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Abstract (150 words or fewer) 13 

Perceptual benefits from digital noise reduction (NR) vary among individuals with different 14 

noise tolerance and sensitivity to distortions introduced in NR-processed speech; however, the 15 

physiological bases of the variance are understudied. Here, we developed objective measures 16 

of speech encoding in the ascending pathway as candidate measures of individual noise 17 

tolerance and sensitivity to NR-processed speech using the brainstem responses to speech 18 

syllable /da/. The speech-evoked brainstem response was found to be sensitive to the addition 19 

of noise and NR processing. The NR effects on the consonant and vowel portion of the 20 

responses were robustly quantified using response-to-response correlation metrics and spectral 21 

amplitude ratios, respectively. Further, the f0 amplitude ratios between conditions correlated 22 

with behavioral accuracy with NR. These findings suggest that investigating the NR effects on 23 

bottom-up speech encoding using brainstem measures is feasible and that individual 24 

subcortical encoding of NR-processed speech may relate to individual behavioral outcomes 25 

with NR. 26 

  27 
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1. Introduction 28 

Modern hearing aids utilize noise-reduction (NR) algorithms to attenuate the noise level 29 

to help people with hearing impairment in challenging listening environments [e.g., Bentler and 30 

Chiou (2006); Bentler et al. (2008)]. Unfortunately, the NR processing typically used in hearing 31 

aids often introduces speech distortion whenever there is spectral overlap between target 32 

speech and the background noise [e.g., Arehart et al. (2013); Kates (2008)]. This drawback has 33 

been a significant concern for individuals who might perceive speech distortions more 34 

sensitively and prefer not to use NR, whereas other users find the benefit of attenuated noise 35 

outweighs such distortions and prefer to use NR (Brons, Dreschler, et al., 2014; Brons, Houben, 36 

et al., 2014; Neher, 2014; Neher et al., 2014; Neher & Wagener, 2016; Neher et al., 2016). 37 

However, little is known about the physiological mechanisms underlying this individual 38 

variability. The current study focused on subcortical speech encoding in the presence of noise 39 

and investigated the effect of NR in the ascending auditory pathway. 40 

Subcortical auditory processing varies even among individuals with normal hearing 41 

(Bharadwaj et al., 2022; Bharadwaj et al., 2019; Bharadwaj et al., 2015; Moore, 2008; Picton, 42 

2013; Plack et al., 2014; Ruggles et al., 2011). As a measure of subcortical auditory function, the 43 

scalp-recorded auditory brainstem response (ABR) provides non-invasive insights into the 44 

ascending auditory system’s ability to encode and process sounds (Felix et al., 2018; Hall, 1992; 45 

Krishnan, 2023). Several studies have shown that speech-evoked ABR using brief syllables such 46 

as /da/, or ABR to complex sounds (cABR), can be a sensitive tool to probe the fidelity with 47 

which an individual’s ascending auditory system encodes the spectrotemporal features of 48 

speech sounds (BinKhamis, Léger, et al., 2019; Easwar et al., 2020; Kraus & Nicol, 2005; Nuttall 49 
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et al., 2015; Skoe & Kraus, 2010), with strong correlations observed between characteristics of 50 

speech-evoked ABRs and behavioral outcomes in noise (Anderson & Kraus, 2010; Anderson et 51 

al., 2013; Bidelman & Momtaz, 2021; Hornickel et al., 2009; Parbery-Clark et al., 2009). Further, 52 

speech-evoked ABR has significant potential as an objective aided outcome measure (Anderson 53 

& Kraus, 2013; Easwar et al., 2023; Easwar et al., 2015; Jenkins et al., 2018; Karawani et al., 54 

2018). 55 

Few studies have utilized speech-evoked ABR to evaluate an individual's physiological 56 

reaction to signal processing schemes employed in hearing aids, such as NR. The literature has 57 

documented that the effects of background noise on the subcortical processing of speech 58 

sounds significantly differ among individuals [e.g., Parbery-Clark et al. (2009); Song et al. (2011); 59 

