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A B S T R A C T

It has been said that COVID-19 is a generational challenge in many ways. But, at the same time, it becomes a
catalyst for collective action, innovation, and discovery. Realizing the full potential of artificial intelligence (AI)
for structure determination of unknown proteins and drug discovery are some of these innovations. Potential
applications of AI include predicting the structure of the infectious proteins, identifying drugs that may be
effective in targeting these proteins, and proposing new chemical compounds for further testing as potential
drugs. AI and machine learning (ML) allow for rapid drug development including repurposing existing drugs.
Algorithms were used to search for novel or approved antiviral drugs capable of inhibiting SARS-CoV-2. This
paper presents a survey of AI and ML methods being used in various biochemistry of SARS-CoV-2, from structure
to drug development, in the fight against the deadly COVID-19 pandemic. It is envisioned that this study will
provide AI/ML researchers and the wider community an overview of the current status of AI applications
particularly in structural biology, drug repurposing, and development, and motivate researchers in harnessing AI
potentials in the fight against COVID-19.
1. Introduction

The novel coronavirus disease (COVID-19) has become an unprece-
dented public health crisis affecting people's lives and causing a large
number of deaths. Till June 2021, over 178 million confirmed cases was
reported worldwide with more than 3.88 million deaths reported (https
://covid19.who.int/). The numbers of infections and death are still
increasing. With the continued growth of the COVID-19 pandemic, sci-
entists and healthcare providers worldwide are working to better
comprehend, alleviate, and suppress its spread. The usual symptoms of
COVID-19 are pneumonia, shortness of breath, dry cough, tiredness, and
fever (Huang et al., 2020a) along with several neurological complications
(Khatoon et al., 2020). SARS-CoV-2 is a positive-sense single-stranded
RNA virus consisting of ~30 kb genome encoding for four main struc-
tural proteins including spike (S) glycoprotein, small envelope (E)
glycoprotein, membrane (M) glycoprotein, and nucleocapsid (N) protein,
in addition to the sixteen non-structural proteins (NSPs) (Wu et al., 2020;
Lu et al., 2020). These viral proteins have a specific role in the life cycle
and pathogenicity of the virus and a complete understanding of their
structure and function is essential for drug discovery.

The power of artificial intelligence (AI) approaches has been
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attributed to a wide range of applications across public health, disease
prediction, and drug development. Fuchs in 2020 (Fuchs et al., 2020)
elegantly summarized the role of AI in the current COVID-19 pandemic in
six major areas, including early predictions and alerts, tracking, data
dashboards, diagnosis and prognosis, treatments, and social control. Over
the past decade, AI-based models have revolutionized drug discovery in
general (Fleming, 2018; Lavecchia, 2019). Machine learning (ML), a
subset of AI, has enabled the generation of models that can learn and
study the patterns present in data and can make inferences from a large
number of test data. With the advent of deep learning (DL), the automatic
feature extraction from raw data leads to an increase in performance
compared to other computer-aided models (Chen et al., 2018; Zhavor-
onkov et al., 2019). Different DL algorithms were utilized in fighting the
COVID-19 pandemic including artificial neural network (ANN), con-
volutional neural network (CNN), and long short-term memory (LSTM).

The recent applications of AI in the case of COVID-19 include the
virtual screening of both repurposed drugs as well as new chemical en-
tities (Fig. 1) (Keshavarzi ArshadiWebb et al., 2020; Zhou et al., 2020a;
Mottaqi et al., 2021; Piccialli et al., 2021). ML-based molecular docking
has been utilized extensively for virtual screening and drug repurposing.
This approach requires the following information: (a) dataset of
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Fig. 1. The pipeline of AI and ML-based platforms for drug discovery and drug repurposing in COVID-19. The structural proteins of the SARS-CoV-2 were targeted
through the drugs/small molecules present in different databases for drug repurposing and drug development. Drug repurposing can be feasible through virtual
screening and structure-based molecular docking utilizing ML/DL approaches. De novo drug designing or drug discovery against the selected targets can be achieved
through various generative approaches including Generative Adversarial Networks (GAN) and variational autoencoders (VAE).
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approved drugs or drug-like molecules, (b) three-dimensional structure
of the protein target, and (c) molecular docking software or program. The
molecular docking-based studies allow the identification of several
chemical molecules that binds to different SARS-CoV-2 proteins and thus
can potentially inhibit viral replication and growth (Fig. 1).

In addition, DL-based applications have been the main focus for drug
repurposing research, as their automatic feature extraction accelerates
the process of drug discovery (Fig. 1). The application of DL has
benefitted the de novo drug design approaches. The current design
approach utilizes state-of-the-art DL models such as Generative Autoen-
coders (GAE) and Generative Adversarial Networks (GAN) to generate
data-based molecules (Wrapp et al., 2020). More recent approaches use
generative models such as variational autoencoders (VAE) to generate
sequences of atoms (Fig. 1). This approach allows the creation of unique
drug molecules with greater diversity (Griffiths and Hernandez-Lobato,
2020). These autoencoders instruct molecules into a vector that cap-
tures properties such as bond order, element properties, and functional
group (Zhang and Lu, 2019; Baucum et al., 2020). To design a
drug-generative network, the information about (a) collection of
2

drug-like molecules, (b) a feature-representation of these molecules in
silico, (c) method to increase the diversity of the molecules, and (d)
screening and modification of the altered molecules, are important
(Fig. 1).

