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Abstract: Photodynamic therapy (PDT) is a promising therapy due to its efficiency and accuracy.
The photosensitizer is delivered to the target lesion and locally activated. Viral nanoparticles (VNPs)
have been explored as delivery vehicles for PDT in recent years because of their favorable properties,
including simple manufacture and good safety profile. They have great potential as drug delivery
carriers in medicine. Here, we review the development of PDT photosensitizers and discuss applica-
tions of VNP-mediated photodynamic therapies and the performance of VNPs in the treatment of
tumor cells and antimicrobial therapy. Furthermore, future perspectives are discussed for further
developing novel viral nanocarriers or improving existing viral vectors.
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1. Introduction

Since Niels Finsen utilized red light to activate photosensitizers (PSs) in the skin for
prohibiting the production and emission of smallpox pustules in 1960, PSs have been ap-
plied for more than 50 years [1,2]. A few years later, Richard Lipson et al. pioneered a new
era of photodynamic therapy (PDT) using a compound called “hematoporphyrin deriva-
tive” (HpD) as a PS during the treatment of bladder cancer [3,4]. Henceforth, PDT was
successfully accepted as a routine treatment for many diseases, with the continuous devel-
opment and perfection of technology.

The key of photodynamic therapy is the application of a photosensitizer to the pa-
tient. The photosensitizer accumulates in the tissue of interest, such as tumor cells, and is
activated by light, leading to cell death. In this process, reactive oxygen species (ROS),
which are cytotoxic to tumor cells, are efficiently produced from the photochemical reac-
tion, mediated by photosensitizers irradiated by light, and induce cellular inflammatory
responses (Figure 1) [5,6]. This pathway involves two types of ROS [7–9]: Type I reactions
involve electron transfer reactions that produce a series of ROS such as hydrogen peroxide,
hydroxyl radicals, and superoxide anions; Type II reactions involve energy transfer, lead-
ing to singlet oxygen generation, which is considered the main mechanism [10–12]. In the
second type, photons are absorbed by the ground state of the photosensitizer. The triplet
state of the photosensitizer (3PS*), in the presence of molecular oxygen, transfers its excess
energy to ground state molecular oxygen (3O2) via a Dexter-type energy transfer, a process
that results in the formation of the PS ground state (1PS) and the excited state of molecular
oxygen (singlet oxygen, 1O2) [13–15]. Surroundings such as peptides, nucleic acids, and the
cell membrane rapidly react with this reactive oxygen, resulting in cell damage and pro-
grammed cell death (PCD). Recently, it has been reported that a photoinactivation that is
not related to oxygen should be called the “Type III photochemical pathway”. Examples of
this type of photodynamic reaction include psoralen and tetracycline, which can achieve
antibacterial photodynamic inactivation in the absence of oxygen [16,17].
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Figure 1. Principle of photodynamic therapy (PDT).

In order to improve PDT effectiveness, researchers have attempted to investigate
novel strategies with advanced phototherapeutic effects and low toxicity. Nanomaterials
are a potential carrier of photosensitizers, owing to the advantages such as structural
stability, efficient delivery to target cells, high singlet oxygen, and improved photosensi-
tivity. As natural nanoparticles, viral nanoparticles (VNPs) are protein-based materials
with higher biocompatibility and tissue-specificity after being decorated with appropriate
surface chemistries. Moreover, VNPs are easy to be remolded through genetic engineering
and chemical modification. In this review, we review the recent advances of VNP-mediated
photodynamic therapies in antimicrobial therapy and the treatment of cancer, and we also
provide new perspectives for the development of novel viral nanocarriers for the treatment
of tumors.