Wong et al. (2007)]. Nevertheless, in investigating the physiological reaction to NR-processed 60 

speech, an additional layer of complexity arises because of potential spectral distortions 61 

induced by NR, in addition to attenuated noise levels (Kim et al., 2024; Kim, Schwalje, et al., 62 

2021; Kim et al., 2022). Recent studies investigated these mixed effects of NR on cortical 63 

representations of target speech in the presence of noise (Alickovic et al., 2020; Alickovic et al., 64 

2021; Kim et al., 2022). However, ABR measures have the advantage of evaluating the 65 

physiological processing of speech sounds in the early sensory portion of the auditory pathway 66 

while being relatively unaffected by top-down processes such as attentional modulation 67 

(Figarola et al., 2023; Varghese et al., 2015), and thus more readily applicable in the audiology 68 

clinic (BinKhamis, Léger, et al., 2019; Jafari et al., 2015; Rocha-Muniz et al., 2014).  69 

The current study utilized brainstem responses to speech syllable /da/ to investigate the 70 

effect of NR on speech encoding in the ascending auditory pathway and relationship to 71 
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behavioral outcomes. We hypothesized that temporal and spectral characteristics of speech-72 

evoked ABR are sensitive to the addition of noise and NR processing and that such subcortical 73 

index relates to behavioral outcomes with NR. 74 

2. Results 75 

2.1 Response-to-response Correlations 76 

Correlation coefficients calculated from the consonant portions of brainstem responses 77 

(5-60 ms) were compared (Figure 1A) across different stimulus conditions. Paired t-tests 78 

showed that a greater degree of similarity was revealed between brainstem responses in the 79 

NR condition compared with quiet than the responses in the noise condition compared with 80 

quiet (t(25) = -3.93, p < 0.001; noise-to-quiet: mean = 0.14, SD = 0.083; NR-to-quiet: mean = 81 

0.25, SD = 0.096) (Figure 1B). This result suggests that the effect of NR on the brainstem 82 

response can be robustly quantified using response-to-response correlation metrics and that 83 

NR reduces the degradative effect of noise on the responses. 84 

 85 
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Figure 1. A. Auditory brainstem response waveforms in three conditions with shaded regions 86 

indicating the consonant portion of the response (5-60 ms). B. The noise reduction (NR)-to-87 

quiet correlation was significantly greater than the noise-to-quiet correlation (t(25) = -3.93, p < 88 

0.001), suggesting the role of NR in limiting the degradative effect of noise. ***: significant at p 89 

< 0.001. 90 

 91 

2.2 Spectral Encoding 92 

The amplitude spectrums resulting from the fast Fourier transform performed on the 93 

vowel portions of the response (60-180 ms) were compared (Figure 2A) across different 94 

conditions. For f0, paired t-test results showed that spectral amplitude in the NR condition 95 

compared with quiet was significantly greater than the amplitude in the noise condition 96 

compared with quiet (t(25) = -3.57, p = 0.0015; noise-to-quiet ratio: mean = 0.78, SD = 0.35; NR-97 

to-quiet ratio: mean = 1.11, SD = 0.54) (Figure 2B left panel). For upper harmonics (H2-H10), no 98 

significant difference was revealed between the NR-to-quiet and noise-to-quiet amplitude 99 

ratios (t(25) = -1.84, p = 0.078; noise-to-quiet ratio: mean = 0.77, SD = 0.095; NR-to-quiet ratio: 100 

mean = 0.82, SD = 0.12) (Figure 2B right panel). This result suggests that spectral amplitude 101 

ratios of brainstem responses between conditions are sensitive to NR effects (especially f0 102 

amplitude) and that NR processing can lead to enhanced spectral encoding in noise.  103 
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 104 

Figure 2. A. Fast Fourier transform of the vowel portions of the response (60-180 ms) with the 105 

bar graphs indicating resulting spectral amplitudes in three conditions for f0 and upper 106 

harmonics (H2-H10), respectively. B. The noise reduction (NR)-to-quiet amplitude ratio for f0 107 

was significantly greater than the noise-to-quiet ratio (t(25) = -3.57, p = 0.0015), indicating that 108 