AI, in the field of computational biology and medicine, has been used
to partially understand COVID-19 to discover drugs against the SARS-
CoV-2 virus (Alimadadi et al., 2020; Mei et al., 2020; Ke et al., 2020;
Nguyen, 2020). Equipped with a strong computational power to deal
with large amounts of data, AI can help scientists to expand their
knowledge about the coronavirus quickly. For example, by determining
the protein structures of the virus, researchers would be able to find the
machinery necessary for designing a drug or vaccine more accurately and
effectively. The application of AI and its subsets are crucial for the current
pandemic situation and rapid discovery of drugs against COVID-19 for
several key reasons. The automatic feature extraction ability of DL can
support models with better accuracy and reliable results. Also, the
generative ability demonstrated by DL models can be largely exploited to
create small molecule drugs and better epitope prediction, minimizing
the chances of failure in trial experiments. Thus, the use of AI is essential
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to find out potential drugs against COVID-19 in time and accurately.
In this review, we provide a survey of AI-based models for COVID-19

drug discovery and structure biology of SARS-CoV-2 proteins, that will
provide rapid and cost-effective therapeutic interventions in COVID-19.
We propose that these AI-based technological advances are in utmost
need during the COVID-19 global pandemic.

2. Methodology

The systematic literature search and analysis was done through the
Dimensions database (https, 2020) in accordance with PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines (Liberati et al., 2009). Dimensions is the most comprehen-
sive database developed by digital science with the help of over 100
leading research organizations, worldwide. This database provides ac-
cess to various contents ranging from publications to grants, funding
agencies, clinical trials, patents, datasets, and policy documents.

The literatures were retrieved from the dimensions database using
search keywords with “OR/AND” operators. Keywords include “COVID-
19”, “SARS-CoV-2”, “drug repurposing”, “drug repositioning”, “artificial
intelligence”, “machine learning”, “deep learning”, and “neural net-
works”. The study period was restricted from January 1, 2020, to March
31, 2021. A staged literature search was performed for the first section of
this systematic review and all the relevant studies were identified based
on the set of inclusion/exclusion criteria and summarized narratively.
Studies were included if they reported outcomes on any results on drug
Fig. 2. PRISMA flow diagram for the systematic review of the role of
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repurposing or drug discovery to COVID-19 utilizing AI/ML approaches.
Whereas, the editorials, commentary, survey, and narrative reviews on
AI/ML were excluded. The article selection for this review followed the
three-stage analysis. The first stage analysis considered only the titles and
abstracts of the articles to extract relevant articles. The second stage
analysis enables the selection of articles based on the introduction and
conclusion to further refine the selection in the first stage. At the third
and final stage of analysis, articles were explored thoroughly and selected
in terms of their relevance to the review aim. The article was selected if it
reported an empirical application of AI/ML in drug repurposing or drug
discovery to COVID-19.

3. Results

A total of 8841 articles were identified in the Dimensions database
with the search term: “COVID-19” OR “SARS-CoV-2” AND (machine
learning OR artificial intelligence OR deep learning OR neural network).
After adding “drug repurposing” in the search term i.e., “COVID-1900 OR
“SARS-CoV-200 AND (machine learning OR artificial intelligence OR deep
learning OR neural network) AND (drug repurposing), a total of 516
articles were found (Fig. 2). Out of these 516 articles, most of the articles
were posted on an open-access online pre-print server and the publica-
tions cover mainly the field of medical and health sciences and services.
In the initial analysis where the titles and abstracts were considered, 427
were excluded because they were not related to the drug repurposing
work using the AI. The full text of the remaining 89 studies was then
AI/ML in drug repurposing and drug development for COVID-19.
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analyzed; and finally, 26 studies met the final inclusion criteria, and were
included in our study. Fig. 2 shows the total number of articles obtained
from the Dimensions database and the final number of articles considered
for the research after applying all the inclusion/exclusion criteria.
Table 1 summarizes the findings of these studies.

3.1. AI/ML-based methods in COVID-19 drug repurposing and drug
discovery

AI-based drug discovery and drug repurposing have been much
publicized as an effective approach to accelerate the drug discovery
process (Zhou et al., 2020b; Prasad et al., 2020; Abbasi, 2020; Richardson
et al., 2020; Ge et al., 2020; Hong et al., 2019; Beck et al., 2020). Broadly,
AI can be very useful for initial drug discovery in two main ways, one is
through screening millions of chemical compounds available in different
databases for potential drugs in simulation tests, and the other is to
identify novel drugs that can latch onto the targets, to reduce their
infectivity. The strategy of drug repurposing comes out as a powerful
solution for COVID-19 (Zhou et al., 2020a, 2020b; Prasad et al., 2020;
Abbasi, 2020). Within a month after the first COVID-19 report in China,
two independent groups have used AI in different ways to find possible
treatments for the SARS-CoV-2. Scientists from the AI drug discovery
company BenevolentAI and Imperial College London utilized their
Table 1
Summary of important AI and ML-based studies for drug repurposing and drug devel

