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The decreased ability of the kidney to regulate water and monovalent cation excretion

predisposes patients with chronic kidney disease (CKD) to dysnatremias. In this report,

we describe the clinical associations and methods of management of dysnatremias in

this patient population by reviewing publications on hyponatremia and hypernatremia

in patients with CKD not on dialysis, and those on maintenance hemodialysis or

peritoneal dialysis. The prevalence of both hyponatremia and hypernatremia has been

reported to be higher in patients with CKD than in the general population. Certain

features of the studies analyzed, such as variation in the cut-off values of serum sodium

concentration ([Na]) that define hyponatremia or hypernatremia, create comparison

difficulties. Dysnatremias in patients with CKD are associated with adverse clinical

conditions and mortality. Currently, investigation and treatment of dysnatremias in

patients with CKD should follow clinical judgment and the guidelines for the general

population. Whether azotemia allows different rates of correction of [Na] in patients with

hyponatremic CKD and the methodology and outcomes of treatment of dysnatremias

by renal replacement methods require further investigation. In conclusion, dysnatremias

occur frequently and are associated with various comorbidities and mortality in patients

with CKD. Knowledge gaps in their treatment and prevention call for further studies.
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INTRODUCTION

Dysnatremias, defined usually as serum sodium concentration ([Na]) either below 135 mmol/L or
above 145 mmol/L, represent the most frequently encountered electrolyte disorder in a variety of
clinical settings (1), such as chronic kidney disease (CKD) (2, 3). The major clinical manifestations
of dysnatremias result from disturbances of the intracellular volume of brain cells secondary to
abnormalities in effective osmolarity (tonicity). Tonicity is the property of any fluid to reduce, not
change, or increase the intracellular volume of cells bathed in it through osmotic fluid transfers (4).
[Na] is the key clinical indicator of serum tonicity (4).

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.769287
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.769287&domain=pdf&date_stamp=2021-12-06
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mlunruh@salud.unm.edu
https://doi.org/10.3389/fmed.2021.769287
https://www.frontiersin.org/articles/10.3389/fmed.2021.769287/full


Arzhan et al. Dysnatremias in Chronic Kidney Disease

Hyponatremia can be associated with osmotic cell swelling,
osmotic cell shrinking, or no change in the intracellular volume of
cells. Hyponatremia causing osmotic swelling of cells (hypotonic
or true hyponatremia) (5) is typically associated with a low serum
osmolality but may be associated with normal or high serum
osmolality in patients with low [Na] values and excessive loads of
a solute with total body water (TBW) distribution, e.g., in patients
with hyponatremic CKD and high serum urea levels. Hypertonic
(or translocational) hyponatremia results from an excess of
solutes with extracellular distribution, other than sodium salts,
e.g., glucose or mannitol, causing osmotic exit of fluid from the
intracellular compartment, hyponatremia, and elevated serum
tonicity and osmolality (5). Isotonic hyponatremia with normal
cell volume (pseudohyponatremia, or spurious hyponatremia, or
artifactual hyponatremia) is encountered when low [Na] values
are reported by methods requiring pre-measurement dilution of
the serum sample, including flame emission spectrophotometry
or indirect ion-specific electrode, and plasma solid content is
abnormally high due to hyperlipidemia or hyperproteinemia; and
[Na] measured by the direct ion-specific electrode is within the
normal range (4, 5).

Dysnatremias result from a single or combined disturbances
in the external balances of water, sodium, and potassium
(6, 7). The kidney regulates [Na] through the excretion of
sodium and potassium, and mainly through the production of
dilute or concentrated urine under the direction of vasopressin
(8). Abnormalities in urinary diluting or concentrating ability
result in dysnatremias (8, 9). Patients with dysnatremia in the
setting of CKD should be investigated for disturbances in the
external balances of water, sodium, and potassium, and in
urinary dilution or concentration (2, 10). This review addresses
the pathophysiology, epidemiology, clinical manifestations,
mortality, and management of dysnatremias in patients with
CKD not on dialysis, and those on maintenance hemodialysis
or peritoneal dialysis. Identification of aspects of dysnatremias in
patients with CKD that need further studies will also be addressed
in this review.