NR processing may enhance encoding of f0 in noise. **: significant at p < 0.01, n.s.: not 109 

significant. 110 

 111 

2.3 Relationship between Brainstem Measures and Behavioral Outcomes 112 

At the individualized SNR level (-6 to -11 dB, median: -8 dB) measured through an 113 

adaptive test, behavioral accuracy was obtained in the noise condition (mean = 58.58%, SD = 114 

7.67%). The SNR levels provided to the individual listeners were deemed adequate for targeting 115 

the midpoint (62.5%) of the psychometric function relating to SNR and accuracy, with the 116 

chance level at 25%. The mean accuracy in the NR condition was 58.31% (SD = 5.64%), which 117 

indicated that NR processing did not improve speech-in-noise performance (paired t-test: t(25) 118 

= 0.24, p = 0.81), consistent with the literature [e.g., Alcántara et al. (2003); Bentler et al. 119 

(2008); Ricketts and Hornsby (2005)]. 120 
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Pearson correlation analyses were used to investigate whether the effects of noise and 121 

NR processing on brainstem responses predicted behavioral accuracy. A change in r-value from 122 

correlations between responses to the consonant (i.e., NR-to-quiet minus noise-to-quiet 123 

correlations) was not related to behavioral accuracy in the NR condition (r= 0.040, p = 0.85) 124 

(Figure 3A left panel) and in the noise condition (r = 0.17, p = 0.41). A change in spectral 125 

amplitude ratios for f0 (i.e., NR-to-quiet minus noise-to-quiet ratio) significantly correlated with 126 

accuracy in the NR condition (r = 0.48, p = 0.013) (Figure 3A right panel), whereas upper 127 

harmonics (H2-H10) did not (r = 0.21, p = 0.31). Neither the encoding of f0 (r = 0.36, p = 0.069) 128 

nor the upper harmonics (r = 0.073, p = 0.72) correlated with accuracy in the noise condition. A 129 

post hoc two-sample t-test showed that NR benefits in f0 encoding (i.e., NR-to-quiet minus 130 

noise-to-quiet ratio) were more salient in the better performance group (i.e., a group with 131 

accuracy in the NR condition greater than the mean: 58.31%) than the other (t(19.77) = 132 

3.23, p = 0.0042) (Figure 3B). These results suggest that better encoding in f0 with NR captured 133 

by brainstem measures is associated with better behavioral outcomes with NR. 134 

 135 

Figure 3. A. A comparison between brainstem measures and behavioral outcomes shows that 136 

the f0 amplitude ratio predicts behavioral accuracy with noise reduction (NR). B. Illustration of 137 

differences in spectral encoding revealed in the fast Fourier transform results between two 138 

performance groups divided based on accuracy with NR. 139 

 140 
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3. Discussion 141 

The temporal and spectral metrics derived in the current study from the speech ABR 142 

were effective in capturing NR effects on subcortical speech encoding, indicating their 143 

sensitivity and feasibility. The significant correlation between the f0 amplitude ratios and 144 

behavioral accuracy with NR suggests that the individual subcortical encoding of NR-processed 145 

speech sounds influences individual behavioral outcomes related to NR processing. Our findings 146 

align well with evidence emphasizing the role of subcortical sources in accounting for individual 147 

variability in speech-in-noise perception (Bidelman & Momtaz, 2021; Gorina-Careta et al., 2021; 148 

White-Schwoch et al., 2022) and illustrating potential applications of speech-evoked ABR or 149 

envelope following response (EFR) as an objective aided outcome measure (Anderson & Kraus, 150 

2013; Easwar et al., 2023; Easwar et al., 2015; Jenkins et al., 2018; Karawani et al., 2018). 151 