Author Study keywords Targets

Ke, Y. Y Deep neural network FIP
Ge, Y Knowledge Graph, deep learning SARS-CoV-2
Beck, B. R Hybrid CNN and RNN model called MT-DTI 3CLpro, RdRp, hel

endoRNAse, and 2
Zeng, X Deep learning-based knowledge graph

(CoV-KGE),
SARS-CoV-2

Gao, K 2-D fingerprint, GBDT model, Recurrent
Neural Network (RNN)

3CLpro

Hofmarcher, M Deep neural network, ChemAI 3CLpro, PLP
Ton, A. T deep learning platform – Deep Docking (DD) Mpro
Hu, F Deep learning-based multi-task models,

Classification and Regression
3CLpro

Gysi, D.M Graph Neural Network SARS-CoV-2
Huang, K Deep Purpose, Python toolkit, CNN 3CLpro
Batra, R Random forest (RF) regression algorithm,

ensemble docking
S, S-ACE2 complex

Redka, D.S Deep learning, Ligand Design, MatchMaker,
PolypharmDB

3CLpro, Spike; AC

Zhang, H Dense fully CNN (DFCNN), DL, Virtual
screening

3CLpro

Nguyen, D. D Mathematical Deep Learning (MathDL),
CNN

3CLpro

Artigas, L Therapeutic Performance Mapping System
(TPMS), ANN, GUILDify

SARS-CoV-2 intera

Mahapatra, S ML, Naïve Bayes classification algorithm,
molecular docking

3CLpro

Blasiak, A IDentif.AI, orthogonal array composite
design (OACD, drug–dose relationships

SARS-CoV-2

Chakravarty, K BIOiSIM, in silico simulation, and modeling ACE2, Spike prote

Zhavoronkov, A Deep learning-based generative model,
AAE, GENTRL

3CLpro, Mpro

Bung, N Deep neural network, New Chemical
Entities (NCE)

3CLpro

Tang, B Advanced deep-Q learning network with the
fragment-based drug design (ADQN-FDNN)

3CLpro

Chenthamarakshan,
V

Deep learning-based generative model,
CogMol, VAE

Mpro, Spike, NSP9

Delijewski, M MACCS fingerprints, deep learning,
gradient-boosted tree learning

3CLpro

Laponogov, I Corona-AI, DreamLab App platform,
Kowalewski, A Machine learning, SVM, REF 65 host SARS-CoV

Cantürk, S ANN, long-short term memory network
(LSTM), CNN

SARS-CoV-2
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in-house developed algorithms to mine the data and find the enzyme,
adaptor-associated protein kinase 1 (AAK1) as a possible target for the
COVID-19. The program then reported Baricitinib as one of the best in-
hibitors out of 378 known AAK1 inhibitors (Richardson et al., 2020).
Baricitinib is an approved drug against rheumatoid arthritis.

Ge et al. (2020) identified CVL218, a promising PARP1 (Poly
(ADP-Ribose) Polymerase 1) inhibitor through a Natural Language Pro-
cessing (NLP) model. Here, a Biomedical Entity Relation Extraction
(BERE) approach (Hong et al., 2019) was applied to the PubMed database
and filtered after searching the term - candidate drug compounds,
coronaviruses, or the related proteins. Beck et al. (2020) have utilized
their pre-trained deep learning-based drug-target interaction model
known as Molecule Transformer-Drug Target Interaction (MT-DTI) to
identify FDA-approved antivirals against SARS-CoV-2 proteins (the
3CLpro, RdRP, helicase, 30-to-50 exonuclease, endoRNAse, and 20-O-ribose
methyltransferase). This model exploited simplified molecular-input
line-entry system (SMILES) strings and amino acid sequences as 1D
string inputs and thus can be easily applied to target proteins that do not
have any 3D structures.

Another research group used a knowledge graph (KG) based deep
learning method for drug repurposing in COVID-19 and termed as CoV-
KGE (Zeng et al., 2020). The authors utilized a DL approach, RotatE,
developed by Amazon supercomputing resource, AWS-AI (Wang et al.,
opment in COVID-19.

No. of drugs Reference

80 Ke et al. (2020)
64 Ge et al. (2020)

icase, 30-to-50 exonuclease,
0-O-ribose methyltransferase

3410 Beck et al. (2020)

41 Zeng et al. (2020)

40 Gao et al. (2020)

20 Hofmarcher et al. (2020)
1000 Ton et al. (2020)
10 Hu and Jiang (2020)

77 Gysi et al. (2020)
13 Huang et al. (2021)
187 Batra et al. (2020)

E2, TMPRSS2, Cathepsin B 30 Redka et al. (2020)

þ100 drugs & 20 peptides Zhang et al. (2020a)

15 Nguyen et al. (2020)

ctome 12 Artigas et al. (2020)

10 Mahapatra et al. (2020)

12-drug set, over 530,000
drug combinations

Blasiak et al. (2021)

in >2000 Chakravarty et al. (2021)

