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Abstract: To solve the problem of complex structure and narrow absorption band of most of today′s
terahertz absorbers, this paper proposes and utilizes the finite element (COMSOL) method to nu-
merically simulate a broadband absorber based on a straightforward periodic structure consisting
of a disk and concentric ring. The final results show that our designed absorber has an absorption
rate of over 99% in the broadband range of 9.06 THz to 9.8 THz and an average of over 97.7% in
the ultra-broadband range of 8.62 THz to 10 THz. The reason for the high absorption is explained
by the depiction of the electric field on the absorber surface at different frequencies. In addition,
the materials for the top pattern of the absorber are replaced by Cu, Ag, or Al, and the absorber
still achieves perfect absorption with different metal materials. Due to the perfect symmetry of the
absorber structure, the absorber is very polarization-insensitive. The overall design is simple, easy to
process and production. Therefore, our research will offer great potential for applications in areas
such as terahertz electromagnetic stealth, sensing, and thermal imaging.

Keywords: terahertz; perfect absorption; broadband; ring-disk structure; polarization insensitive

1. Introduction

THz technology has received increasing attention and interest these years [1]. Tera-
hertz waves are high-frequency electromagnetic waves in the frequency band of 0.1 THz
to 10 THz, which occupy a critical position in the electromagnetic wave spectrum [2]. As
a transition interval between electronics and optics, the terahertz band is widely used in
communication, detection, sensing, stealth, and other fields because of its many unique
advantages such as low photon energy, short pulse, and frequency [3–9]. The terahertz
absorber based on electromagnetic metamaterials is one of the important devices applied
in electromagnetic detection and stealth. Besides, the perfect absorber of metamaterials in
the terahertz band has been a research hotspot and challenge in recent years. The desired
electromagnetic characteristic parameters can be obtained by changing the composition
structure, geometric parameters, and arrangement of metamaterials [10–12], which pro-
vides us with an effective approach to the design and application of terahertz perfect
absorbers. For example, an absorber composed of the structure of a metal ring, a silica
spacer, and a vanadium dioxide film was proposed by Lingling Chen et al., which enables
single-band absorption in the terahertz band [13]. The absorber has a very simple structure
consisting of only circular rings. In 2020, Wangyang Li et al. proposed a tunable dual-band
terahertz perfect metamaterial absorber (MMA), composed of two stacked square STO
resonator structures and a metal substrate [14]. The repeated double-ring structure is
responsible for the formation of the dual-band absorption and provides the basis and
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idea for the design of multi-band, broadband absorbers. Moreover, in 2020, Yuqian Wang
et al. designed a Dirac semimetal-based absorber that consists of a square-wave oscillator
with four BDS films and a closed-loop to achieve multiband absorption in the terahertz
band [15]. However, broadband absorption is a greater hotspot and difficulty in scientific
research for the perfect absorber of metamaterials. Broadband absorption can better meet
our practical needs than most single-band, dual-band, and multi-band absorbers [16–20].

In practice, there are two general methods to achieve broadband absorbers. The first
is through the planar construction method [21–23], the combination and arrangement of
different patterns to change the electromagnetic properties of the absorber. The second
method is multi-layer addition [24–26]. This method strengthens the interaction between
layers by increasing the number of layers of absorption layer, to achieve the purpose
of changing the characteristics of absorption layer. In addition, we study the resonance
mechanism of the two methods. The resonance mechanism of both methods is to achieve
high broadband absorption through the superposition of resonances of different frequen-
cies. Although the multilayer stacking method can achieve broadband absorption, the
design of multilayer structure is usually very difficult in the actual process of surface
preparation [27–29]. Because, in actual production, precise alignment between the layer
and the size of the absorber we design is required, usually at the micron and nanometer
level. This means that each stack of the absorber structure makes the process more ge-
ometrically difficult. Therefore, it is of great significance to design a kind of traditional
metamaterial which can realize broadband absorption.