REVIEW

Pathophysiology of Dysnatremias in
Patients With CKD
Healthy human kidneys have the capacity to produce several
liters of urine daily and can dilute the urine to a minimal
osmolality of 50 mOsm/kg or to concentrate the urine to a
maximal osmolality of 1,200 mOsm/kg in response to plasma
vasopressin levels (9, 11). In CKD, anatomic derangements of the
tubular and vascular structures of the diluting and concentrating
nephron segments, disturbances in the interstitial hypertonicity
of the renal medulla, impaired response of the principal cells
of the concentrating nephron segments to vasopressin, and
osmotic diuresis of the remaining functioning nephrons curtail
the concentrating and diluting abilities of the kidneys (4, 9, 12).

In CKD, the impairment of the urinary concentrating ability
outpaces that of the diluting ability (12, 13). Osmotic diuresis
of the remaining functioning nephrons, primarily due to urea

loads, plays a role in the impairment of the renal concentrating
ability (14, 15). However, poor response to vasopressin of the
principal epithelial cells in the concentrating segment of the
nephron represents the major cause of loss of the concentrating
ability. Defects in several stages of this response have been
identified in studies of experimental CKD. Fine et al. (16)
reported the impaired water permeability and the response of
adenylate cyclase activity to vasopressin in a study of isolated
perfused cortical collecting tubules from uremic rabbits (16).
Teitelbaum and McGuinnes (17) found low levels of mRNA of
the V2 receptor in principal cells of the inner medullary tubule
of uremic rats. Suzuki et al. (18) reported decreased response of
aquaporin 2 expressions in the inner medulla of uremic rats after
water restriction, which caused a rise in plasma vasopressin levels
with a blunted rise in urine osmolality.

Patients with early stages of CKD have the capability of
excreting normal ingested loads of sodium and potassium
salts and azotemic compounds in the urine, thus achieving
steady states of sodium and potassium balance and serum
concentrations of azotemic indices (i.e., creatinine and urea).
The decreased renal concentrating ability in CKD obligates
the larger volumes of urine in the early stages of CKD
than in the healthy stage in order to excrete these solute
loads (9). However, the renal ability to excrete water loads
becomes progressively limited as the glomerular filtration rate
declines and, consequently, the range of water intake that
allows normal [Na] values becomes progressively narrower (9).
Hyposthenuria or isosthenuria, which occurs in advanced stages
of CKD, predispose to both hyponatremia and hypernatremia (2).
Evaluation of dysnatremias in these patients should address gains
or losses in sodium, potassium, and water through the kidneys,
but also through the respiratory and gastrointestinal systems, and
the skin (19).

Patients treated by maintenance hemodialysis or peritoneal
dialysis have limited margins of water intake allowing a normal
[Na] range. In addition, these patients may develop dysnatremias
due to prescription errors. Hypernatremia has been reported
both after hemodialysis sessions (20–22) and in peritoneal
dialysis (23–25). Patients on peritoneal dialysis treated with
icodextrin-containing dialysis fluids may develop hypertonic
hyponatremia secondary to extracellular accumulation of
icodextrin metabolites (26).

Incidence and Prevalence of Dysnatremias
in Patients With CKD and Those on Dialysis
Table 1 shows the incidence and prevalence of hyponatremia
in the studies of the general population, CKD not on dialysis,
hemodialysis, and peritoneal dialysis (10, 27–54). Table 2 shows
the incidence and prevalence of hypernatremia in the same
population segments (10, 28–30, 32–36, 38–40, 47, 53–55). The
values for prevalence and incidence related to dysnatremias vary
widely in each of the four categories of patients in Tables 1, 2
and overlap substantially among the four patient categories. The
incidence of hyponatremia in a study of hospitalized patients was
9% in patients without CKD and increased progressively within
CKD stages up to 18.1% in patients with CKD stage 5 (37). In
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TABLE 1 | Incidence/prevalence of hyponatremia based on the chronic kidney disease (CKD) status.