1000 Zhavoronkov et al.
(2020)

31 Bung et al. (2020)

47 Tang et al. (2020)

3000 Chenthamarakshan et al.
(2020)

~290000 Delijewski and Haneczok
(2021)

52 Laponogov et al. (2021)
-2 targets þ10 million Kowalewski and Ray

(2020)
12 Cantürk et al. (2020)
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2019) to construct a KG from 24 million PubMed publications and
DrugBank. This comprehensive KG includes 15 million edges across 39
types of relationships connecting drugs, diseases, genes/proteins, path-
ways, and expression profiles. Subsequently, a DL approach (RotatE in
DGL-KE) was used to provide high-confidence drug candidates for drug
repurposing. The authors then identified 41 candidate drugs through
enrichment analysis of drug-gene signatures and SARS-CoV-2 induced
transcriptome and proteomics data along with ongoing clinical data.

Gao et al. (2020) used structure-based drug repositioning (SBDR) ML
models to evaluate the drug binding affinity to SARS-CoV-2 3CLpro. In
this work, the authors trained their 2-D fingerprint-based DL
gradient-boosting decision tree (GBDT) model on 314 SAR-
S-CoV-2/SARS-CoV-3CLpro inhibitors to predict the binding affinities of
potential protease inhibitors. A total of 8565 drugs (including 1553
FDA-approved drugs) from DrugBank were evaluated and the top 20
FDA-approved drugs along with the top 20 investigational off-market
drugs were selected as potent inhibitors of SARS-CoV-2 3CL protease.

Hofmarcher et al. (2020) conducted a deep ligand-based virtual
screening using DL network model “ChemAI,” trained on more than 220
million data points across 3.6 million molecules from three public
drug-discovery databases. They screened approximately 900 million
compounds from the ZINC database and evaluated their inhibitory po-
tentials to the SARS-CoV-2 3CLpro, and the papain-like protease (PLP).
Additionally, the authors also screened the DrugBank for drug repur-
posing. By ranking the compounds according to their predicted inhibi-
tory potentials, toxicity, and closeness to known drugs, the authors
created a list of 30,000 possible compounds for further screening. These
top-ranked compounds were made available as a library at https://githu
b.com/ml-jku/sars-cov-inhibitors-chemai.

Similar work has been reported by Ton et al. (2020) where they used
a deep docking platform trained on a neural network to predict the re-
sults of docking simulations. From the ZINC database, the authors
identified a set of 3 million candidate 3CLpro inhibitors which were
subsequently winnowed down to 1000 compounds for drug repurposing
after docking simulation. Hu et al. (Hu and Jiang, 2020) used a multitask
neural network model to predict protein-ligand binding affinities of viral
proteins against a database of 4895 drugs. They suggested 10 potential
drugs with strong binding affinity to their target proteins.

Gysi and colleagues (Gysi et al., 2020) utilized an AI-combined
network medicine drug repurposing approach to rank 6340 drugs for
their efficacy against SARS-CoV-2. The predictions were then validated
on 918 experimentally validated drugs. They developed a multimodal
approach that has combinations of different algorithms and further
identified 77 potential repurposing drugs. Huang and colleagues (Huang
et al., 2021) developed a Python-based DL toolkit, DeepPurpose that is
based on an encoder-decoder framework and presented a case study on
SARS-CoV-2 3CLpro with 13 potential repurposing candidates identified.
Batra et al. (2020) trained and validated a random forest algorithm on
data from Smith et al. (Smith and Smith, 2020). The authors then
executed their models to CureFFI and DrugCentral datasets containing
1495 and 3967 drugs, respectively. They also applied their model to
screen compounds from the BindingDB dataset and identified 19,000
additional candidates that bind strongly to either the native S-protein or
the human ACE2-S protein complex.

Redka et al. (2020) utilized DL platform, Ligand Design to identify the
FDA-approved drugs and experimental medicines that have the potential
to inhibit SARS-CoV-2 infection. They developed a resource, Poyl-
pharmDB that contains over 10,224 drugs along with the computed list of
~8700 proteins predicted to interact with them. The interactions were
generated with Cyclica's MatchMaker TM technology which is a DL
model trained on the entire human proteome that combines structural
and experimental data to predict the binding of drug molecules to protein
pockets.

Zhang et al. (2020a) utilized the neural network algorithm trained on
the PDBbind database and identified possible inhibitors of the
SARS-CoV-2 3CLpro. They then used the structural model of the 3CLpro,
5

explored the databases, ChemDiv, and TargetMol to find promising
compounds targeting 3CLpro protein. Similarly, Nguyen et al. (2020)
applied the Mathematical Deep Learning (MathDL) approach to identify
possible inhibitors for SARS-CoV-2 3CLpro. Their model has been trained
on two datasets, ChEMBL and PDBbind database using two different
CNNs. Finally, they identified 15 promising drug candidates for
SARS-CoV-2 3CLpro using the trained CNN models on the DrugBank
dataset. Artigas et al. (2020) utilized a systems biology and AI-based
approach, the Therapeutic Performance Mapping System (TPMS) tech-
nology (Jorba et al., 2020) to repurpose drugs and drug combinations for
COVID-19. TPMS method employs an ANN to measure the potential
relationship between the nodes of a network (i.e., protein) grouped based
on their association with a phenotype. This strategy has been then used to
evaluate the effect of 6605 drugs present in the DrugBank and 122
human proteins retrieved through a literature search of the
coronavirus-human interactome. A total of 12 approved drugs have been
identified, out of which 4 are currently in COVID-19 clinical trials. Be-
sides, they also identified the drug combinations using ANN of TPMS
technology and suggested that a combination of drug pirfenidone with
melatonin could be a good candidate against COVID-19 and their com-
bined mechanism of action has been identified at the molecular level
through the use of TPMS sampling-based models.

