabetes (T2D) 
accounts for more than 90% of all cases of diabetes globally. In 
recent years, strong relationship between the postprandial hy-
perglycemia and T2D has been demonstrated (Ceriello et al., 
2008, 2004). Therefore, normalizing blood glucose level is very 
important in the prevention and treatment of T2D. Many studies 
have indicated that postprandial glucose levels can be regulated 
through α-amylase inhibition (Lee et al., 2012; Park, Lee, & Han, 
2017).
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Abstract
This study evaluated the interaction of Chrysanthemum indicum (CI) flavonoids (lu-
teolin, acacetin, and buddleoside) with α-amylase. Surface plasmon resonance 
(SPR) assay showed their equilibrium dissociation constants (KD) are 1.9695 ± 0.12, 
2.9240 ± 0.20, and 3.2966 ± 0.08 mM at pH 6.0, respectively. Furthermore, their 
binding affinities were influenced by KCl, MgCl2, and CaCl2. Enzymatic kinetic stud-
ies revealed that three flavonoids exhibited noncompetitive α-amylase inhibitory 
activity. The inhibitory sequence is luteolin > acacetin > buddleoside, which was in 
accordance with the results of binding affinity from SPR. 1,1-diphenyl-2-picryl hydra-
zyl radical assay demonstrated that antioxidant activities of three flavonoids were 
inhibited significantly with α-amylase. Meanwhile, the study reveals that hydroxyl on 
C′-4, C′-5, and C-7 of flavonoids play an important role on the interaction of three 
flavonoids with α-amylase. Also, SPR could be used as sensor for rapid screening in-
hibitors of α-amylase and provide useful information for the application of C. indicum 
flavonoids in food and pharmaceutical area.
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Acarbose, commercial available α-amylase inhibitor, is typical 
therapeutic agent used to control postprandial glucose concen-
tration. However, it has been reported to cause some gastrointes-
tinal side effects, such as diarrhea, flatulence, and abdominal pain 
(Shah, Khalil, Ul-Haq, & Panichayupakaranant, 2017; Yang, He, & Lu, 
2014). Compared with the synthetic drugs, the natural molecules 
from plant have become a more acceptable alternative for treating 
T2D. Flavonoids are a class of natural small molecules with broad 
biological activity (Shen, Xu, & Lu, 2012; Tomás-Barberán & Andrés-
Lacueva, 2012). Recently, they have received much attention for 
their inhibitory activity against α-amylase and relatively low toxic-
ity to animals (Cao & Chen, 2012; Lu et al., 2017). Further, a series 
of studies have demonstrated that the structure and concentration 
of flavonoids and structure of α-amylase may greatly influence the 
extent of the flavonoids/α-amylase interaction (Cao & Chen, 2012; 
Lo et al., 2008; Wang, Du, & Song, 2010). So, flavonoids have been 
considered as a good source for screening of α-amylase inhibitor.

Chrysanthemum indicum (CI) is a kind of herbaceous plant. Its 
flowers have been used for several centuries as a traditional Chinese 
medicine to treat various infectious diseases, immune-related disor-
ders, and eye diseases (Cheng, Li, & Hu, 2005; Zhu, Yang, Yang, Yang, 
& Zhou, 2005). Flavonoids are important bioactive components in 
the flowers of CI, including buddleoside, acacetin, and luteolin 
(Wang et al., 2000). The content of these flavonoids compounds has 
been used as the quality standard of CI. To the best of our knowl-
edge, the interaction between CI flavonoids and α-amylase has not 
been clearly demonstrated in detail.

Surface plasmon resonance (SPR) is considered one of the most 
powerful techniques for evaluating the affinity kinetics of molecular in-
teraction, which allow accurate estimation of distinct association/disso-
ciation rate constants and equilibrium parameters in different reaction 
models without labels (Tan et al., 2014; Tiwari et al., 2014). In this study, 
the binding kinetics of CI flavonoids (buddleoside, acacetin, and luteolin) 
and α-amylase were monitored in vitro, and the effects of the external 
factor on their binding affinities were also analyzed using SPR biosen-
sor. On this basis, the inhibitions of three flavonoids on α-amylase ac-
tivity were examined, and a reasonable inhibiting mode was proposed. 
Furthermore, we studied whether the antioxidant activity of these ac-
tive constituents can be affected during the interaction with α-amylase 
by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical assay. The difference 
of the interaction between the three flavonoids and α-amylase was an-
alyzed based on the molecular structures of three flavonoids (Figure 1). 
The obtained results may be able to provide useful information for the 
more effective application of CI in food and pharmaceutical area.