1.1. Application of PDT

PDT has often been used to treat surface disorders such as skin cancer [18]. With the
development of nanotechnology drug delivery systems, it can also treat solid malignant
cancers such as tumors in lung, stomach, oral, bladder, head, and neck [19–23]. PDT can
exhibit a range of mechanisms of antitumor activity, including direct damage to tumor
cells or vasculature and stimulation of immune response or inflammation [24–27]. PDT has
shown good effects in the treatment of various diseases, including psoriasis and atheroscle-
rosis [28]. In addition, PDT has been shown to kill microbial cells and treat fungal, bacterial,
and viral infections [29,30]. It has been shown to be effective in antiviral therapy, includ-
ing HIV [31] and herpes [32]. PDT is also widely used to treat acne [33].

There are several advantages in PDT compared to traditional cancer therapy treatment.
First, the side effects are weaker than traditional treatments after correct PDT. Surgical pro-
cedures are more invasive than PDT, and chemotherapy or radiotherapy results in longer
side effects than PDT. In addition, PDT acts on the tumor itself and destroys the tumor-
associated vasculature, which greatly impacts tumor death. This allows for repeating
treatment several times in one location, with no or little scarring.

However, there are still some limitations to PDT. First, in disseminated metastases,
effective PDT technology is currently unavailable since the irradiated site cannot be the
whole body. Highly dense tumors or tumors with necrotic tissue could reduce the efficiency
of PDT as tissue oxygenation is critical for treatment effect. Finally, the possibility of light
transmission to the target tissue is also complicated. Therefore, due to optical penetration
depths of visible light, deep tumors are difficult to treat with PDT.
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1.2. First- and Second-Generation Photosensitizers

Currently, the Food and Drug Administration (FDA) has approved some PSs for the
treatment of certain cancers or precancerous lesions. In general, photosensitizers used in
PDT can be divided into first, second, and third generations.

There are several disadvantages of first-generation photosensitizers that limit their
application. For example, it has not been determined how some photosensitizers selectively
accumulate in target tissues. Moreover, first-generation photosensitizers, such as HpD and
Photofrin, have shown some unfavorable features. Due to their weak light absorption at
630 nm, the optical penetration depths are limited and cannot reach deeper cancer tissues.
Its strong phototoxicity to the skin and low metabolic rate in the body means it does not
allow long-term treatment.

Second-generation PSs are mainly porphyrin derivatives developed based on por-
phyrin groups [34]. In addition to being able to stimulate the photosensitizer effectively,
PDT also requires the light source to have superior tissue penetration. The light absorption
of biological tissues that are located in the wavelength band where hemoglobin absorption
and water absorption are both small can provide a so-called treatment window. The pene-
tration depth of green light and blue light is about 2 mm; in contrast, red light (≥600 nm)
has better tissue penetration, with a penetration depth of up to 5 mm, and has a better
photodynamic therapy effect. Therefore, the light required for photodynamic therapy is
generally in the range of 600–800 nm. Porphyrin derivatives can potentially treat a variety
of cancer types. The Q-bands of porphyrins are usually near 600 nm and are character-
ized by low extinction coefficients. In addition, the excitation of singlet oxygen (1O2) is
enhanced to promote tumor cell apoptosis or necrotic effects [35–37]. The use of some
PSs has been approved by the US FDA and other national regulatory agencies, including
benzoporphyrin (Visudyne®), hemoporfin (HMME), and texaphyrins [38–40].

However, there are still many shortcomings in common second-generation PSs. For ex-
ample, mTHPC causes long-term photosensitization and accumulation in the skin and
has a prolonged biological half-life. 5-Aminolevulinic acid (ALA) and its methylated ester
(MAL) have good PDT potential for the treatment of a variety of cancers [41]; however,
ALA is limited by its hydrophilic nature, which is not conducive to penetration into deep
tissues [42]. It causes adverse reactions in some painful tumors. Studies have shown that
the methyl ester of 5-aminolevulinic acid (MAL) is more stable than ALA and penetrates
deeply into cells due to its high lipophilicity, which suggests that ALA derivatives with
higher lipid solubility than ALA may have greater diffusion capacity [43,44].