In a study, Scott D. Bembenek of Denovicon Therapeutics (San Diego,
CA, 92130, USA) used the Denovicon computational platform to perform
a molecular modeling-AI hybrid computational approach to find poten-
tial inhibitors of the SARS-CoV-2 main protease (Mpro, 3CLpro) (Bem-
benek et al., 2020). Over 13,000 FDA-approved drugs and clinical
candidates (approximately 30,000 protomers) were investigated and
finally arrived at the five hits that may prove useful in the designing of
future inhibitors of the main protease.

Recently, Mahapatra et al. (2020) reported the ML model based on
the Naive Bayes algorithm, which predicts COVID-19 drugs with more
than 70% accuracy. This approach suggested 10 FDA-approved drugs
that can be repurposed to target COVID-19.

To optimize the use of drug combination therapy, an AI-based plat-
form, Project Identif.AI (Identifying Infectious Disease Combination
Therapy with Artificial Intelligence) were utilized for drug development
and drug repurposing (Abdulla et al., 2020). It is a neural network
approach built on a quadratic correlation between inputs defined by
drugs and their doses and outputs defined by treatment efficacy and
safety. The authors examined 12 drug/dose parameters and identified
drug combinations that effectively inhibit vesicular stomatitis virus
infection of A549 lung cells. Many of the studied drugs are currently used
in COVID-19 clinical trials also. The authors also suggested the utilization
of this platform for COVID-19 intervention. Blasiak et al. (2021) utilized
IDentif.AI to evaluate over 530,000 drug combinations against the
SARS-CoV-2 live virus collected from a patient sample. IDentif.AI iden-
tified the combination of remdesivir, ritonavir, and lopinavir as a
potentially effective treatment against SARS-CoV-2 infection. Further
experimental validation indicates that this drug combination exhibits a
6.5-fold enhanced efficacy over remdesivir alone. Also, the author
showed that hydroxychloroquine and azithromycin were relatively
ineffective against live SARS-CoV-2. Thus, Project IDentif.AI greatly cuts
the number of in vitro assays required to evaluate the drug tolerability
and efficacy and can be applied along with the in vitro investigations of
drug validation.

Yi-Yu Ke et al. (2020) developed an AI system trained on two different
learning databases. The first one is an antiviral database against
SARS-CoV, SARS-CoV-2, HIV, influenza virus, and the second database
contains 210 known 3CLpro inhibitors. The authors identified a total of 80
potential antiviral drugs, among them, 8 drugs were shown to inhibit
feline infectious peritonitis (FIP) virus in Fcwf-4 cells.

Bung et al. (2020) constructed a deep neural network-based genera-
tive and predictive model for SMILES input strings. The model was first
trained on 1.6 million compounds from the ChEMBL database and then
applied to a small dataset of protease inhibitors using transfer learning.

https://github.com/ml-jku/sars-cov-inhibitors-chemai
https://github.com/ml-jku/sars-cov-inhibitors-chemai
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The authors used reinforcement learning to train the model and identi-
fied potential drug compounds. Based on the screening and docking re-
sults, 31 potential inhibitors of SARS-CoV-2 3CLpro have been identified.

Very recently, Chakravarty et al. (2021) developed an AI-integrated
Bio-simulation platform for drug development and repurposing of pul-
monary hypertension therapies for COVID-19. The group conducted an
in-silico modeling by using AI-integrated mechanistic modeling platform
BIOiSIM with known preclinical in-vitro and in-vivo datasets for accu-
rately simulating the systemic therapy disposition and site-of-action
penetration of Angiotensin-Converting Enzyme (ACE) and calcium
channel blockers (CCB) compounds to tissues playing role in COVID-19
pathogenesis. The group provides AI/ML-driven computational
modeling for repurposing and accelerated the drug development process.

Zhavoronkov and colleagues (Zhavoronkov et al., 2020) have used an
integrated AI-based drug discovery pipeline to generate novel drug
compounds against SARS-CoV-2 3CLpro. A total of 28 ML models
including, GAE and GAN have generated molecular structures that were
optimized with reinforcement learning (RL) approaches. Novel drug-like
compounds made with these approaches were published at www.insilico
.com/ncov-sprint/and have been continuously updated.