2  | MATERIAL S AND METHODS

2.1 | Apparatus

A commercial BI-2000 SPR instrument (Biosensing Instrument Inc.) 
was used for all SPR experiments in this study. The bare Au sensor 
chip was obtained from Biosensing Instrument Inc. The preparation 

of Au sensor chip can be referred to our previous published paper 
(Liu et al., 2014). A flow delivery system incorporated in the BI-SPR 
platform pumped samples onto the SPR sensor chip at a flow rate of 
10 μl/min. The 0.01 M PBS (pH = 6.0) buffer was used as the running 
buffer. The BI-SPR 2000 control software (version 2.2.0.) was used 
to perform instrument operation and data processing. The Varioskan 
Flash (Multiskan GO 1510, Thermo Fisher Scientific) was used for 
the α-amylase inhibitory activity and DPPH radical assays.

2.2 | Reagents

Buddleoside (purity: 99.37%), acacetin (purity: 99.8%), and luteolin 
(purity: 98.92%) were purchased from Chengdu Manst Biotechnology 
Co. Ltd. Bacillus subtilis α-amylase was purchased from Shanghai Ryon 
Biological Technology Co. Ltd.. DPPH and soluble starch were pur-
chased from Changsha LongHe chemical and glass experimental mate-
rials limited Co. Ltd. Acarbose (purity ≥ 98%), 3-mercaptopropionic acid 
(MPA), N-hydroxysuccinimide (NHS), and 1-ethyl-3-(3-dimethylamino-
propyl) carbodiimide hydrochloride (EDC) were purchased from Sigma-
Aldrich. All reagents were of analytical grade and used without further 
purification. The ultrapure water was used throughout this work.

2.3 | SPR measurement of three flavonoids and 
α-amylase interactions

Binding assay of three flavonoids to α-amylase was carried out using 
the SPR sensor. The immobilization of α-amylase on the chip surface 
was performed using a standard amine coupling procedure as de-
scribed previously (Liu, Luo, Li, She, & Gao, 2017). The acceptable 
immobilization level of the α-amylase (referred to as bound and final 
α-amylase responses) was about 300 mDeg. After the stable baseline 
was obtained, different concentrations of flavonoids (50–800  μM) 
were injected over the chip surface coated with α-amylase, respec-
tively. The SPR angle was monitored until the baseline stabilization. 
To enable reuse of the SPR chip, the chip surface could be regen-
erated using 2  mM NaOH after each measurement. Regeneration 
parameters were based on the strength of interaction between the 
analyte and α-amylase. The chip surface was rinsed by PBS between 
each step. All the experiments were repeated three times, and kinetic 
parameters (ka, kd) were deduced by nonlinear fitting of the primary 
sensorgram data based on the 1:1 Langmuir-binding model using the 
BI-SPR 2000 control software (version 2.2.0.). The model has been 
widely used in protein–ligand binding analysis and can be calculated 
through the following formula (Gombau et al., 2019; Islam, Shen, 
Gurgel, Rojas, & Carbonell, 2014; Lee, Jeong, Jones, & Kim, 2011):

where R is the SPR signal at time t, and C is the concentration of the 
analyte. Rmax is the maximum analyte binding capacity in SPR signal. ka 
is the association rate constant and kd is the dissociation rate constant.

(1)dR

dt
=kaC

(

Rmax−R
)

−kdR
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2.4 | Effect of pH and salt on the interaction 
between three flavonoids and α-amylase

The effect of pH on the interaction between three flavonoids and 
α-amylase was carried out within the pH range (3–9) based on the 
method described in the above experiment. As is known to all, 
metal ions play a crucial role in maintaining normal physiological 
function of the α-amylase. Moreover, salt is also widely used in 
food industry. To evaluate whether KCl, MgCl2, and CaCl2 can in-
terfere with the interaction between flavonoids and α-amylase, a 
series of 200 μM flavonoids with a various concentrations of KCl 
(0.02–0.3  M), MgCl2 (0.02–0.25  M), or CaCl2 (0.04–0.2  M) solu-
tions were flowed over the chip surface modified with α-amylase, 
respectively.