Following the study of porphyrins, most studies have turned to a class of photody-
namically active natural molecules, such as chlorophyll (CpD) and its derivatives [45–47],
and some dyes that can be used as potential photosensitizers. Such molecules can be easily
obtained from natural resources [48]. Chemical structures of natural photoactive molecules,
e.g., chlorin, exhibit excellent photosensitivity compared to the porphyrin derivative,
with two additional hydrogens in one pyrrole ring. This results in a wide absorption band
and higher tissue permeability. As an important degradation product of chlorophyll-a,
purpurin 18 and its derivative (with a polyethylene glycol (PEG) linker) were synthe-
sized as novel photosensitizers (PSs). PEGylated derivatives have higher hydrophilicity,
can significantly enhance phototoxicity, and can be used in the PDT of cervical cancer,
prostate cancer, pancreatic cancer, and breast cancer [47]. Similarly, the phototoxicity effect
of NT–pheophorbide (NT–Pba), a conjugate composed of red luminescent pheophorbide-a
and nandrolone (NT), is more pronounced than the original pheophorbide-a [49]. In addi-
tion, methylene blue (MB) has low toxicity and can be activated at a wavelength of 666 nm;
the yield of singlet oxygen is high [50,51]. These improve the high photodynamic efficiency
for the treatment of basal cell carcinoma [52,53]. Another powerful natural photosensitizer
is hypericin, which exhibits strong antitumor activity after irradiation, allowing cell death
programs to be promoted or offset, thereby increasing the efficiency of PDT [54–57].

Compared with the first generation, second-generation PSs have a radiation absorption
band close to the therapeutic window and deeper permeability; the production of singlet
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oxygen is also higher. However, the mechanism by which some natural PSs selectively
accumulate in tumors is particularly complex, and there are some disadvantages to second-
generation PSs. Nanotechnology-based PS delivery systems, such as the third-generation
PSs, offer a new approach that overcomes the shortcomings of these PSs and are expected
to play a role in the treatment of several diseases.

1.3. Third-Generation Photosensitizers

The key factors in the design process of a PDT photosensitizer include solubility and
an effective target [58,59]. Compared with traditional small molecular compounds, nano-
sized carriers have advantages such as long cycle time, high load capacity, and selective
targeting [60]. Surface modification of a nanosized carrier or a specific ligand such as a
monoclonal antibody or peptide or polyethylene glycol can increase the selectivity and
solubility of the photosensitizer, greatly improving the overall efficacy of PDT [61,62].

Recently, nanoparticle-based PS delivery systems have been considered ideal PSs and
are widely used in several PDT fields. In these delivery systems, nanoparticles encapsu-
late or immobilize PSs by covalent or noncovalent interactions [63]. Because of the high
surface-area-to-volume ratio, it has the potential for high drug loading [64]. In general,
nanoparticles have the following three advantages: (1) they can increase the PS concentra-
tion at the target site, thereby reducing the toxicity to other normal tissues; (2) they can
improving the solubility in the hydrophobic media of PSs; (3) there is PS delivery at a rate
of constant intervals, maintaining a constant and appropriate therapeutic dose at the site of
action [63–65].

These nano-PSs have two classes: organic and inorganic nanoparticles. Among them,
since most viral capsids are in the order of 50–200 nm in diameter [66], they are considered
naturally occurring nanoparticles. The virus nanocarrier is a nanoparticle formed by self-
assembly of a viral structural protein (envelope protein or capsid protein) and can be used
as a basic element and a carrier of a novel nanomaterial. It mimics the external structure
and antigenicity of a natural virus with viral structural proteins. Viral nanoparticles play
an important role in immunotherapy interventions [67] and imaging applications and serve
as vectors for gene delivery and drug delivery [68]. In recent years, viral nanoparticles
have also been applied as carriers for photosensitizers.

2. Viral Nanoparticle-Mediated PDT in Tumor Therapy and Bacterial Infection

Since viruses were discovered, they have been known to the public as deadly pathogens.
Since the 1950s, researchers have used viruses as a tool to understand the basic life pro-
cesses of cells and as expression systems in biotechnology [69,70]. More than two decades
later, viruses have emerged as vectors for use in gene therapy, cancer treatment, and control
of pests in agriculture [71–73].