References Number of patients [Na] cut-off (mmol/L) Prevalence Incidence

General population

Wald et al. (27) 53,236a,b <138 37.9a, 38.2%b –

Akirov et al. (28) 27,789b <135 – 22.0%

Girardeau et al. (29) 45,834b ≤135 – 12.0%

Hu et al. (30)* 90,889b <137 16.8% 7.8%

Al Mawed et al. (31) 2,488,437b <135 14.4% –

Lombardi et al. (32) 46,634b <135 10.4% –

Thongprayoon et al. (33) 60,944b <135 34.6% 17.0%

CKD not on dialysis

Kovesdy et al. (10) 655,493a <136 26.0% 13.5%

Han et al. (34)* 2,182a ≤135 6.3% –

Chiu et al. (35)* 2,093a ≤135 6.6% –

Huang et al. (36) 45,333a <136 27.0% 8.0%

Golestaneh et al. (37) 7,422b <135 – 12.4%

Grangeon-Chapon et al. (38),

(≥75)

279b <135 29.4% –

Imai et al. (39)* 4,562b <135 14.8% 2.8%

(18–64 y/o)

(≥65 y/o) 5,996b 12.9% 10.3%

Hemodialysis

Waikar et al. (40)* 1,549a <137 29.3% –

Sahin et al. (41)* 697a <135 5.9% –

Hecking et al. (42)* 11,555a <137 12.6% –

Nigwekar et al. (43)* 6,127a <135 26.8% –

Rhee et al. (44) 27,180a <138 41.6% –

Dekker et al. (45) 8,883a <135 12.7% –

Baek et al. (46) 621a <135 – 30.8%

Chiang et al. (47)* 62a <136 45.2% –

Peritoneal dialysis

Kang et al. (48) 387a <135 74.4% –

Chang et al. (49)* 441a <137 3.3% –

Chen et al. (50) 318a ≤135 26.4% –

Dimitriadis et al. (51) 166a ≤130 – 14.5%

Xu et al. (52)* 476a ≤135 10.5% –

Yan et al. (53)* 60a ≤132 15.0% –

Ravel et al. (54) 4,687a <136 9.0% –

[Na], serum sodium concentration; *prospective study; aoutpatient subjects; bhospitalized subjects; c location of patients not stated in the report.

another study, which compared adult (18–64 years) and elderly
patients (>65 years) with and without CKD at presentation to

the emergency department (39), the prevalence of hyponatremia
was 2.8% in patients without CKD and 10.3% in those with CKD

in the adult group and 14.8% in patients without CKD and 12.9%

in those with CKD in the elderly group. In the same study, the
prevalence of hypernatremia was 0.7% in patients without CKD

and 2.0% in those with CKD in the adult group and 1.5% in
patients without CKD, and 3.5% in those with CKD in the elderly

group. All differences in prevalence were statistically significant.

The findings of these two studies (37, 39) suggest that patients

with CKD, at least those who are not elderly, are at higher risk for

dysnatremias than those without CKD.

Several characteristics of the studies in Tables 1, 2 contributed
both to the overlapping of the incidence and prevalence values
between the categories of patients analyzed and to the wide
range of these values in each category of patients. Important
characteristics, which should be addressed in future studies in this
area, are discussed below:

(a) Confounding conditions could have influenced the reported
incidence and prevalence of dysnatremias. The studies of
dysnatremias in the general population included varying
percentages of patients with CKD. Conversely, a fraction of
patients in studies involving patients with CKD also had other
conditions associated with hyponatremia, e.g., congestive
heart failure (10).
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TABLE 2 | Incidence/prevalence of hypernatremia based on the CKD status.