In this study, we designed a metamaterial which is based on a metal-dielectric-metal
structure [30–34] for a broadband perfect absorber in the terahertz band. The top pattern
consists of a closed gold ring and a disc, which provides excellent performance and
simple construction. The middle layer is made of silicon dioxide as a dielectric layer
and the bottom layer is made of gold film as a reflective layer. Through simulations,
we have studied the effect of different structural parameters, polarization angles and
incidence angles on the absorption effect of the performance and used this as a basis
for optimizing the structural parameters. We analyzed the absorption mechanism and
polarization characteristics by combining the distribution of electric field and current
density on the surface of metamaterials. Finally, we obtained the planar combination
structure of circle and disk as an effective method to design broadband absorbers. Finally,
the results show that our designed absorber has a polarization-insensitive absorption
rate of over 99% in the broadband range of 9.06 THz to 9.8 THz and over 97.7% in the
ultra-broadband range of 8.62 THz to 10 THz. This suggests that our research would
have enormous potential for applications in terahertz electromagnetic stealth, sensing, and
thermal imaging.

2. Mathematical and Experimental Methods

The structure proposed in this paper is shown in Figure 1b, and the absorber consists
of three units, a periodic structure composed of metal-dielectric-metal. We chose gold as the
target metal because of its chemical stability to ensure a higher environmental suitability
of the absorber. In the design structure of the absorber, the first layer from the bottom up
is the reflective layer, which ensures that there are no transmitted electromagnetic waves.
The second and third layers are the dielectric and absorption layers respectively, which
ensure the loss of electromagnetic waves. The bottom layer of the absorber is a continuous
gold film with a thickness h = 8 µm and the dielectric layer with a thickness d of 6 µm
silica with a relative dielectric constant εp = 1.46. The gold pattern in the top layer of
the absorber is a combination of rings and disks with a thickness t of 0.1 µm. We used
the finite element method in COMSOL simulation platform to simulate and optimize the
metamaterial absorber with the following optimal parameters: p1 = 35 µm, R1 = 7 µm,
R2 = 12 µm, R3 = 14 µm.
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We implement the periodic array with a single structural unit by setting Floquet
periodic boundary conditions. When the electromagnetic wave is incident perpendicular
to the absorber surface, the electric and magnetic fields are parallel to the x and y axis
directions respectively. The z-direction is set to perfectly match the layer, as shown in
Figure 1a. In the simulation, all the metallic layers are composed of gold material. In the
closed-loop disc structure and geometrical parameters we designed, the electromagnetic
resonance of a specific frequency occurs when the electromagnetic wave interacts with

the absorber. By means of the Drude model [35–37] ε = 1− ω2
p

ω(iwt) . We can calculate the

dielectric constant of gold, where the volume plasma frequency is ωp = 1.3716s−1 and
collision frequency ωt = 1.2314s−1 [38]. When the thickness of the underlying metal is
greater than the maximum skin depth of the metal in terahertz, spectrum the transmittance
of the absorber T = 0. Therefore, the absorptance of the absorber can be simplified by
A(ω) = 1 − R(ω) − T(ω) [39–43] as A(ω) = 1 − R(ω), where R is the reflectance of the
absorber. In this paper, the thickness of the reflective gold film is 8 µm, which is bigger
than the skinning depth and ensures that the transmittance T(ω) = 0.

Because the design of the periodic metal structure array on top of the absorber affects
the impedance of the absorber, we can adjust the structural parameters of the absorber, and
material parameters to match the impedance of the absorber with the free space [44–46],
so that the reflection coefficient tends to zero and the absorber absorption rate tends
to 1. The dielectric layer of the absorber provides enough space for the propagation of
electromagnetic waves in the absorber and realizes the loss of electromagnetic waves in
the absorber. The absorber is insensitive to polarization, owing to the perfect symmetry
of our closed-loop disc combination structure. Our closed-loop disc structure will have a
higher impedance than the short cut open-loop form of the metal pattern. It means that the
absorber is more easily impedance matched to space to achieve high absorption rates over
a wide frequency band and small feature size.