The first nanoviral vector developed has been used in PDT for more than a decade.
The first nanoviral vector used in PDT was a plant virus that was used for the treatment
of bacteria [74]. Using plant viruses, bacteriophages, and animal viruses, viral vector-
mediated PDT has been applied to treat other bacteria and tumor cells such as prostate
cancer, breast cancer, and melanoma [75–77]. Viral nanoparticles used in PDT can effectively
promote the treatment of diseases by PDT.

2.1. Phage Nanoparticles

The phages used in PDT as a nanocarrier include filamentous, MS2, and Qβ phages.
Filamentous phages are biofibers that specifically infect bacteria [78]. Each phage particle
consists of five heritable modified coat proteins enclosing a circular single-stranded (ss)
DNA encoding a coat protein. Coat protein (pVIII) acts as the major structure of the
phage, with five copies of the two coat proteins (pIII and pVI together, pVII and pIX
together) attached to each end [79]. Phage display is a technique to genetically change
phage coat protein by fusing the N-terminus of one or more coat proteins to a foreign
peptide sequence [80]. This phage, as a novel photosensitizer carrier, has great potential to
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achieve targeted PDT against cancer cells. Binrui Cao et al. used a pyropheophorbide-a
(PPa) chemical conjugation to phage particles specifically for SKBR-3 breast cancer cells
to achieve targeted PDT [81]. Shuai Dong et al. observed significant therapeutic effects
by conjugating PPA to phage-targeting cell wall mannoprotein MP65 of Candida albicans.
The nanodrug can significantly increase the accumulation of PPA in Candida albicans and
trigger a series of apoptotic features such as mitochondrial disorder, S-phase cell arrest,
and ROS accumulation [82].

As the dodecahedral RNA phage MS2 nanoparticles can transport drugs or biological
agents to specific tissues, they are also used in PDT. Phage MS2 nanoparticles can efficiently
package drugs into phage capsids to form different types of viral nanoparticles. MS2 pro-
tein virus-like particles (VLPs) deliver a wide range of agents with strong immunogenicity
and good safety and ensure specific targeting of tissues [83]. MS2 nanocarriers have broad
practical application prospects. In 2010, Nicholas Stephanopoulos et al. used phage MS2
to create a multivalent PDT vector to target Jurkat leukemia T-cells [84]. They modified
the Jurkat-specific aptamer to the exterior of the capsid, allowing the phage to specifically
target the target cell. Up to 180 porphyrins were installed on the interior surface of the
self-assembled spherical viral capsid, and the cytotoxicity of the increased singlet oxygen
produced upon irradiation killed more than 76% of Jurkat cells. In 2013, Brian A. Cohen
and his colleagues loaded up to 250 cationic porphyrins onto the MS2 phage capsid and
modified the exterior of the capsid by chemical conjugation with a cancer-targeted nucleic
acid aptamer (GTA sequence) [85]. The absorbance calculation of the retentate showed
that approximately 60 GTA sequences were loaded on the MS2 capsid with TMAP. In this
experiment, MCF-10A cells were used as a control, and life and death staining assays were
used to evaluate whether there was cytotoxicity after light induction. The results showed
that cell surface receptors on MCF-7 cells could selectively be recognized by GTA but were
lower than MCF-10A cells. The results also showed that the porphyrin-MS2 construction
could specifically target and kill MCF-7 human breast cancer cells after photoactivation,
whereas MCF-10A cells did not die. In addition, cytotoxicity was not observed after
the incubation of MCF-7 cells with nontargeted vector viruses loaded with porphyrins.
Incubation of MCF-7 cells with an MS2 capsid modified with nontargeting nucleotide
sequences did not have any PDT effect, indicating that GTA induces site selectivity in the
porphyrin-MS2 construction. Furthermore, the nucleolar aptamers can target other cancers,
such as lung, colon, ovarian, and prostate cancers. Moreover, this unique virus-based
loading strategy effectively targets the delivery of photosensitizing compounds, provid-
ing a viable method for photodynamic cancer treatment of specific sites with biologically
derived nanomaterials.

