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Abstract

School-based influenza-like-illness (ILI) syndromic surveillance can be an important part of

influenza community surveillance by providing early warnings for outbreaks and leading to a

fast response. From September 2012 to December 2014, syndromic surveillance of ILI was

carried out in 4 county-level schools. The cumulative sum methods(CUSUM) was used to

detect abnormal signals. A susceptible-exposed-infectious/asymptomatic-recovered

(SEIAR) model was fit to the influenza outbreak without control measures and compared

with the actual influenza outbreak to evaluate the effectiveness of early control efforts. The

ILI incidence rates in 2014 (14.51%) was higher than the incidence in 2013 (5.27%) and

2012 (3.59%). Ten school influenza outbreaks were detected by CUSUM. Each outbreak

had high transmissibility with a median Runc of 4.62. The interventions in each outbreak had

high effectiveness and all Rcon were 0. The early intervention had high effectiveness within

the school-based ILI syndromic surveillance. Syndromic surveillance within schools can

play an important role in controlling influenza outbreaks.

Background

Syndromic surveillance was developed in the 1990s to detect and respond to bioterrorism

events. It now has become an attractive public health tool and has been widely used in influ-

enza control and other fields because of its remarkable ability to adapt to various public health

requirements [1]. It is more sensitive and more timely than traditional surveillance methods

[2]. Traditional disease surveillance is based on the disease diagnosis, which delays public deci-

sions about outbreaks by one to two weeks [3]. Additionally, syndromic surveillance is well

suited to rural communities in developing countries [4].

Syndromic surveillance uses data from clinic visits, hotlines, internet questionnaires, over

the counter drug (OTC) purchasing, absenteeism and laboratory testing to provide early alerts

about an outbreak of an unspecified disease and provide data for various public health mea-

sures. Currently, syndromic surveillance is widely used in the world as a complement to
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traditional surveillance [5]. Syndromic surveillance can also be used to reduce transmission of

most infectious diseases, including emerging infectious diseases. For example, with Ebola, gov-

ernments monitored villages for signs of disease spread in community, which could detect

residual Ebola transmission and future Ebola outbreaks, and could even be used for other

infectious diseases [6,7].

Until now, influenza sentinel surveillance has mainly been established in big city hospitals;

cases come from different communities or schools, but this type of surveillance has low sensi-

tivity to outbreaks in certain community or schools especially in rural areas. Syndromic sur-

veillance of influenza-like-illness (ILI) in schools can ensure early warning and adequate

response capacity, particularly in developing countries or regions, where it is difficult to pro-

cess laboratory confirmation in a timely manner because of limited local resources [8,9]. Addi-

tionally, infectious diseases spread quickly in crowded settings like schools, so school-based

ILI syndromic surveillance may be more sensitive to detect outbreaks than other syndromic

surveillance methods, such as OTC frequency in drugstores [10]. Currently, school-based syn-

dromic surveillance has been incorporated into community influenza surveillance in China.

We carried out syndromic surveillance in county-level schools by an examination of absen-

teeism to detect outbreaks within the community. We chose cumulative sum methods

(CUSUM) to detect abnormal signals to confirm the ILI outbreak. Specimens from ILI cases

were collected to detect the influenza virus. We evaluated the effectiveness of early control

efforts directed at these influenza outbreaks on school absenteeism by using a susceptible-

exposed-infectious/asymptomatic-recovered (SEIAR) model. The study reports our experience

in carrying out this syndromic surveillance in schools.

Methods

Ethics statement

ILI data collection from students was considered public health surveillance by the National

Health and Family Planning Commission of the People’s Republic of China. Verbal informed

consent was obtained from all individuals enrolled in this study. Swabs from minors were only

obtained after written, informed consent was obtained from their parents or legal guardians.

Surveillance and sampling protocols were approved by the biomedical ethical review commit-

tee of the Tianjin Centre for Disease Control and Prevention and complied with the Helsinki

Declaration of 1975, as revised in 2008.