Tang et al. (2020) combined AI with the structure-based drug design
(SBDD) to speed up the generation of potential candidate compounds
against SARS-CoV-2. The authors generated a list of 284 molecules
known to inhibit SARS-CoV-2 3CLpro, break them into 316 fragments,
and generated potential lead compounds via an advanced deep
Q-learning network with fragment-based drug design (ADQN-FBDD).
This framework rewards three aspects of discovered leads, the first is a
drug-likeliness score, the second is the addition of pre-determined
favorable fragments, and the last is the existence of known pharmaco-
phores. This AI-based approach generated a library of 4922 covalent lead
compounds with unique valid structures that are heuristically filtered,
and finally, 47 lead compounds were evaluated with molecular docking
and simulations. All these 47 top compounds and related derivatives
based on SBOP were made available in the molecular library at https://
github.com/tbwxmu/2019-nCov.

IBM research scientists from Singapore (Chenthamarakshan et al.,
2020) applied deep learning generative modeling framework, Controlled
Generation of Molecules (CogMol) as a drug discovery approach. This
framework applies a variational autoencoder trained on SMILES strings
to learn molecule embeddings. The authors on these embeddings train
attribute regression models to predict drug properties and protein
binding affinities. The authors then went for conditional sampling using
Conditional Latent (attribute) Space Sampling (CLaSS) to generate sam-
ples with desired features. They used a multitask deep neural network
(MT-DNN) to assess the toxicity of the generated molecules. The authors
applied this framework to generate ~ 3000 novel drug candidates against
the SARS-CoV-2 non-structural protein 9 (NSP9) replicase, the 3CLpro,
and the receptor-binding domain (RBD) of the S protein.

Delijewski and Haneczok from the Medical University of Selesia,
Poland (Delijewski and Haneczok, 2021), identified Zafirlukast could be
potent against COVID-19 infection due to its antiviral property and its
ability to attenuate the cytokine storm. For the identification of Zafirlu-
kast as a potential target against COVID-19, the researcher used the
AI-based model for drug discovery. The AI model was based on MACCS
fingerprints computed using the RDKit library and implementation of
gradient-boosted tree learning method (XGBoost). The FDA-approved
drug datasets were used in this study to identify the potential drug
target against the COVID-19 infection.

Laponogov et al. (2021), has prepared a network machine learning
method to target the SARS-CoV-2 host gene-gene interactome by iden-
tifying the potentially bioactive molecules in foods based on their
anti-COVID-19 ability. The group performed the analysis using the ideal
computational power of the unused thousands of smartphones by using a
supercomputing DreamLab app platform. The machine learning model
first identifies the anti-COVID-19 candidate drugs from the list of
experimental and clinically approved drug lists, which can be used as a
6

repurposed drug against COVID-19 interactome in a 5-fold
cross-validated setting. Later the ML model screen the database of
bioactive food-based molecules from varied chemical classes to target the
SARS-CoV-2 interactome. This model then ultimately using the above
information created an in-silico food map to play an important role in
clinical studies of precision nutrition intervention against COVID-19.

Recently, Ray and Kowalewski (Kowalewski and Ray, 2020) have
utilized their machine learning models to screen more than 10 million
small molecules from the ZINC database that contains 200 million small
molecules. With their AI-linked drug discovery pipeline, they identified
the best-in-class hits for the 65 human proteins that interact with
SARS-CoV-2. With their ML models, they prioritize the chemicals based
on toxicity and volatility (vapor pressure). The chemical features of the
drugs were computed and cross-validated with the recursive feature
elimination (RFE) along with the random forest and support vector ma-
chine algorithms.

Many drug discovery companies are utilizing AI to accelerate drug
development and drug repurposing against the SARS-CoV-2 to confronts
the COVID-19 pandemic. At large, the success of AI platforms depends on
the data that is being used to ‘train’ the algorithms. A limited data of
SARS-CoV-2 can be a challenge. Some of the AI-based companies
employing these intellectual approaches to find new drugs against
COVID-19 are listed in supporting information, Table S1. These AI-drug
discovery companies or AI-based start-ups are working to hasten a
rational drug repurposing of the available drugs or discovery of novel
drugs against the novel coronavirus.

3.2. AI/ML in vaccine development

Machine learning has also improved the field of vaccine design over
the past two decades by creating the virtual frameworks of “Reverse
Vaccinology” (RV) approaches. VaxiJen and Vaxign-ML are some of the
examples of ML-based RV approaches (Doytchinova and Flower, 2007;
Ong et al., 2020a). Various ML approaches like RF, SVM, RFE, and deep
CNN (DCNN) have been used to identify the antigens from a given pro-
tein sequence (Bowick and Barrett, 2010; Rahman et al., 2019).