Indeed, the speech-evoked has been tested in clinical applications in recent studies with adult 152 

hearing aid users, although they did not report NR effects on brainstem responses and found no 153 

correlation between speech-evoked ABR characteristics (e.g., f0 amplitude) and behavioral 154 

outcomes (BinKhamis, Elia Forte, et al., 2019; Perugia et al., 2021; Seol et al., 2020). The current 155 

study suggests that our ABR paradigm has the potential to be an objective measure of 156 

individual noise tolerance and sensitivity to NR-processed speech and a reliable predictor of 157 

behavioral outcomes with NR. 158 

Our findings show that individual variations in peripheral and/or subcortical physiology 159 

contribute to individual differences in preferences related to NR processing. Indeed, individual 160 

variations in the peripheral encoding of complex sounds can arise from a range of overt and 161 

hidden forms of sensorineural hearing loss (Hauser et al., 2024). For instance, in people with 162 
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mild-to-moderate hearing loss who are typical candidates for hearing aid use, individual 163 

variability and suprathreshold hearing deficits may stem from reduced cochlear sensitivity and 164 

reduced frequency selectivity (Henry & Heinz, 2012; Horst, 1987; Liberman & Dodds, 1984; 165 

Moore, 2007) as well as cochlear deafferentation (Bharadwaj et al., 2014; Kujawa & Liberman, 166 

2009), potentially leading to significant differences in subcortical encoding fidelity among 167 

individuals. Further, emerging evidence indicates that peripheral hearing damage also induces 168 

distorted cochlear tonotopy, where hypersensitive cochlear tuning curve tails allow low-169 

frequency sounds to commandeer the temporal response of the basal half of the cochlea  170 

(Bharadwaj et al., 2024; Henry et al., 2016; Henry et al., 2019; Parida & Heinz, 2022). Lastly, 171 

although the scalp-recorded brainstem response to speech stimuli is generally assumed to be 172 

unaffected by cortical generators [see a review from Chandrasekaran and Kraus (2010)], given 173 

that NR effects in the current study were observed at 100 Hz (f0), some contribution from 174 

cortical and non-sensory cognitive variables is also possible (Forte et al., 2017; Hoormann et al., 175 

2004; Lehmann & Schönwiesner, 2014). Future work should explore how variations in 176 

subcortical encoding interact with individual differences in cognitive processes, such as auditory 177 

selective attention (Kim, Emory, et al., 2021; Shim et al., 2023), in ultimately determining 178 

behavioral outcomes.  179 
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4. Methods 180 

4.1 Participants 181 

Twenty-six adults (3 male, 12%) with normal hearing participated in the experiments. All 182 

participants were native speakers of American English, with air-conduction thresholds no 183 

greater than 20 dB HL at any frequencies, tested in octaves from 250 up to 8000 Hz, and their 184 

ages ranged from 19 to 41 years (mean = 24.54 years, SD = 5.01 years). All study procedures 185 

were conducted at Purdue University and were reviewed and approved by the Purdue 186 

University Institutional Review Board. All work was carried out following the Code of Ethics of 187 

the World Medical Association (Declaration of Helsinki), and written informed consent was 188 

obtained for everyone. 189 

4.2 Stimuli and Procedures 190 

4.2.1 Speech-evoked ABR Test 191 

The current study followed well-established procedures of Parbery-Clark et al. (2009) 192 

unless otherwise noted. We used the speech syllable /da/ constructed using the KlattGrid 193 

speech synthesizer (Klatt, 1980). The speech syllable was 170 ms long with 5 ms onset and 194 

offset ramps and had an average fundamental frequency (f0) of 101 Hz (100 to 106 Hz). During 195 

the first 50 ms formant transition period, the first, second, and third formants changed from 196 

482 to 765 Hz, 2046 to 1131 Hz, and 2695 to 2483 Hz, respectively, but stabilized for the 197 

following 120 ms steady-state (vowel) portion of the stimulus. The fourth, fifth, and sixth 198 

formants remained constant at 3626, 4060, and 5249 Hz, respectively. The acoustical 199 

characteristics described above were estimated by Praat (Boersma, 2001). Speech-shaped noise 200 
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generated using a 512-order finite impulse response filter was added to the speech syllable for 201 

the noise and NR conditions. 202 

The speech syllable was presented at 90 dB SPL monoaurally to the better ear, chosen 203 

based on pure-tone air conduction threshold averaged across 0.5, 1, 2, and 4 kHz, through 204 

insert ER-2 earphones (Etymotic Research, Elk Grove, IL). In the noise and the NR conditions, 205 

the speech syllable was presented at a +3 dB SNR over speech-shaped noise that started 40 ms 206 

before the syllable onset and continued until 40 ms after the syllable offset. Thus, the overall 207 