2.5 | Effect of three flavonoids on 
α-amylase activity

The changes of α-amylase activity after adding different concentra-
tions of the three flavonoids were investigated according to previ-
ously reported method with a slight modification (Zengin, 2016). 
In brief, 0.05 ml α-amylase (300 mM in PBS buffer, pH = 6.0) was 
incubated with 0.5  ml of each of the three flavonoids at various 
concentrations (20, 40 and 80 μM) for 10 min at 37°C, respectively. 
Then, 2 ml of starch solution (0.1 M in PBS buffer, pH = 6.0) was 
added to the above mixture. After incubation for 10 min at 37°C, 
0.5 ml of 0.01 M iodine-potassium iodide solution was added to start 
the reaction. Finally, PBS (pH = 6.0) was added to give a final vol-
ume of 8 ml. Thereafter, the assay was carried out by measuring the 

absorbance at 560 nm using the Microplate Spectrophotometer. All 
experiments were performed in triplicates, and the inhibitory per-
centage of α-amylase activity was calculated through the following 
formula (Shah et al., 2017):

where A0 is the absorbance without flavonoids, and A is the absor-
bance with flavonoids.

To further explore the inhibitory type of three flavonoids on 
α-amylase, kinetic analysis was carried out by using Lineweaver–
Burk plots. Starch was used as substrate, and the inhibition kinetics 
of α-amylase was evaluated by varying four different concentra-
tions (0.25, 0.50, 1.00, and 1.25  mg/ml) of starch in the absence 
or presence of three flavonoids. The Lineweaver–Burk plots of 
the three flavonoids can be obtained from the double-reciprocal 
plots between 1/[S] (starch concentration) and 1/[V] (reaction rate). 
Besides, different concentrations of flavonoids (0, 5, and 10  μM) 
were used and the three Lineweaver––Burk plots for each flavonoid 
can be obtained. The Ki (inhibition constant) value was obtained 
from the least-squares regression line of the slopes of Lineweaver–
Burk plots versus the corresponding flavonoid concentrations [I] 
(Kandra, Gyémánt, Zajácz, & Batta, 2004; Yang et al., 2014). The 
formula is

Ki = intercept of Equation (3) on x axis (Yang et al., 2014)

(2)Inhibition ratio (%)=

(

1−
A

A0

)

×100%

(3)slope=
Km

Vmax

(

1+
[I]

Ki

)

F I G U R E  1   Chemical structures of buddleoside, acacetin, luteolin, and acarbose
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2.6 | Effect of α-amylase on antioxidant activity of 
three flavonoids

The DPPH assay was performed to assess effect of α-amylase on 
antioxidant activity of three flavonoids as following procedure 
(Kim et al., 2014). 2 mM DPPH solution was prepared by dissolv-
ing 0.0787 g of DPPH in 100 ml of anhydrous ethanol and stored 
at −20°C. α-Amylase (300 μM) and three flavonoids (2.5–125 μM) 
were prepared with PBS (pH  =  6.0) and ethanol, respectively. 
Samples were prepared by mixing flavonoids solution (without or 
with 10  μl α-amylase), 100  μl of DPPH, and anhydrous ethanol. 
Then, samples were incubated for 10  min at room temperature. 
Absorbance at 517 nm was measured in the spectrophotometer. 
DPPH radical scavenging activity was calculated as follows (Liu 
et al., 2017):

in which AC is the absorbance of the DPPH (100 μl DPPH and 100 μl eth-
anol), Ai is the absorbance of the DPPH and sample (100 μl DPPH, 50 μl 
flavonoids, and 50 μl ethanol, or 100 μl DPPH, 50 μl flavonoids, 10 μl 
α-amylase, and 40 μl ethano1), and Aj is the absorbance of the blank 
sample (50 μl flavonoids and 150 μl ethanol). All experiments were car-
ried out in triplicate, and the results were expressed as mean ± RSD. 
IC50 values were obtained based on plotting the percentage of DPPH 
radical scavenging activity against the flavonoids concentration.

2.7 | Statistical analysis

The data were expressed as means  ±  relative standard deviation 
(n = 3). Statistical analysis was compared using a one-way analysis 

of variance in SPSS 18.0 (SPSS, Chicago, IL, USA), with p < .05 being 
considered statistically significant.