3. Results and Discussion

In order to construct an absorber with a broadband perfect absorption effect and
a simple structure, we have designed a perfect absorber based on a closed-loop disc
combination structure. Through the COMSOL simulation platform, as shown in the
Figure 2, we calculated the absorptance of the absorber in TE and TM modes at positive
incidence, respectively. As can be seen from the graph, our designed absorber is not only
insensitive to polarization, but also has an absorption >99% over the broadband range
of 9.06 to 9.8 THz and still achieves a high average absorption of >97.7% over the ultra-
wideband range of 8.62 to 10 THz. The reason for the polarization insensitivity is that
the nanostructure unit of the absorber shows perfect symmetry [44–47]. Our absorber has
more advantages compared to the others, as shown in Table 1 [47–50]. Compared to the
5-layer structure and even the complex structure with more than 10 layers in Table 1, our
absorber with only 3 layers is very simple and easy to fabricate. Moreover, it has a large
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broad absorption bandwidth. The absorption bandwidth is 1.38 THz, which is a significant
improvement compared to the absorbers in Table 1.
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Table 1. Some broadband absorbers in the terahertz band in recent years.

References Absorption
Bandwidth

Number of
Absorber Layers

Processing
Difficulty Absorption Rate

[44] 1.25~2.13 THz 5 High More than 95%

[45] 1.05~2.35 THz 8 High More than 95%

[46] 1.2~2 THz greater than 10 High More than 95%

[47] 1.23~1.68 THz 3 Low More than 95%

proposed 8.62~10 THz 3 Low More than 95%

In order to gain a deeper understanding of the principle of the absorber producing
optimum absorption, we have plotted the absorption rate of the absorber with only the
closed circle and only the disc as shown in Figure 3. The distribution of the electromagnetic
field at the top of the absorber for different modes (TE, TM), at different frequencies, and
the distribution of the current density are shown in Figure 4.
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(d) TM mode, f = 9 THz, (e) TM mode, f = 9.5 THz, (f) TM mode, f = 10 THz (The size and direction
of the white arrows indicate the direction of current density respectively).

In Figure 3, we calculate the absorptivity of an absorber with only a closed ring and
only a disk. It can be noticed that both structures do not have a high absorption rate (less
than 70%) in the 8.0–10.0 THz range, as shown in Figure 3a,b. This is because the absorber
under only the ring or disc structure does not form an effective resonant coupling with the
external terahertz wave. However, the absorbers in the first structure have an enhanced
absorption effect as the frequency increases. The absorbers in the second structure show a
significant increase in absorption in the 8.7–9.7 THz range compared to the other bands.
Both structures have some resonance potential at high frequencies, which provides ideas
for our design. So, we propose an innovative closed-loop disk combination structure. The
structure increases the interaction between ring and disk and achieves high absorption
performance of the absorber. In Figure 4, we depict the electric field and current density
distributions on the surface of the closed-loop disc for electromagnetic waves in TE, TM
mode at the frequencies of 9 THz, 9.5 THz, and 10 THz, respectively. To explain why
the absorber produces a perfect absorption, we plotted the distribution of electric field
and current density corresponding to these three frequencies together with the absorption
curve. It is easy to understand that the high absorption rate of the absorber over a wide
frequency band is mainly caused by the resonant coupling of the combined closed ring
and disc structure [51,52]. By comparing the electric field distribution at 9 THz as well as
at 10 THz, we can see that resonant coupling performs a significant function in absorbing
low and high frequency bands. Since the polarization directions in TE and TM modes are
different, it can be found from Figure 4 that the position of resonance is determined by the
polarization direction. At TE mode, the resonant coupling of the combined closed-loop and
disc structure in the longitudinal direction is relatively stable and prominent, compared
to the resonant coupling of the combined closed-loop and disc structure in the transverse
direction in TM mode. The electric field distribution on the closed-loop disc shows that the
terahertz wave induces an induced strong electromagnetic field on the metal ring and disc.
The closed-loop disc and the underlying metal are separated by a dielectric layer, which
can be equated to an electric dipole. As the electromagnetic waves act on the closed-loop
disc, the charge builds up and the electric dipole strengthens. The strong electric dipole
resonates strongly with the external electromagnetic wave on the disc and ring, culminating
in a high absorption [53,54].
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In the above discussion, we have calculated and analyzed the absorption performance
of a closed-loop and disc combination absorber under ideal conditions. Let us now consider
one of the main factors affecting the absorption performance of the absorber in practice,
which is the process error in the process production. In actual process production, the
precise alignment of the absorber layers and the accurate control of the absorber structure
parameters are two major difficulties. Owing to the very simple structure of the absorber
we have designed, this is much less difficult in practice, but there are still errors in the
process that need to be considered. The radius of the disc and the height of the dielectric
layer largely influence the electromagnetic resonance of the absorber and thus determine
the absorption effect. In the following we will analyze and discuss the influence of these
two parameters on the performance of the absorber. In Figures 5 and 6 we depict the
absorption curves of absorbers with different dielectric layer thicknesses and different disc
radii for positive incidence electric field. From Figure 5, we can see that there is a significant
redshift in the absorption curve as the thickness of the dielectric layer changes, but in
general the absorber is still able to maintain a high level of absorption within a broadband,
which implies a good tolerance to production errors within a small range of dielectric
layer thickness in-process production. We can also see from Figure 5 that as the dielectric
layer thickness increases, the absorption decreases at low frequencies and increases at high
frequencies. This is caused by the SPP of metallic materials in the terahertz band, but
losses reduce the surface plasma mass, thus making the absorption effect less effective
due to conductivity, polarization, hysteresis, and a certain propagation distance [55–57].
In fact, the dielectric layer provides the transmission space and the consumption path for
the terahertz waves entering the absorber and plays a decisive role in the performance
of the absorber. In terms of impedance matching theory, this means that variations in
the thickness of the dielectric layer affect the impedance matching between the absorber
and the free space, and ultimately the absorber′s absorption effectiveness [58,59]. From
Figure 6 we can see that the absorption curve of the absorber is different from the radius of
the disk. With the change of disk radius, the absorption curve has the phenomenon of red
shift. However, the disk radius is 5 µm, and the absorption effect is much lower than other
parameters. This is because when the disk radius is 5 µm, the disk-ring interaction is weak
and the entire magnetic dipole in the absorber cannot be excited effectively, resulting in
poor absorption. When the disc radius varies from 6 µm to 9 µm, the absorber effect is still
strong in the broadband, which also means that the absorber has a good process tolerance
for process production.