250 ms long stimulus was presented in alternating polarities with an interstimulus interval of 40 208 

ms. Speech-evoked ABR was recorded at a 16 kHz sampling rate using the BioSemi ActiveTwo 209 

32-channel system (BioSemi B.V., Amsterdam, the Netherlands) in the international 10-20 210 

layouts over 3000 sweeps for each of three experimental conditions (i.e., quiet, noise, and NR 211 

conditions). The magnitude of offset voltages was adjusted to be less than ±30 mV at each 212 

electrode before the beginning of data collection. Participants watched muted, captioned 213 

videos during the tests conducted in a single-walled, sound-treated booth (IAC Acoustics, 214 

Naperville, IL) through a computer monitor placed at zero-degree azimuth a half-meter distance 215 

from their eye level. The recordings spanned around 45 minutes and were controlled by custom 216 

scripts implemented in MATLAB (R2016b, the MathWorks, Natick, MA). 217 

All EEG recordings were re-referenced to two earlobe electrodes and bandpass filtered 218 

from 70 to 2000 Hz (12 dB/octave with zero-phase shift). Trials with activity greater than ±35 219 

µV were considered artifacts and removed from the analysis. Epochs were generated from -10 220 

to 190 ms relative to the onset of the speech syllable /da/ and baseline-corrected relative to 221 
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mean activity in the pre-syllable period. In the current study, only single-channel analyses were 222 

conducted using the Cz electrode at the vertex. 223 

4.2.2 Speech-in-noise Test 224 

The Iowa Test of Consonant Perception was administered to assess the perception of 225 

consonant-vowel-consonant monosyllabic English words embedded in speech-shaped noise 226 

(Geller et al., 2020). Participants were tested in the same environment described above (i.e., 227 

participants tested in a sound booth, stimuli presented monoaurally through an insert ER-2 228 

earphones, and tasks controlled in MATLAB). 229 

Each trial started with the screen indicating a trial number in silence for 0.5 seconds, 230 

then switched to the screen with a fixation cross ('+') in the center to fix eye gaze during stimuli 231 

presentation to minimize eye-movement artifacts. Half a second after the cross symbol 232 

occurred on the screen, background noise started and continued for 1.5 seconds. The target 233 

word was presented 0.5 seconds after the noise onset. The composite stimulus was presented 234 

at 80 dB SPL. After the stimuli presentation, the participants were required to select one 235 

answer out of four choices shown on the screen using a keypad. For instance, for the target 236 

word sat, four answer options were provided: sat, pat, fat, and that. No feedback was provided 237 

during the experiment. 238 

The current study targeted the threshold level for closed-set tests (i.e., 62.5% accuracy, 239 

halfway between the chance level of 25% and 100%). Kim et al. (2022) used an adaptive test 240 

with the two-down, one-up staircase procedure to find the SNR level targeting 70% accuracy 241 

(i.e., speech reception threshold, SRT-70) in the first 50 trials and reported that in listeners with 242 
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normal hearing, the SNR level 3-dB lower than the SRT-70 led to mean accuracy of 62.4%. The 243 

present study followed the procedures from Kim et al. (2022); for the first 50 trials, the 244 

adaptive test was used to find the SRT-70 for individual listeners, and then the SNR level 3-dB 245 

lower than the SRT-70 was given to them in the following two experimental conditions: the 246 

noise and NR conditions. One hundred ten words were presented in each condition using word 247 

sets balanced across speaker gender and initial phonemes and randomly assigned to each 248 

condition.  249 

4.3 NR Algorithm 250 

In the NR conditions for both the speech-evoked ABR test and speech-in-noise test, the 251 

current study used the Ephraim-Malah NR algorithm, a modified spectral-subtraction NR that 252 

applies different gain across frequency channels in each short-time frame based on SNR 253 

estimation using a minimum mean-square error estimator (Ephraim & Malah, 1984). The 254 