Study area

We conducted the study at 4 schools in Hangu county, Binhai New Area, Tianjin, China, from

September 1, 2012, to December 31, 2014. The ILI incidence rate (ILI%) in local sentinel sur-

veillance hospitals from September to December 2012 was 1.99%, and ILI% increased in 2013

(2.14%) and in 2014 (2.75%). We selected 3 primary schools from a total of 6 schools and 1

high school from a total of 2 high schools in this area. The number of students per school ran-

ged from 1247 to 1798, with a total of about 6000 students in all 4 schools.

Data source and collection

Continuous monitoring of school absentees was carried out in the 4 schools. The administered

questionnaire was designed to record detailed information on students’ absences due to sick-

ness, including date of absence, the basic information on the students, the cause of the absence,

the disease or syndrome (fever including body temperature, cough, and/or sore throat), and

onset date. The questionnaire was administered by teachers, who checked if the students were
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absent, and called their parents to ask the reason for the absence. The teachers reported the

questionnaire to the school doctor in the morning. The school doctor immediately input that

information into computer and emailed the Tianjin Centre for Disease Control and Prevention

(CDC). ILI was defined as fever (� 100.4˚F or 38˚C) and cough or sore throat. The ILI inci-

dence rate (ILI%) was defined as the total ILI cases divided by the total number of students.

To verify validity of the data, local CDC workers checked the data every day, and selected

some sick students and called their parents, and compared the information with that on the

reported questionnaires.

Early alerts of influenza-like illness outbreak based on cumulative sum

CDC workers analyzed the data daily and judged whether an outbreak of ILI occurred using

CUSUM [7]. We used CUSUM control charts for ILI% to detect deviations from expected val-

ues. CUSUM can use C1, C2 and C3 algorithms, which have different sensitivities to detect

aberrations: C1 is the least sensitive and C3 is the most sensitive. The C1 algorithm is defined

as the current ILI case count over the past 7 days being�3 standard deviations (SD) greater

than the mean. The C2 algorithm is the same as C1, except the time period is shifted by 2 days

between the baseline and current day being evaluated. The C3 algorithm calculates a partial

sum for the last three days which have a positive value over the mean; like C2, the baseline

mean and SD are based on the past 7 days ILI shifted by 2 days. The aberration detection charts

display a “C3” signal when CUSUM values exceed 2 [8]. The equation of CUSUM calculation

can be written as follows [9]:

St = max(0; St-1 + ((χt − (μ0 + kσχt))/σχt)) with a decision value of St>2, where χt is the ILI, μ0

is the expected value, σxt is the standard deviation, k is the detectable shift from the mean, St is

the current CUSUM calculation, and St − 1 is the previous CUSUM calculation[11]. The out-

breaks of ILI were confirmed if CUSUM gave two continuous C3 alarms in the school-based

syndromic surveillance system within one week.

Pathogen test of influenza

Throat swab specimens of ILI patients were collected by the local CDC workers after confirma-

tion of the ILI outbreak confirmation. Specimens were stored at 4˚C and transported to the

influenza network laboratory within 48 h by local CDC staff. RT-PCR was used to subtype

respective influenza strains.

Evaluate early control measure effectiveness

Model with no intervention. A susceptible-exposed-infectious/asymptomatic-recovered

(SEIAR) model is suitable for simulating influenza transmission [12,13]. The model is

expressed by differential equations as follows:

dS=dt ¼ � bSðI þ kAÞ

dE=dt ¼ bSðI þ kAÞ � po0E � ð1 � pÞoE

dI=dt ¼ ð1 � pÞoE � gI

dA=dt ¼ po0E � g0A

dR=dt ¼ gI þ g0A

8
>>>>>>><

>>>>>>>:

ð1Þ

In these equations, S, E, I, A, and R refer to susceptible, exposed, symptomatic, asymptom-

atic, and removed individuals, respectively. dS/dt, dE/dt, dI/dt, dA/dt, and dR/dt refer to time t
and the changing rates of the S, E, I, A, and R populations, respectively. β, ω, ω0, γ, γ0, κ, and p