3  | RESULTS AND DISCUSSION

3.1 | Interaction of three flavonoids and α-amylase

The SPR sensorgrams in Figure 2 demonstrate the interaction of three 
flavonoids with α-amylase immobilized on the chip surface. Acarbose 
is a commercial available α-amylase inhibitor and can be used to control 
postprandial glucose concentration. In order to understand whether 
such an interaction is related to the flavonoid molecular structure, 
acarbose was used as positive control. Periodically throughout each 
experiment, the PBS (pH = 6.0) buffer was injected into the flow cell 
to serve as a baseline reference for removing any systematic drift over 
time, and the level of the three flavonoids and acarbose binding to the 
immobilized α-amylase was measured based on the change of the SPR 
response. The SPR response obtained in each individual reaction cycle 
was recorded as a sensorgram, which is a real-time pattern plotted as 
SPR response versus time (in seconds). Figure 2a–c is the SPR kinetic 
curves of binding process between buddleoside (A), acacetin (B), luteo-
lin (C), and immobilized α-amylase. It can be seen from the Figure 2a–c 
that the interaction of three flavonoids and α-amylase is very obvious. 
The interaction kinetics can be subdivided in three distinct phases: 
association, steady state, and dissociation. The association and the 
dissociation of flavonoids and α-amylase can be monitored with the 
increase and decrease in SPR response. Besides, the effective SPR 
response increased in proportion with the concentration of the fla-
vonoids. The SPR curve was fitted based on the theoretical 1:1 model 
for calculating the association rate constant (ka), the dissociation rate 
constant (kd), and the equilibrium dissociation constant (KD). These 
kinetic parameters are given in Table 1. The difference between the 

(4)DPPHradical scavengingactivity (%)=

(

1−
Ai−Aj

Ac

)

×100%

F I G U R E  2   SPR kinetic curves of 
binding process between buddleoside (a), 
acacetin (b), luteolin (c), and immobilized 
α-amylase. The black arrows indicate the 
time point at which ligands are added. (d) 
SPR responses respect to three flavonoids 
(200 μM), and acarbose (200 μM) flowed 
over the α-amylase-modified chip surface, 
respectively. Results are expressed as the 
mean ± RSD (n = 3). Mean values followed 
by different letters are significantly 
different (p < .05)
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SPR response at the end of dissociation and that at the beginning of 
association is denoted as Δθ, which can be used to compare the bind-
ing ability of different substances to α-amylase. The Figure 2d shows 
the Δθ of the interaction for each flavonoid (200 μM) and acarbose 
(200 μM) with α-amylase, respectively.

As shown in Figure 2 and Table 1, the binding affinity of flavo-
noids and acarbose for α-amylase is acarbose  >  luteolin  >  acace-
tin > buddleoside. This result suggests that the binding affinity was 
affected by the number and position of hydroxyl group (Figure 1). 
The interaction of these analytes with α-amylase may be achieved 
by hydrophobic interactions in nature and then stabilized by hydro-
gen bonds (Liu et al., 2017; Lu et al., 2017). This is usually enhanced 
with increasing the number and reactivity of hydroxyl group (Li, Yang, 
Gao, Zhang, & Wu, 2011; Wang et al., 2010). As shown in Figure 1, 
the hydroxyl number in acarbose is the largest. However, acarbose 
is not flavonoids, and the structural differences may have greater 
effects on the binding ability than that of hydroxyl number. For 
the three flavonoids, the hydroxylation on positions C′-4 and C′-5 
of B-ring remarkably improved the binding ability, resulting in the 

highest binding affinity of luteolin to α-amylase (Figure 1) (Al-Dabbas, 
Kitahara, Suganuma, Hashimoto, & Tadera, 2006; Cao & Chen, 2012; 
Lo et al., 2008). Furthermore, the binding affinity of acacetin with 
α-amylase (KD: 2.924 ± 0.2 mM) is greater than that of the buddleo-
side with α-amylase (KD: 3.2966 ± 0.08 mM), indicating that hydroxyl 
group on position C-7 of A-ring is very important for the binding of 
the flavonoids with α-amylase. After the hydroxyl group is substi-
tuted by a glycoside, steric hindrance may take place, which weakens 
the binding interaction between buddleoside and α-amylase (Cao & 
Chen, 2012; Li et al., 2009). Based on the above results and analysis, it 
is clearly demonstrated that the SPR sensor may provide more infor-
mation to evaluate the interaction of the flavonoids with α-amylase.