Micromachines 2021, 12, x  6 of 11 
 

 

production, the precise alignment of the absorber layers and the accurate control of the 
absorber structure parameters are two major difficulties. Owing to the very simple 
structure of the absorber we have designed, this is much less difficult in practice, but 
there are still errors in the process that need to be considered. The radius of the disc and 
the height of the dielectric layer largely influence the electromagnetic resonance of the 
absorber and thus determine the absorption effect. In the following we will analyze and 
discuss the influence of these two parameters on the performance of the absorber. In 
Figures 5 and 6 we depict the absorption curves of absorbers with different dielectric 
layer thicknesses and different disc radii for positive incidence electric field. From Figure 
5, we can see that there is a significant redshift in the absorption curve as the thickness of 
the dielectric layer changes, but in general the absorber is still able to maintain a high 
level of absorption within a broadband, which implies a good tolerance to production 
errors within a small range of dielectric layer thickness in-process production. We can 
also see from Figure 5 that as the dielectric layer thickness increases, the absorption de-
creases at low frequencies and increases at high frequencies. This is caused by the SPP of 
metallic materials in the terahertz band, but losses reduce the surface plasma mass, thus 
making the absorption effect less effective due to conductivity, polarization, hysteresis, 
and a certain propagation distance [55–57]. In fact, the dielectric layer provides the 
transmission space and the consumption path for the terahertz waves entering the ab-
sorber and plays a decisive role in the performance of the absorber. In terms of imped-
ance matching theory, this means that variations in the thickness of the dielectric layer 
affect the impedance matching between the absorber and the free space, and ultimately 
the absorber′s absorption effectiveness [58,59]. From Figure 6 we can see that the absorp-
tion curve of the absorber is different from the radius of the disk. With the change of 
disk radius, the absorption curve has the phenomenon of red shift. However, the disk 
radius is 5 µm, and the absorption effect is much lower than other parameters. This is 
because when the disk radius is 5 µm, the disk-ring interaction is weak and the entire 
magnetic dipole in the absorber cannot be excited effectively, resulting in poor absorp-
tion. When the disc radius varies from 6 µm to 9 µm, the absorber effect is still strong in 
the broadband, which also means that the absorber has a good process tolerance for 
process production. 