Since the outbreak of the COVID-19 pandemic, different ML-based
approaches have been used to predict potential epitopes to design vac-
cines. Ong et al. (2020b) used Vaxign and Vaxign-ML-based RV to pri-
oritize NSPs as vaccine candidates for SARS-CoV-2. They identified NSP3
as the most promising potential target for vaccine development after
spike protein (Ong et al., 2020b). Malone et al. (2020) studied the
SARS-CoV-2 proteome and offered a complete vaccine design blueprint
for SARS-CoV-2 using the NEC Immune Profiler suite of tools to create an
epitope map for different HLA alleles. Fast and Chen utilized neural
network tools, MARIA and NetMHCPan4 to identify potential T-cell
epitopes for SARS-CoV-2 spike receptor-binding domain (RBD) (Fast
et al., 2020). Crossman (2020) utilized deep learning RNN and provided
simulated sequences of S protein to identify possible targets for vaccine
design. Rahman et al. (2020) applied immunoinformatic approaches to
produce a SARS-CoV-2 anti-peptide vaccine of S, E (envelop), and M
(membrane) protein. They used the ML-based Ellipro antibody epitope
predictive method to predict B-specific epitopes in S-protein. Prachar
et al. (2020) applied 19 joined epitope-HLA tools, including the Immune
Epitope Database (IEDB), ANN (PyTorch), and position-specific weight
matrices (PSSM) algorithm, to identify and validate 174 epitopes of
SARS-CoV-2 binding strongly to 11 HLA alleles. In addition, Sarkar et al.
(2020) applied an SVM technique to design the epitope-based vaccine of
COVID-19 and predict the toxicity of designed epitopes.

We believe that an AI-based framework may quicken and improve the
design and the development of the vaccine formulation which can
enhance the immune response, and improve protection for prophylactic
vaccines.

http://www.insilico.com/ncov-sprint/
http://www.insilico.com/ncov-sprint/
https://github.com/tbwxmu/2019-nCov
https://github.com/tbwxmu/2019-nCov
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3.3. Applications of ML in SARS-CoV-2 protein structure determination

The SARS-CoV-2, like other coronaviruses, has four conserved struc-
tural proteins and 16 non-structural proteins, such as proteases (NSP3
and NSP5) and RdRp (NSP12) (Masters, 2006).

Computational models have been used to predict protein structures
(Kuhlman and Bradley, 2019). There are primarily two modeling-based
approaches available for the prediction of unknown protein structures
(Haddad et al., 2020). The first one is template-based modeling, which
predicts structure using similar proteins as a template, and the second
one is template-free modeling, where no known related structures are
available. Many of the SARS-CoV-2 proteins are close homologs to the
proteins in related organisms with known structures. However, for some
of the proteins, template-based modeling is not possible because of the
lack of experimentally determined template structure. Recently, the
prediction of structures for proteins where no template structures are
available has been advanced significantly via novel ML methods. Senior
et al. (2020) of DeepMind company, UK have developed a system called
AlphaFold to predict a variety of protein structures related to COVID-19.
AlphaFold has recently won the Ab initio category of CASP13 competition
(Critical Assessment of Techniques for Protein Structure Prediction) and
is based on a deep neural network, ResNet architecture (Senior et al.,
2019). It is generally an unbiased model predictor and ignores similar
structures when making predictions, which is indeed helpful for
COVID-19, as very few similar protein structures are available. Central to
AlphaFold lies three different layers of deep neural networks. The first
layer is made up of a variational autoencoder weighted with an attention
model which creates accurate fragments based on a single amino acid
sequence. The second layer is divided into two sublayers, of which the
first sublayer optimizes inter-residue distances utilizing a 1D convolu-
tional neural network (CNN) on a contact map. The second sublayer help
in optimizing the generated substructures against a protein using a 3D
CNN. The third layer then scores the generated protein against the actual
model (Senior et al., 2019).

The researchers at DeepMind cross-validated their AlphaFold's
generated structure of SARS-CoV-2 spike protein with the experimentally
determined spike structures by the Francis Crick Institute. Motivated
with the positive results, DeepMind has applied AlphaFold to predict the
other structures of SARS-CoV-2 proteins including the membrane pro-
tein, protein 3a, NSP2, NSP4, NSP6, and papain-like protease (Jumper
et al., 2020). These protein structures can potentially contain druggable
sites, and thus will help the drug development efforts to contain
COVID-19.

Zhang et al. (2020b) have used C–I-TASSER (Zheng et al., 2019) to
create structural models for the SARS-CoV-2 proteins, which are avail-
able at (Zhou et al., 2021). C–I-TASSER is an extended version of
I-TASSER (Yang et al., 2015) and employs the deep convolutional neural
network-based contact maps (Li et al., 2019) to guide the Monte Carlo
fragment assembly simulations. C–I-TASSER, also known as “Zhang--
Server”, is the top-ranked computerized server for protein structure
prediction in the CASP13 challenge.

Heo and Feig (2020) employed a deep-learning neural network
approach built-in as part of the transform-restrained Rosetta (trRosetta)
(Yang et al., 2020) pipeline, to predict the structure of the SARS-CoV-2
proteins. The dilated ResNet-enabled trRosetta network may allow for
better performance as it has various output layers for the prediction of
the distances and orientation between the residues of a protein. The ac-
curacy of the predicted structure models was further improved by
applying molecular dynamics simulation-based refinement. The refined
trRosetta and AlphaFold's models in this study were further compared to
the Zhang C–I-TASSER (Zheng et al., 2019) models. The authors showed
significant variability among most of the predicted models, however,
there is some similarity in the predicted structures of the M protein, nsp4,
and papain-like protease available at (Jungnick et al., 2021).