Outbreak detection and evaluation of a school influenza-like-illness syndromic surveillance

PLOS ONE | https://doi.org/10.1371/journal.pone.0184527 September 8, 2017 3 / 10

https://doi.org/10.1371/journal.pone.0184527


refer to transmission relative rate, incubation period relative rate, latent period relative rate,

removal rate parameter of symptomatic individuals, removal rate parameter of asymptomatic

individuals, parameter for the transmission rate of asymptomatic compared with symptomatic

individuals, and proportion of asymptomatic infections, respectively (Table 1).

Reproduction number. Reproduction numbers with and without control measures,

defined as Runc and Rcon, were employed to know the effectiveness of the interventions in each

outbreak. The reproduction number (R) is defined as the expected number of secondary infec-

tions that result from introducing a single infected individual into an otherwise susceptible

population [12–17]. If R<1, the number of infected individuals would decrease toward zero,

and the disease would therefore be gradually eliminated. In contrast, if R>1, the disease would

become more prevalent. According to the definition of R and the methods reported by Chen

et al. [12]. and Arino et al. [18], the R expression in “model (1)” is as follows:

R ¼ bS
1 � p

g
þ

kp
g0

� �

Estimation of parameters. Table 1 shows the parameter definitions and values within the

SEIAR model. The results of previously published studies showed that the mean incubation

period of influenza was 1.9 days (range 1–7 days), the mean latent period 1.2 days, the mean

infectious period 4.1 days, and asymptomatic people were half as infectious as those with influ-

enza symptoms [12,13,19]. The average proportion of asymptomatic influenza in small-scale

outbreaks was 0.14 [12]. Thus ω = 0.5263, ω0 = 0.8333, γ0 = 0.2439, k = 0.5 and p = 0.14. The

removal rate of symptomatic individuals is γ, which is the reciprocal of the duration of illness

from onset to recovery, which was obtained from a previously published study [12], where γ =

0.2342. The parameter β was solved by fitting a curve on a typical outbreak as shown in Fig 1.

Simulation methods

Berkeley Madonna 8.3.18 (University of California at Berkeley, Berkeley, USA) and Microsoft

Office Excel 2010 (Microsoft, Redmond, USA) software were employed for model simulation

and figure development, respectively. The details of model fitting methods run in Berkeley

Madonna, such as Runge-Kutta method of order 4 and root-mean-square deviation, were the

same as the ones in previous literature [12–17,20].

Results

Detected influenza outbreaks based on CUSUM

The surveillance in the four schools was carried out from September 2012 to December 2014

(S1 File). The actual surveillance was 633 days; 219 days of summer and winter vacation were

Table 1. Parameter definitions and values within the SEIAR model.

Parameter Description Unit Value Range Method

β Person—to-person contact rate 1 See text 0–1 Curve fitting

k Relative transmissibility rate of asymptomatic to symptomatic individuals 1 0.5 0–1 References[12,13,19]

ω Incubation relative rate day-1 0.5263 0.1429–1 References[1 2,13,19]

ω0 Latent relative rate day-1 0.8333 0.1429–1 References[12,13,19]

p Proportion of the asymptomatic 1 0.14 0–1 References[12]

γ Recovery rate of the infectious day-1 0.2342 0.0833–1 References[12]

γ0 Recovery rate of the asymptomatic day-1 0.2439 0.0714–1 References[12,13,19]

https://doi.org/10.1371/journal.pone.0184527.t001

Outbreak detection and evaluation of a school influenza-like-illness syndromic surveillance

PLOS ONE | https://doi.org/10.1371/journal.pone.0184527 September 8, 2017 4 / 10

https://doi.org/10.1371/journal.pone.0184527.t001
https://doi.org/10.1371/journal.pone.0184527


not included in the dataset. We counted the ILI case according to the time of onset, and not

the date of absence because the latter method will be zero during weekends and holidays. The

daily average ILI case was 1 during the monitoring periods (Table 2).