Viral nanoparticles can be used in a variety of platforms, such as biomedical, mate-
rial chemistry, and genetic functionalization. Jin-Kyu Rhee et al. simultaneously modified
the photosensitizer metalloporphyrin derivative and the glycan ligand that can specifically
target the B-cell CD22 receptor cell to the bacteriophage Qβ, so that the modified phage
had a targeting function, making the target cell produce a high concentration of localized
singlet oxygen [86]. To make icosahedral bacteriophage Qβ VLPs carry photosensitizers
and have targeting properties, tetraaryl porphyrin zinc units, which are widely used for
the generation of singlet oxygen, were prepared with three amine-terminated hydrophilic
arms. The resulting structure was highly soluble in water and not harmful to protein
nanoparticles upon attachment. This shows that the function of viral carrier-based photo-
sensitizers is modular, allowing it to be added to other nanoparticles to bind to target cells
and produce singlet oxygen.

These novel phage photosensitizers have opened a new path for PDT, and unique viral
vectors provide a solution for effective drug delivery. By using phage display technology,
PDT can be utilized to develop different types of phage photosensitizers for various cancers.
Both in vivo and in vitro, these specific photosensitizers can effectively eliminate tumors by
producing cytotoxic 1O2 by irradiation with light of the appropriate wavelength at the target
site (Figure 2) [76]. However, bacteriophage has limited capacity to take photosensitizers,
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which could have a big size after modification. There is no in-vivo evidence supporting
that bacteriophage-PDT works in diverse cancers. Furthermore, targeting modification on
a bacteriophage is difficult due to the genetic capability of this small virus.
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Figure 2. The mechanism of PDT phage photosensitizers for various cancers. PDT can be used
to develop different types of phage photosensitizers. Whether in vivo or in vitro, these specific
photosensitizers can effectively eliminate tumors by producing cytotoxic 1O2 by irradiation with
light of the 658 nm wavelength at the target site.

2.2. Animal Virus Nanoparticles

Nanoparticles constructed by animal viruses play a critical role in the PDT of tumors
as a carrier for the delivery of photosensitizing compounds. The high cytotoxicity induced
by photosensitizers after illumination is mainly caused by damage to the cell membrane.
However, few photosensitizers are localized to the cell membrane; the envelope of the
hemagglutinating virus of Japan (HVJ) has a glycoprotein that induces fusion on the host
cell membrane, making it a novel drug delivery system that overcomes this limitation.
Makoto Sakai et al. found that the addition of HVJ-E enhanced the cytotoxicity of conven-
tional photosensitizers such as 5-aminolevulinic acid (5-ALA) to improve PDT efficacy [87].
To effectively treat drug-resistant prostate cancer, Masaya Yamauchi and coworkers devel-
oped an HVJ-E embedded with a PpIX lipid named porphyrus envelope (PE) [75]. PpIX is a
photosensitizer widely used in topical PDT. They found that compared with free PpIX lipid
or PpIX induced by 5-ALA, PDT using a porphyrin envelope can enhance the uptake of
PpIX and the cytotoxicity of PDT. In subsequent research, they demonstrated that rapid de-
livery of PpIX lipids to target cell membranes can be achieved by using PE [75]. This novel
vector selectively and efficiently accumulates in cancer cells, significantly reduces the
survival rate of cancer cells, and has potential advantages over traditional carriers, includ-
ing decreased treatment time, reduced radiation dose, and enhanced tissue penetration.