Ephraim-Malah NR algorithm has relatively low computational complexity and thus has been 255 

implemented in modern digital hearing aids [e.g., Sarampalis et al. (2009); Stelmachowicz et al. 256 

(2010)]. 257 

Figure 4 upper panel illustrates spectra of speech and noise stimuli from the speech-258 

evoked ABR tests extracted using the phase-inversion technique (Hagerman & Olofsson, 2004): 259 

inverting the noise phase before processing two noisy signals through NR. The NR algorithm in 260 

the present study improved the SNR by approximately 2.5 dB based on the long-term RMS level 261 

of those extracted speech and noise stimuli. Figure 4 lower panel shows magnitude-squared 262 

coherence up to 8 kHz for two speech stimuli (i.e., unprocessed vs. NR-processed speech stimuli 263 
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extracted from the phase-inversion technique) where coherence value zero indicates that input 264 

and output power spectra are not identical at all, whereas value one means they are entirely 265 

identical (Kay, 1988). The coherence value averaged across 8 kHz was at around 0.3 between 266 

speech stimuli from the speech-evoked ABR tests. For monosyllabic words used for speech-in-267 

noise tests in the present study, approximately 3.5-dB benefit in SNR and average coherence at 268 

around 0.6 were reported by Kim et al. (2022).  269 

 270 

Figure 4. The upper panel shows spectra of speech and noise stimuli for the speech-evoked 271 

auditory brainstem response (ABR) tests. Noise reduction (NR)-processed stimuli were 272 

extracted using the phase-inversion technique. The lower panel illustrates the magnitude-273 

squared coherence across frequencies between unprocessed and NR-processed speech stimuli 274 

for the ABR tests. 275 

 276 

4.4 Statistical Analysis 277 

Response-to-response Correlations 278 
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Cross-correlation analyses were conducted to examine the effects of noise and NR on 279 

the consonant portion of brainstem responses (5-60 ms). Specifically, brainstem responses in 280 

both NR and noise conditions were compared to the responses in quiet, respectively. Given that 281 

adding noise or NR may delay the responses relative to the responses in quiet, the response 282 

waveforms in noise and NR conditions were shifted in time by up to 2 ms until reaching the 283 

maximum correlation coefficient (a Pearson's r value) (Parbery-Clark et al., 2009). A pair of 284 

correlation coefficients were compared: noise-to-quiet vs. NR-to-quiet.   285 

Spectral Encoding 286 

Fast Fourier transform analysis was conducted on the vowel portions of the response 287 

(60-180 ms) in the same manner as described by Parbery-Clark et al. (2009) to assess the effect 288 

of noise on spectral encoding to the vowel portions of the speech syllable and to examine if NR 289 

processing enhances spectral encoding in noise. The strength of harmonic representation (100-290 

1000 Hz) with the first harmonic corresponding to the stimulus f0 (100 Hz) was quantified by 291 

summing spectral amplitudes across frequency bins that are 20-Hz wide and centered on each 292 

of the ten harmonics. Aside from calculating the f0 spectral amplitude, spectral amplitudes for 293 

the 2nd to 10th harmonics were combined to represent the strength of overall spectral 294 

encoding to the subsequent harmonics. NR-to-quiet and noise-to-quiet amplitude ratios were 295 

calculated and compared for f0 and upper harmonics, respectively. 296 

Relationship between Brainstem Measures and Behavioral Outcomes  297 

The relationship between the brainstem measures described above, correlations 298 

between responses to the consonant and spectral amplitude ratios for the vowel portion of the 299 
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response, and behavioral outcomes were assessed using Pearson correlation analysis. 300 

Specifically, the correlation analyses investigated if a change in r-value from response-to-301 

response metrics and a change in spectral amplitude ratios correlate with behavioral accuracy, 302 

respectively. A post hoc two-sample t-test was conducted to compare NR benefits (or lack 303 

thereof) in f0 encoding between two participant groups divided based on accuracy with NR: 304 

one group with accuracy greater than the mean vs. the other group with accuracy less than the 305 

mean. 306 

  307 
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