References Number of Patients [Na] cut-off (mmol/L) Prevalence Incidence

General population

Wald et al. (27) 53,236a,b >144 – 3.0%

Girardeau et al. (29) 45,834b >145 1.9% 1.0%

Hu et al. (30)* 90,889b >147 4.0% 0.9%

Lombardi et al. (32) 46,634b >145 8.2% –

Thongprayoon et al. (33) 60,944b >145 8.2% 1.4%

Tsipotis et al. (55) 19,072a,b >142 21.0%a, 25.9%b 21.0%a

CKD not on dialysis

Kovesdy et al. (10) 655,493a >145 7.0% 2.0%

Han et al. (34)* 2,182a ≥144 16.4% –

Chiu et al. (35)* 2,093a ≥145 6.6% –

Huang et al. (36) 45,333a >145 6.0% 1.2%

Grangeon-Chapon et al. (38),

(≥75)

279b >145 24.7% –

Imai et al. (39)* 4,562b >145 2.0% 0.7%

(18–64 y/o)

(≥65 y/o) 5,996b 3.5% 1.5%

Hemodialysis

Waikar et al. (40)* 1,549a ≥142 18.9% –

Nigwekar et al. (43) 6,127a >145 1.2% –

Rhee et al. (44) 27,180a ≥144 3.6% –

Baek et al. (46) 621a >145 – 3.5%

Peritoneal dialysis

Ravel et al. (54) 4,687a ≥144 4.0% –

[Na], serum sodium concentration; *prospective study; aoutpatient subjects; bhospitalized subjects; c location of patients not stated in the report.

(b) The cut-off [Na] values for hyponatremia suggested by
various authors ranged between ≤130 mmol/L and <138
mmol/L (Table 1), while the cut-off values for hypernatremia
ranged between 142mmol/L (55) and>147mmol/L (Table 2).
These ranges in [Na] cut-off values were responsible for the
substantial differences in incidence and prevalence values.

(c) Many patients featured in Tables 1, 2 had diabetes mellitus,
a condition that affects the calculations of incidence or
prevalence of hyponatremia if [Na] values are not corrected
for the degree of hyperglycemia. Hyperglycemia causes
hypertonic hyponatremia. Not accounting for the degree
of hyperglycemia in studies of dysnatremias, i.e., using
the measured [Na], provides false information about the
relationship among body sodium, potassium, and water. The
corrected [Na], i.e., a predicted [Na] value after the correction
of hyperglycemia, provides an appropriate estimate of this
relationship (56). Katz (57) calculated theoretically a decrease
in [Na] equal to 1.6 mmol/L for each 5.6 mmol/L rise
in serum glucose concentration. Subsequently, the proposed
range of coefficients for the calculation of the corrected [Na]
was from 1.35 to 4.00 mmol/L reduction in [Na] for every
5.6 mmol/L rise in serum glucose (58). A review of this
topic concluded that Katz’s coefficient should be used for
calculating the corrected [Na], with exceptions that make
monitoring of [Na] and serum glucose during the treatment
of hyperglycemia mandatory (56). The general form of the

Al-Kudsi formula (59), which uses the Katz’s coefficient to
calculate the corrected [Na], is as follows where both sodium
and glucose concentrations are in mmol/L (56):

Corrected [Na] = Measured [Na]+

1.6×
Measured − Desired serum glucose

5.6
(1)

Several studies on dysnatremias calculated the corrected [Na]
using the Al-Kudsi formula (30, 34, 36, 41–43, 46, 47, 49),
and one study excluded from statistical analysis serum glucose
levels >7.5 mmol/L (51). This last study was also the only one
to address spurious hyponatremia by excluding [Na] values
in patients with significant hyperlipidemia. The remaining
studies in Tables 1, 2 either used coefficients different from
Katz’s coefficient to calculate the corrected [Na] or did
not calculate it. The second influence of hyperglycemia,
unique to diabetic patients on dialysis, who develop limited
or no osmotic diuresis from glycosuria, pertains to thirst
and consumption of water which is retained and reduces
the value of [Na] after the correction of hyperglycemia
(60). For these reasons, the incidence and prevalence of
dysnatremias should be calculated separately in diabetic
and non-diabetic CKD populations. Only one small study
calculated the prevalence of hyponatremia in non-diabetic
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peritoneal dialysis patients (53). This study, which assessed
changes in TBW and extracellular volume by repeated
bioimpedance measurements, identified factors associated
with the development of hyponatremia during peritoneal
dialysis. These factors include large peritoneal ultrafiltration
volumes causing excessive loss of sodium, and changes in
nutritional status. Based on these findings, the authors of the
study proposed a scheme for addressing hyponatremia in this
patient population.