Surface modification of adenoviral vectors using neutralizing moieties has enabled
site-specific gene expression. Junghae Suh et al. used protein phytochrome B (PhyB)
and its ligand phytochrome factor (PIF6) to construct the adeno-associated virus (AAV)
platform [88]. The rate of viral-based delivery can be controlled by adjusting the ratio
of externally applied R and FR light to PhyB and PIF6, respectively. In the treatment
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of tumors, to systematically use viral therapy and overcome the injection restriction of
complex tumors in sensitive organs, Zi-Xian Liao et al. introduced a gene for the pro-
duction of photosensitive protein KillerRed into a recombinant adeno-associated virus
chemically conjugated with iron oxide nanoparticles (approximately 5 nm). Using the
adeno-associated virus serotype 2 (AAV2) genome, PDT or light-mediated viral therapy can
be achieved [89]. In vivo experiments have shown that this method can significantly inhibit
tumor growth. Furthermore, they demonstrated that ironated AAV2 can be magnetically
guided, transducing the photosensitive KillerRed protein to achieve PDT irrespective of
drug resistance [90].

In addition, the combination of oncolytic vaccinia virus (OVV) and PDT was used
to treat primary and metastatic tumors in mice without causing other photodynamic
damage to normal tissues of mice [91]. In 2015, Yazan S Khaled et al. combined reovirus
oncolytic virus therapy with PpIX-mediated PDT and observed a killing effect on cancer
cells [92]. They applied PDT on pancreatic cancer cell lines (PsPC-1 and BXPC-3) and a
noncancerous control cell line (HEK293) for 48 h and conjugated the cells with the PpIX
prodrug 5-aminolevulinic acid (5-ALA) for 4 h of incubation. The cells were irradiated
with visible red-light emitting diodes at 653 nm for 15 min. The trypan blue test and
methylthiazole tetrazolium (MTT) were used to analyze the killing effect on cells. Reovirus-
using PpIX-mediated PDT resulted in a significant increase in cytotoxicity compared to
PDT with reovirus monotherapy, with 100% pancreatic cell death. The results showed
that the addition of reovirus before or after PDT showed no significant differences in
cytotoxicity. These results provide initial evidence for a new PDT combination therapy.

Recently, Wenjun Shan et al. loaded a near-infrared fluorescent dye, indocyanine
green (ICG), into hepatitis B core protein-like virus particles (HBc VLPs) by regulating the
self-assembly process of VLPs, thereby producing Arg-Gly-Asp (RGD)-HBc/ICG VLPs.
As one of the few dyes approved for clinical use by the US Food and Drug Administration
(FDA), ICG has poor stability in aqueous solution and is easily decomposed by light,
which limits its further clinical application [93]. Through the reassembly of the vector,
the stability of ICG can be improved, extending its circulation time in the body, increasing
the uptake efficiency of the cells, and resulting in efficient delivery to the target site.
The results showed that RGD-HBc/ICG VLPs have good biocompatibility and greatly
improve cell uptake efficiency. Fluorescence and photoacoustic dual-mode imaging can
be achieved in mice, which are expected to be highly sensitive and accurate for tumor
detection. Under the illumination of an 808-nm near-infrared laser, RGD-HBc/ICG VLPs
can produce photothermal/photodynamic effects, significantly eliminating tumor-loaded
tumor tissue (Figure 3). This bioengineered HBc VLP can completely remedy the situation
where the application of ICG is restricted due to its insufficient effects . . . These animal
viruses, which are applied to nanocarriers, have greatly advanced the development of
viral nanocarriers.
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Animal viruses provide more options in virus–PDT systems, as their biocompatibility
is better than bacteriophages. However, animal viruses usually have organophilism,
which could limit the function of virus–PDT systems on different kinds of diseases. How to
design targeting virus-PDT systems remains to be discovered.

3. Plant Virus Nanoparticles

Many plant viruses, such as the cowpea chlorotic mottle virus (CCMV), the tobacco
mosaic virus (TMV), and the cowpea mosaic virus (CPMV), are simple in structure, rod-
shaped, or have icosahedral symmetry and are relatively easy to design. It is an ideal
virus nanocarrier with low production cost and high stability that can be stored at room
temperature. In addition to being used to develop vaccines and deliver antitumor drugs,
plant viruses have been used to construct vectors for photosensitizers in PDT to treat
bacterial infections and improve melanoma treatment [94].