3.2 | Effect of pH and salt on the interaction 
between three flavonoids and α-amylase

The interaction of between three flavonoids and α-amylase was stud-
ied at different pH using SPR (Figure 3a). At the chosen pH range, the 
binding affinity of three flavonoids and α-amylase is strongest at pH 
6. This may be ascribed to the α-amylase isoelectric point (5.04) ef-
fect (Liu et al., 2017). When the pH value deviates from the isoelec-
tric point, the associated structure of α-amylase will change.

SPR results (Figure 3b–d) indicated that KCl, MgCl2, and CaCl2 
play an important role for the interaction between three flavo-
noids and α-amylase. The SPR response increases with the increas-
ing of salt concentration in a certain range. The binding ability of 
three flavonoids to α-amylase is the strongest at 0.200  M KCl 
(Figure 3b). It is seen from Figure 3c, the optimal MgCl2 concen-
tration is 0.120  M for the binding of acacetin, buddleoside with 
α-amylase. However for luteolin, the optimal MgCl2 concentration 

TA B L E  1   Kinetic parameters for interaction of three flavonoids 
and acarbose with α-amylase

Flavonoids
Ka 
(mol−1 L s−1) Kd (s−1) × 10–3 KD (mM)

Buddleoside 2.5397 ± 0.2 8.2957 ± 0.15 3.2966 ± 0.08c

Acacetin 2.7607 ± 006 8.004 ± 0.15 2.924 ± 0.2c

Luteolin 4.116 ± 0.1 8.078 ± 0.11 1.9695 ± 0.12b

Acarbose 4.7937 ± 0.18 4.5643 ± 0.06 0.933 ± 0.2a

Note: Values are mean ± RSD (n = 3). Mean values followed by different 
letters are significantly different (p < .05).

F I G U R E  3   SPR response for the 
interaction of three flavonoids (200 μM) 
and α-amylase (300 μM) with various pH 
values (a), various concentrations of KCl 
(b), various concentrations of MgCl2 (c), 
and various concentrations of CaCl2 (d) at 
room temperature
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is 0.150 M. Similar results are also observed from Figure 3d, the 
optimal CaCl2 concentration is 0.100 M for the binding of acace-
tin, buddleoside with α-amylase. For luteolin, the optimal CaCl2 
concentration is 0.120 M. The effect of salt concentration on the 
interaction between three flavonoids and α-amylase may be due 
to the following reasons. On the one hand, α-amylase is a metallo-
enzyme (Gupta, Gigras, Mohapatra, Goswami, & Chauhan, 2003), 
and Cl− is activator of the α-amylase (Kuriki & Imanaka, 1999). It 
can be seen that the concentration of Cl− is similar at the opti-
mum concentrations for the three salts. The results showed that 
the concentration of Cl− has significant effect on the binding of 
enzyme–flavonoids. On the other hand, many studies have con-
firmed that some metal ions (K+, Mg2+, and Ca2+) can maintain the 
maximum reactivity of the enzyme (El-Sayed, Abou-Dobara, & El-
Fallal, 2017; Kuddus, 2017; Yin et al., 2017). Lower concentration 
salt may improve the stability of α-amylase activity. Therefore, the 
binding affinity of the three flavonoids with α-amylase can be re-
inforced by optimal concentration KCl, MgCl2, and CaCl2. Besides, 
the enhancement of binding affinity by optimal concentration KCl 
is the largest, while the enhancements of the binding affinity by 
optimal concentration MgCl2 and CaCl2 are similar. This may be 
because K+ has the weakest ionic force, which does not affect the 
binding of enzyme-flavonoids. However, further researches are 
still needed on how ions interfere with the binding of flavonoids 
and α-amylase.

3.3 | Effect of three flavonoids on 
α-amylase activity

The experimental results in Figure 4 demonstrate that luteolin, 
acacetin, and buddleoside can dose dependently inhibit α-amylase 

activity. At concentration of 80 μM, three flavonoids markedly in-
hibited α-amylase activity ranging from 6.76% to 21.29%. The ability 
of inhibition is luteolin > acacetin > buddleoside, which was in ac-
cordance with the results of binding affinity from SPR experiments 
(Table 1). These results further demonstrate that the free hydroxyl 
groups in B-ring and A-ring (red in Figure 1) are important for the in-
teraction of three flavonoids with α-amylase. There are several works 
showed that the hydroxylation on positions C-3′ and C-4′ of B-ring 
of flavonoids remarkably improved the inhibition for α-amylase (Lo 
et al., 2008; Wang et al., 2010). Other scholars demonstrated that 
flavonoids without one hydroxyl group on any of positions 5, 6, or 
7 of A-ring showed no inhibition for digestive enzyme (Cao & Chen, 
2012; Gao, Nishioka, Kawabata, & Kasai, 2004). Besides, hydroxyl 
group on position C-7 of A-ring is very important for the binding of 