Clinical Manifestations, Associations With
Comorbidities, and Mortality of
Dysnatremias in Patients With CKD
Hypotonic Hyponatremia
The clinical manifestations of hypotonic hyponatremia result
from cerebral edema with the degree, rapidity of development,
and duration of hyponatremia determining severity (5, 61). Brain
cells undergo intracellular volume adaptation to hyponatremia.
This adaptation determines the chronicity of hyponatremia.
Within up to 7 h of hyponatremia, brain cells, mainly astrocytes
which express aquaporin-4 in abundance (62), lose water to
the cerebrospinal fluid through hydrostatic forces (63) and
lose electrolytes, such as potassium, sodium, and chloride
(5, 64). Subsequently, further intracellular brain cell volume
reduction occurs through the loss of organic osmolytes, which
is completed by 48 h (5). Hyponatremia lasting <48 h is
considered acute, while hyponatremia of 48 h or longer is
considered chronic.

Severe clinical manifestations of hyponatremia include
seizures, coma, hypoxia secondary to noncardiogenic pulmonary
edema and/or hypercapnic respiratory failure (65), and
death from cerebral herniation; moderate manifestations
include lethargy, disorientation, and confusion; and mild
manifestations include fatigue, nausea, and headache (5).
Even mild hyponatremia (130–135 mmol/L) is associated
with attention deficits, which may require directed testing to
be detected, gait disturbances, osteoporosis, and a high risk
of fractures (5, 66–68). In patients with advanced CKD, the
neurological manifestations of uremia can be confused with
the manifestations of dysnatremias, and changes in serum
urea concentration affect the treatment of dysnatremias. A
paucity of studies exists regarding clinical manifestations related
to dysnatremias in patients with CKD. One study reported
depressed mental function in patients on peritoneal dialysis with
hyponatremia (52).

Certain conditions increase the risk for hyponatremia in
patients with CKD not on dialysis, and those on hemodialysis
or peritoneal dialysis. These conditions include women gender
(34, 36, 41, 44, 48, 54), race other than African American
(34, 40, 42, 44, 54), low body weight or body mass index
(34, 35, 40, 42–45, 49), diabetes mellitus (35, 40, 41, 43–45,
50, 54), and low serum albumin (10, 34, 35, 40–44, 46–50,
52, 54). In both hemodialysis and peritoneal dialysis patients,
hyponatremia was found to be associated with a low residual
renal function (43, 44, 47, 49, 51, 54) and excessive weight,

most probably fluid, gains (40–42, 44, 45, 47, 48). Hyponatremia
in CKD populations increases the risk for several adverse
outcomes, such as hospitalization for infections (69), protein-
energy malnutrition (70) and impaired cognitive function (71)
in hemodialysis patients, and poor peritonitis outcomes (72) plus
the higher incidence of new cardiovascular events in peritoneal
dialysis patients (73).

Hyponatremia represents a risk for all-cause mortality in
the general population (5) and in patients with CKD not on
dialysis (10, 34–36), in whom it represents also a risk factor
for the mortality from cardiovascular disease or malignancies
(36). In hemodialysis patients, hyponatremia was found to
be a risk factor for all-cause mortality (40, 42–47), for all-
cause mortality only among patients with diabetes mellitus
(41), and cardiovascular mortality (40). In peritoneal dialysis
patients, hyponatremia was found to be a risk factor for all-
cause mortality (49, 54, 72, 74). One study found no association
between hyponatremia and 2-year mortality in peritoneal dialysis
patients (50). The pathophysiological mechanisms by which
hyponatremia increases the risk for mortality in patients with
CKD are not well-understood. One study concluded that
mortality in hyponatremic peritoneal dialysis patients is most
probably due to co-morbidities (48).