In 2007, Peter A. Suci et al. increased the selectivity of antimicrobial PDT by coupling
CCMV with photosensitizers and caused pathogenic Staphylococcus aureus inactivation [74].
Functionalized with PSs, a genetically modified CCMV can be used to target S. aureus cells.
Light-activated killing can be induced by PS functionalized protein under certain light
conditions. Natural noninfected nano-Centiana mosaic virus (CPMV) was used as a carrier
for PDT to successfully deliver photosensitizers to macrophages and tumor cells, which are
specific for immunosuppressive subpopulations of macrophages and target cancer cells.
Amy M. Wen et al. found that the conjugation of CPMV/dendritic hybrids can increase the
drug-carrying capacity of nanocarriers, effectively eliminating macrophages and tumor
cells at low micromolar photosensitizer concentrations, potentially improving melanoma
treatment [77].

The nucleoprotein component of the tobacco mosaic virus (TMV) is a nanotube with a
high aspect ratio that delivers drugs and targets cancer cells. In 2016, antimicrobial pho-
todynamic Zn-EpPor was first applied to cancer and had considerable efficacy compared
to that of porphyrin-based PDT [95]. Compared with porphyrin-based PDT, TMV-Zn-
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EpPor molecules have considerable efficacy and are used in targeted therapies for cancers.
In the study, the photosensitizer was successfully loaded into the internal channels of
the TMV nanotubes by electrostatic interaction for the treatment of aggressive melanoma.
The TMV-Zn-EpPor molecule effectively improved cell uptake and efficacy compared to
free photosensitizers. In B16F10 cells, loading Zn-EpPor into TMV improved cell killing
efficacy compared to that of free Zn-EpPor alone. The improvement in Zn-EpPor/TMV
efficacy was due to increased cellular uptake of Zn-EpPor by TMV delivery. In addition,
the pharmaceutical formulation exhibited a good shelf life. Due to the biocompatibility
and tumor-homing properties of TMV, photosensitizer–TMV carriers can be used in combi-
nation therapy to target melanoma or even other cancers in order for PDT to overcome the
limitations of conventional photosensitizers.

VLPs were formed by many different virus structural proteins in heterologous ex-
pression systems such as yeast, Escherichia coli, plants, insect cells, and mammalian cells.
In 2017, studies found that the VLP of the coat protein of the Physalis mottle virus (PhMV)
could be expressed in E. coli, with in-vivo activity and low-cost. The photosensitizer Zn-
EpPor and the drug crystal violet doxorubicin (DOX) were stably combined with the carrier
through noncovalent interaction and were found to be cytotoxic to several cancer cell lines
(Figure 4) [96]. The PhMV-derived VLPs are inexpensive to produce and have physical
stability. Plant viruses do not replicate in mammals, which indicated plant VLPs are safer
than mammalian viruses. However, there are few examples of plant VLPs, and more work
is needed.
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Figure 4. Photodynamic effect of plant virus nanoparticles carrying antitumor drugs. The photosensitizer Zn-EpPor and
the drug crystal violet doxorubicin (DOX) stably bind to the VLP of the coat protein of the Physalis mottle virus (PhMV)
through noncovalent interactions and are cytotoxic to several cancer cell lines under 430-nm near-infrared laser irradiation.
PhMV: Physalis mottle virus; Zn-EpPor: 5-(4-ethynylphenyl)-10,15,20-tris(4-methylpyridin-4-ium-1-yl)porphyrin-zinc(II)
triiodide.

4. Future Outlook

The successful accumulation of photoactive compounds in target tissues is a key
factor affecting the therapeutic effects of PDT. The use of viral nanoparticles in PDT has
greatly expanded the range of applications of this method. Viral nanoparticles have
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several advantages: first, they are structurally self-assembling, the protein structure is
highly symmetrical and uniform, and they are convenient for production; second, they are
biodegradable and biocompatible and have a variety of applications. The most important
aspects are that the virus nanoparticles contain no genetic material, are not contagious,
and are safe and harmless.