 
Figure 5. (a,b) are absorption simulation images of scanning medium layer thickness (11–13 µm) at 
frequency from 8.0 to 10.0 THz, respectively. 
Figure 5. (a,b) are absorption simulation images of scanning medium layer thickness (11–13 µm) at
frequency from 8.0 to 10.0 THz, respectively.



Micromachines 2021, 12, 1290 7 of 11Micromachines 2021, 12, x  7 of 11 
 

 

 
Figure 6. (a,b) are absorption simulation images of different disk radii R1 (5–9 µm) scanned at 
frequencies from 8.0 to 10.0 THz, respectively. 

Moreover, we calculated the absorption behavior with various material composi-
tion. The type of material used to form the ring and disk at the top of the absorber is 
changed without changing the structural parameters of the designed absorber. The ef-
fects of different materials on the absorption properties were observed. Here we use Cu 
and Ag in the same group as Au and Al with low refractive index. From Figure 7 we can 
see that the absorber with the combination of closed-loop discs of different materials still 
maintains a high absorption effect at high frequencies and is almost identical, with only 
some differences at lower frequencies. This is because Au, Ag, and Al are all low refrac-
tive index metals and Cu, Ag, and Au belong to the same main group of elements with 
similar properties [60–63]. They all give rise to SPP in the terahertz band. The results 
show the adaptability of our closed-loop disc absorbers to a wide range of materials. 
Moreover, the designed absorber has an excellent absorption effect, a simple structure 
that is easy to fabricate and a good adaptability to materials. 

 
Figure 7. Absorption simulation curves of different materials. 

4. Conclusions 
Overall, we have designed a metamaterial wideband terahertz ideal absorber with 

simple structure. By describing the distribution of electric field intensity and current 
density on the surface of the absorber, the mechanism of the absorber producing high 
absorbent was studied. Finally, the results show the absorption rates of the absorber ex-
ceed 99% in the broadband range from 9.06 THz to 9.8 THz and average over 97.7% in 
the ultra-broadband range from 8.62 THz to 10 THz. In addition, the materials for the 
top pattern of the absorber are replaced by Cu, Ag, and Al, and the absorber still 
achieves perfect absorption with different metal materials. This means that our research 

Figure 6. (a,b) are absorption simulation images of different disk radii R1 (5–9 µm) scanned at
frequencies from 8.0 to 10.0 THz, respectively.

Moreover, we calculated the absorption behavior with various material composition.
The type of material used to form the ring and disk at the top of the absorber is changed
without changing the structural parameters of the designed absorber. The effects of different
materials on the absorption properties were observed. Here we use Cu and Ag in the same
group as Au and Al with low refractive index. From Figure 7 we can see that the absorber
with the combination of closed-loop discs of different materials still maintains a high
absorption effect at high frequencies and is almost identical, with only some differences at
lower frequencies. This is because Au, Ag, and Al are all low refractive index metals and
Cu, Ag, and Au belong to the same main group of elements with similar properties [60–63].
They all give rise to SPP in the terahertz band. The results show the adaptability of our
closed-loop disc absorbers to a wide range of materials. Moreover, the designed absorber
has an excellent absorption effect, a simple structure that is easy to fabricate and a good
adaptability to materials.
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4. Conclusions

Overall, we have designed a metamaterial wideband terahertz ideal absorber with
simple structure. By describing the distribution of electric field intensity and current
density on the surface of the absorber, the mechanism of the absorber producing high
absorbent was studied. Finally, the results show the absorption rates of the absorber
exceed 99% in the broadband range from 9.06 THz to 9.8 THz and average over 97.7%
in the ultra-broadband range from 8.62 THz to 10 THz. In addition, the materials for
the top pattern of the absorber are replaced by Cu, Ag, and Al, and the absorber still
achieves perfect absorption with different metal materials. This means that our research
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will have great potential for applications in areas such as terahertz electromagnetic stealth,
sensing, and thermal imaging. Compared to the absorbers proposed in recent years for
the terahertz band, our absorber has a lower process difficulty, higher absorption rate and
bandwidth, and better universality, providing a new idea for the study of metamaterial
perfect absorbers for the terahertz band.
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