To get deeper insights into the molecular structures of different
human coronavirus spike (S) proteins, Chen et al. (Serena and Chen,
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2020) have employed a combination of MD simulation and deep-learning
methodology on S proteins of SARS-CoV-2, SARS-CoV-1, Middle East
respiratory syndrome coronavirus (MERS-CoV), and human coronavirus
HKU1. They have used unsupervised deep learning architecture based on
a convolutional variational autoencoder to systematically compare S
protein ensembles fromMD simulations. The authors demonstrated large
flexibility between the subunits of the S proteins and reveal important
regions for S protein oligomerization which could be considered as po-
tential targets for therapeutic interventions.

3.4. Deep neural network translate coronavirus protein structure into music

Based on a nanomechanical analysis of the structure and motions of
atoms and molecules at different scales, MIT scientists used ML-based
deep neural network models to create music to represent the structure
of the SARS-CoV-2 spike protein (Buehler, 2020). The principal author,
Markus Buehler specializes in developing ML models to design new
proteins and has extensively used sonification to illuminate structural
details that might otherwise remain elusive. Sonification is a method to
translate protein structures into audible signals. In this study, they have
used a unique approach of sonification termed “materiomusic”, to use the
actual vibrations and structures of molecules to create music. According
to the study, the hierarchical organization structure of a protein is
reminiscent of the music where the primary sequence of amino acids
defines the notes and the secondary structure i.e., the coil of the helix or
the flatness of a sheet defines the rhythm and pitch (Fig. 3A). Also, the
overall vibrational motions of the molecules were defined by the
Anisotropic Network Model (Eyal et al., 2015) approach and incorpo-
rated into an audio signal (Qin and Buehler, 2019). The signal is then
imported into the Max device, and sounds are generated using Ableton
Live (Ableton Live Digital Audio Workstation, 2020), which forms the
basis for the secondary signal. The signals from the structure and vibra-
tions of a protein were overlaid and played together, generating a
multi-dimensional image of the protein's structure. Further sonification
of the SARS-CoV-2 S protein in twelve-tone equal temperament tuning, a
total number of 3,647,770 notes were generated in the raw musical
coding (Fig. 3B). This work overall results in a nearly 2-h piece of clas-
sical music that was uploaded to the music sharing website- SoundCloud
for the public to hear (SoundCloud, 2758).

The author also reports an ML-enabled nanomechanical vibrational
spectrum of five different protein structures, which provides under-
standing into how genetic mutations and the binding of the SARS-CoV-2
S protein to the human ACE2 cell receptor directly influence the audio
(Buehler, 2020). The authors further suggested that the musical repre-
sentations of proteins could also be used as a tool to design effective drug
therapies, development of de novo antibodies, identification of druggable
sites within the coronavirus' structure, detecting mutations, and material
design by manipulating sound.

These neural network-based interventions can convert protein struc-
ture to music rapidly and the Markus team has built up a database of over
10,000 protein songs. The team also developed a free app for the Android
smartphone, called the Amino Acid Synthesizer, where users can create
their own protein “compositions” from the sounds of amino acids
(Kozakov et al., 2006).

4. CONCLUSION and FUTURE CHALLENGES

AI and ML are being applied in many COVID-19-related domains, two
of which are accelerating the structural biology of SARS-CoV-2 proteins
and structure-based drug discovery along with drug repurposing. This
paper has presented a survey of literature review of AI applications in the
field of computational biology and medicine. In particular, we have
highlighted the role of AI in drug repurposing and the structure analysis
of SARS-CoV-2 proteins.

AI/ML methods are generally relying on the application domain and
the types of data. Text mining techniques and graph-based approaches



Fig. 3. The hierarchical structure of proteins and music. (A) The three-dimensional structure. of a protein can be translated into a musical score through a process
known as sonification which involves a deep neural network model. (B) Neural Network platform (CNN/RNN) for translating protein structure to music. Adapted from.
https://towardsdatascience.com/everyprotein-is-a-song-6d30ee9addd4.
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are used in drug repurposing while, in predicting drug likeliness, drug
target relationship, and generation of novel drug molecules, autoencoder
approaches are largely helpful. DL like Graph Convolutional Network and
MT-DTI approach proved to be successful to predict available antiviral
drugs that could be effective against SARS-CoV-2. According to the so far
studies, AI/ML subsets, homology modeling, virtual screenings, and
molecular docking are the most used SARS-CoV-2 drug repurposing ap-
proaches to identify potentially effective drugs for the treatment of
COVID-19 infection. AI/ML-based drug repurposing or drug discovery in
the majority of the studies were not confirmed either by experimental
methods or follow-up clinical studies. This illustrates the uncertainties
regarding reproducibility and strong evidence of drug repurposing
studies to tackle COVID-19. However, AI/ML technologies utilized
within the drug development studies have greatly improved and could
serve, shortly, as a decision support system for policymakers, healthcare
8

providers, and society at large. The development of effective and robust
in vitro and in vivo models can decrease the failure rate of repurposed
drugs in preclinical studies and clinical trials. However, challenges
remain in developing these technologies, such as data and model
harmonization, data heterogeneity and quality, data sharing and secu-
rity, and biological interpretability of the models.

This is the chance to accomplish the visionary outlook of scientists to
deliver an AI-based efficient and agile drug discovery process at an
accelerated pace and at a price that every COVID-19 patient would
appreciate.
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