The ILI incidence rates (Table 2) in 2014 (14.51%) were higher than that in 2013 (5.27%)

and September to December 2012 (3.59%).

Ten influenza outbreaks of the four schools were detected by CUSUM (Fig 2). Among of

them, three outbreaks were reported in 2012, and seven in 2014. Seven outbreaks were caused

by A (H3N2), and other three were 2009 A (H1N1) (Table 3). We took control measures

according to the outbreak given by CUSUM, such as isolating the cases for three days, disin-

fecting the environment, and opening the window, et al.

Reproduction number and the effectiveness of interventions

Fitting a curve to the SEIAR model and the 10 outbreaks were shown to have no statistical sig-

nificance by a Chi square test (χ2< 0.15, P> 0.05) (Fig 1). The results of the curve fitting read

Fig 1. Effectiveness of early interventions during ten influenza outbreaks according to an SEIAR

model.

https://doi.org/10.1371/journal.pone.0184527.g001
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that each outbreak had high transmissibility with a median Runc of 4.62 (ranging from 2.67 to

9.45). The interventions we employed in each outbreak were highly effective, with a Rcon of 0

(Table 3).

Discussion

This study detected abnormal signals by CUSUM in the school-based ILI syndromic surveil-

lance, and a SEIAR model was fit to estimate a counterfactual influenza outbreak without con-

trol measures, which was then compared with the actual influenza outbreak to evaluate the

effectiveness of early control efforts. Ten school influenza outbreaks were detected by CUSUM

from September 2012 to December 2014. Each outbreak had high transmissibility with a

median Runc of 4.62. Our study shows that the early intervention had high effectiveness and all

Rcon were 0. Syndromic surveillance within schools can play an important role in controlling

influenza outbreak.

Table 2. Median days of ILI sickness and ILI incidence rate in four schools.

Surveillance school Type of school Total number of students Median daily number with ILI

(range)

ILI incidence rate (%)

2012 2013 2014 2012.9–12 2013 2014 2012.9–12* 2013 2014

A Primary 1438 1516 1534 2(0,10) 1(1,5) 2(0,12)a 8.97 6.93 12.13

B Primary 1713 1683 1798 1(0,7) 1(1,5) 2(0,40)a 1.81 6.24 16.35

D Primary 1247 1397 1356 1(0,5) 0(0,8) 3(1,42)a 2.57 3.22 20.28

C Middle 1454 1644 1485 0(0,5) 1(0,5) 1(0,16)a 1.24 4.56 9.16

Total 5852 6258 6139 3.59§ 5.27§ 14.51§

ILI: Influenza-like illness

*Quarterly incidence rate
§ILI Incidence rate in 2014 was higher than that in 2013 and September to December 2012. (χ2 = 298.02, p = 0.00001; χ2 =, p = 0.00001)
a The high absence occurred during an influenza outbreak.

https://doi.org/10.1371/journal.pone.0184527.t002

Fig 2. Ten influenza outbreaks within four schools detected by CUSUM.

https://doi.org/10.1371/journal.pone.0184527.g002
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Our study found that the ILI incidence rates in 2014 (14.51%) were higher than that in 2013

(5.27%) and September to December 2012 (3.59%). Another study has found that A(H3N2)

activity in China has increased since 2012, when group 3C virus was predominant; group 3C

divided into group 3C.3a in beginning of 2014 and group 3C.2a during the end of 2014 and

the beginning of 2015 [21]. People were easily infected by group C3C.2a, and 5 influenza out-

breaks at the end of 2014 were caused by A(H3N2). The big outbreaks in 2014 could have

increased the sensitivity of ILI reports and the rapid response to outbreaks in schools.

The big outbreaks at the end of 2014 mainly (72%) happened at the primary schools,

among children 7–13 years of age. Vaccination coverage in this age group was only 3.67%.

Moreover, vaccine effectiveness was low during the 2014/2015 influenza season because of vac-

cine mismatch [21].