Examples of the treatment of diseases through PDT by using viral nanoparticles as
vectors are shown in Table 1. Viral nanoparticles can help accurately transport photosen-
sitizers to target sites to treat a variety of tumors. A novel combination of PDT and gene
therapy also has potential in tumor treatment. However, the transfer of photosensitizers
or genes is highly dependent on the viral vector used. Therefore, developing new viral
nanocarriers or improving existing viral vectors is inevitable in promoting PDT. In the
future, additional photosensitizers combined with viral nanoparticles will be explored.

Table 1. The treatment of diseases through PDT by using viral nanoparticles as vectors.

Types of Virus
Nanoparticles Photosensitizer Modification Disease/Cell PMID

filamentous phage pyropheophorbide-a
(PPa)

SKBR-3 cell-targeting
peptide

SKBR-3 breast cancer
cells [81]

JM-phage pyropheophorbide-a
(PPa) scFv antibody Candida albicans [82]

phage MS2 porphyrin Jurkat-specific aptamer Jurkat leukemia T-cells [84]

phage MS2

meso-tetra-(4-N,N,N,-
trimethylanilinium)-

porphine
(TMAP)

GTA–G-quadruplex
targeting aptamer

MCF-7 human breast
cancer cells [85]

bacteriophage Qβ
metalloporphyrin

derivative

BPC derivative (3) of the
sialoside

Siaα2-6Galβ1-4GlcNAc
CHO-CD22+ [86]

HVJ-E
5-

aminolaevulinicacid(5-
ALA)

the human lung cancer
cell line A549 and the
murine melanoma cell

line B16

[87]

HVJ-E PpIX lipid porphyrus envelope(PE) drug-resistant prostate
cancer [75]

AAV protein phytochrome B
(PhyB)

phytochrome factor
(PIF6) tumor [88]

AAV2 KillerRed protein iron oxide nanoparticle tumor [89]

Reovirus
5-

aminolaevulinicacid(5-
ALA)

pancreatic cancer cell line [92]

vaccinia virus (OVV)

2-[1-hexyloxyethyl-]-2-
devinyl

pyropheophorbide-a
(HPPH)

primary and metastatic
tumor [91]

hepatitis B core
protein-like virus(HBc)

indocyanine green
(ICG) tumor [93]

CCMV Ru(bpy2)phen-IA S102C/K42R Staphylococcus aureus [74]

CPMV Zn-EpPor dendron hybrids macrophages and tumor
cells [77]
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Table 1. Cont.

Types of Virus
Nanoparticles Photosensitizer Modification Disease/Cell PMID

TMV

5-(4-ethynylphenyl)-
10,15,20-tris(4-

methylpyridin-4ium-1-
yl)porphyrin-zinc(II)
triiodide (Zn-EpPor)

targeting ligands Melanoma [95]

PhMV Zn-EpPor

reactive lysine-N-
hydroxysuccinimide

ester and
cysteine-maleimide

chemistries

prostate cancer, ovarian,
and breast cancer cell

lines
[96]
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Abbreviations

PDT photodynamic therapy
VNPs viral nanoparticles
PSs photosensitizers
HpD hematoporphyrin derivative
ROS reactive oxygen species
PCD programmed cell death
FDA Food and Drug Administration
mTHPC tetoporfin
ALA 5-aminolevulinic acid
MB methylene blue
Ppa pyropheophorbide-a
HVJ hemagglutinating virus of Japan
PE porphyrus envelope
PhyB protein phytochrome B
PIF6 phytochrome factor
AAV adeno-associated virus
AAV2 adeno-associated virus serotype 2
OVV oncolytic vaccinia virus
MTT methylthiazole tetrazolium
ICG indocyanine green
CCMV Cowpea Chlorotic Mottle Virus
TMV Tobacco Mosaic Virus
CPMV Cowpea Mosaic Virus
TMV Tobacco Mosaic Virus
PhMV Physalis Mottle Virus
DOX doxorubicin
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