F I G U R E  4   The inhibition effect of buddleoside, acacetin, 
and luteolin on α-amylase activity (300 μM). The concentrations 
of flavonoids were respectively 20, 40, and 80 μM. Results are 
expressed as the mean ± RSD (n = 3). Mean values followed by 
different letters are significantly different (p < .05)

F I G U R E  5   Lineweaver–Burk plot of buddleoside (a), acacetin 
(b), and luteolin (c) against α-amylase at different concentrations of 
starch. The insets ([I] vs. the corresponding slope of Lineweaver–
Burk plots) were used to calculate the Ki value
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the flavonoids with α-amylase. The glycosylation of hydroxyl group 
on flavonoids weakens the binding interaction between flavonoids 
and α-amylase (Cao & Chen, 2012; Li et al., 2009).

The inhibition kinetics of α-amylase was evaluated by varying 
the concentration of starch (0.25–1.25 mg/ml) in the absence or 
presence of three flavonoids. The Figure 5 gives the Lineweaver–
Burk plots of three flavonoids. They all have an intersection at the 
x axis which indicates their inhibitory types are all noncompetitive. 
Ki values of luteolin, acacetin, and buddleoside are 26.79, 39.73, and 
43.55 μM, respectively (Table 2). There are several works showed 
that the main inhibition mode determined for polyphenolic com-
pounds-digestive enzymes is noncompetitive (Martinez-Gonzalez 
et al., 2017; Yang & Kong, 2016). The result of a noncompetitive 
inhibition of flavonoid–α-amylase was supported by the analysis of 
tea polyphenols-pancreatic α-amylase system (Yang & Kong, 2016).

3.4 | Effect of α-amylase on antioxidant 
activity of flavonoids

DPPH radical assay is a rapid, simple, and stable method for the 
determination of antioxidant capacity of flavonoids. The effect 
of α-amylase on antioxidant activity of flavonoids was assessed 
using DPPH radical assay. Table 3 shows the effect of binding to 
α-amylase on the antioxidant activity of three flavonoids (DPPH 
radical assay). In general, isolated flavonoids have high antioxidant 
activity. However, the radical scavenging activity of the flavonoids–
α-amylase samples was significantly lower than that of flavonoids 
alone. It is known that antioxidant activity of phenolic compounds 
is changed by their binding with fiber and protein. These results 
reveal that antioxidant activities of three flavonoids are inhibited 

significantly by binding with α-amylase (Domínguez Avila, Villegas 
Ochoa, Alvarez Parrilla, Montalvo González, & González Aguilar, 
2018; Jakobek, 2015). The inhibition percentage of antioxidant 
activity for buddleoside, acacetin, and luteolin are 21.65 ± 0.04%, 
26.75  +  0.013%, and 49.93  +  0.037%, respectively (see Table 3), 
which was in accordance with the results of binding affinity and 
α-amylase inhibitory activity (Tables 1 and 2). This result illustrated 
the antioxidant activity of three flavonoids is closely related to its 
hydroxyl groups.

4  | CONCLUSION

To conclude, a low-cost, simple, sensitive, and label-free method was 
successfully applied to investigate real-time interactions of the lu-
teolin, acacetin, and buddleoside with α-amylase, and the influence 
of external factors (pH, KCl, MgCl2, and CaCl2) on the interaction. 
The affinity order is luteolin > acacetin > buddleoside. In addition, 
the binding of three flavonoids with α-amylase can not only inhibit 
α-amylase activity with noncompetitive mode, but also decrease the 
antioxidant activities of three flavonoids. Furthermore, the results 
reveal the significance of hydroxyl on C′-4, C′-5 of B-ring, and C-7 of 
A-ring of three flavonoids for binding with α-amylase. Besides, the 
glycosylation of hydroxyl group on flavonoids weakened the binding 
interaction between flavonoids and α-amylase. These results pro-
vide scientific support for the proper use of luteolin, acacetin, and 
buddleoside as potential inhibitors of the α-amylase.
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