For outbreak ID#4, the attack rate of influenza was 2.92% but Runc was 9.45. This discrep-

ancy could have resulted because teachers reported substantial absenteeism on Friday and

symptomatic students were separated on the first day of outbreaks. Subsequently, the schools

closed for the weekend. All these control measures effectively limited the spread of the

outbreak.

ILI syndromic surveillance in schools is one possible mechanism to surveillance for com-

munity influenza. Other community influenza surveillance mechanisms include ILIs in clinic

visits and pharmacy based methods, like frequency of purchasing OTC drugs. School syndro-

mic data can detect increased influenza transmission in a timely manner [22], and showed bet-

ter performance of outbreak detection compared with clinic methods and OTC drug

purchases [10]. Influenza outbreaks within schools imply transmission of influenza through-

out the community because students are connected to the community and schools. The

detected outbreaks showed real-time abnormalities in influenza incidence by time and place.

Several other studies have evaluated the effectiveness of interventions using simulated data,

This study evaluated the performance of early intervention using real outbreak data from

school syndromic surveillance, which provides a higher degree of real-world information than

simulated data [23,24].

CUSUM can be used to specify thresholds based on short-term data. The daily surveillance

data in schools were used to give a prospective alarm, which is quicker to generate an alarm

and enables immediate control measures. In this study, we found that two successive C3 sig-

nals can be a signal for a real ILI outbreak, and but only one C3 signal may be a false positive

and does not detect an outbreak with high validity [25,26]. Early intervention measures will

not only decrease the number of ILI case and the absenteeism rate for students by mitigating

the spread between students, but also reduce the cost of control measures [27].

Table 3. Information and reproduction numbers of each ILI outbreak.

Outbreak ID Reported time Influenza type Total cases Affected students Attack rate % Runc Rcon

1 2012/12/17 A(H3N2) 38 1438 2.64 2.67 0.00

2 2014/2/25 2009 A(H1N1) 36 1534 2.35 4.78 0.00

3 2014/12/15 A(H3N2) 43 1534 2.8 4.02 0.00

4 2012/12/25 A(H3N2) 50 1713 2.92 9.45 0.00

5 2014/12/5 A(H3N2) 60 1798 3.34 2.77 0.00

6 2012/12/25 A(H3N2) 27 1247 2.17 4.85 0.00

7 2014/1/2 2009 A(H1N1) 118 1356 8.7 5.83 0.00

8 2014/12/12 A(H3N2) 45 1397 3.22 4.46 0.00

9 2014/1/14 2009 A(H1N1) 27 1644 1.64 3.60 0.00

10 2014/11/15 A(H3N2) 30 1485 2.02 8.55 0.00

https://doi.org/10.1371/journal.pone.0184527.t003
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A SEIAR model was used to evaluate the effectiveness of the early interventions that used

the school-based syndromic surveillance. We compared the reproduction numbers of the

influenza outbreak with and without control measures after the CUSUM-issued warning sig-

nals. The median Runc in 10 influenza outbreaks was 4.62, and the highest Runc was 9.45 caused

by the H3N2 influenza subtype. The Rcon was near zero after an early intervention based on

CUSUM in this study. This number is lower than in a similar study which took control mea-

sures after an outbreak defined as 30 ILIs [17]. In this study, we took daily data based on onset

date, which can decrease the effect of seasonal influenza periods and weekend effect. But the

low daily case numbers of ILI cases in the syndromic surveillance system can affect detection

of aberrations, especially in the influenza off-season. Some studies have used weekly ILI data to

detect the influenza outbreaks, which does not allow for a timely response, and which delays

the best control time, and which led to further spread of influenza in the school. In the future,

we can take daily absenteeism data with more numbers to give a first alarm, and then identify

the ILI syndrome to detect the outbreak based on CUSUM. Additionally, we also could estab-

lish electronic syndromic surveillance systems in schools to detect influenza outbreaks in real

time.

Supporting information

S1 File. Raw data. Data file for one outbreak in a school.
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