Hospitalized patients with COVID-19 have a high prevalence
of acute kidney injury with increased death risk (75) and
dysnatremias (76–79). The syndrome of inappropriate
antidiuretic hormone secretion (SIADH) was identified as
the cause of hyponatremia in two cases of COVID-19 (80, 81).
Both hyponatremia and hypernatremia represent mortality risks
in patients with COVID-19 (75–79).

Hypernatremia
Acute hypernatremia causes lesions in the brain, such as
cell shrinkage, petechial and subarachnoid hemorrhages,
hematomas, subdural fluid collections, vascular congestion, and
venous thrombosis (82). Children with hypernatremia develop
irritability, restlessness, muscular twitching, hyperreflexia, and
seizures. Elderly patients with hypernatremia rarely develop
seizures, but manifest lethargy, delirium, and coma. Less
frequent manifestations of hypernatremia include fever, nausea,
and vomiting. Alert hypernatremic patients have intense thirst
(82). Higher [Na] values are associated with the progression of
established CKD independently of other risk factors (83).

Conditions presenting a risk for hypernatremia in patients
with CKD not on dialysis include men’s gender, older age,
heart failure, low estimated glomerular filtration rate, and
high levels of body mass index, systolic blood pressure, and
serum albumin (34). Conditions predisposing patients on
hemodialysis or peritoneal dialysis to hypernatremia will need
further investigation.

Hypernatremia increases the risk for mortality in the general
population (82) and in patients with CKD not on dialysis (10, 34–
36, 38). In hemodialysis patients, hypernatremia was observed to
be a risk factor for all-cause mortality (44) and mortality risk
for causes other than cardiovascular disease or malignancy in
a second study (46). Whether hypernatremia is associated with
mortality in peritoneal dialysis patients has not been studied.

Frontiers in Medicine | www.frontiersin.org 5 December 2021 | Volume 8 | Article 769287

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Arzhan et al. Dysnatremias in Chronic Kidney Disease

FIGURE 1 | Steps in the management of hyponatremia. [Na], serum sodium concentration; IISE, indirect ion-specific electrode; FES, flame emission

spectrophotometry; DISE, direct ion-specific electrode; OG, osmol gap, computed as measured serum osmolality minus the sum 2×[Na] + serum glucose + serum

urea, where both glucose and urea concentrations are in mmol/L; ECV, extracellular volume. *Hyponatremia combined with a wide osmol gap and usually high serum

osmolality can also be encountered when there is an excess of an exogenous solute with extracellular distribution, e.g., mannitol. Diagnosis of this case of hypertonic

hyponatremia is obtained by history.

Treatment of Dysnatremias in Patients With
CKD Not on Dialysis
Treatment of Hyponatremia in Patients With CKD Not

on Dialysis
Guidelines (84, 85) and other reports (5, 19, 86, 87) address
treatment of hyponatremia in the general population. Figure 1,
based on Musso and Bargman’s report (88), presents the steps
of management of hyponatremia in all patients, such as those
with CKD. The last step, evaluation of extracellular volume
(ECV) is critical in determining the mechanism and guiding the
management of hyponatremia in the general population (5, 19,
86, 87) and all categories of patients with CKD.

Table 3 summarizes the approaches to the treatment of
hyponatremia in the general population (5). Infusion of
hypertonic saline and restriction of fluid intake represent key
general measures for treating hyponatremia in all patients with
CKD, such as patients with anuria, while administration of
loop diuretics or oral urea are effective means only in patients
with significant renal function. Oral urea administration as the
sole treatment of hyponatremia is safe and effective (89). Urea
administration produces osmotic diuresis and increased free
water clearance in the general population (90). Whether urea

administration is also safe and effective in the early stages of
CKD is not known currently. Even mild hyponatremia should

be treated. Rondon-Berrios and Berl (91) proposed treating mild

chronic hyponatremia with water intake limitation based on

the electrolyte-free water clearance and oral administration of
compounds increasing urinary water excretion such as sodium

salts, urea, loop diuretics, and vasopressin inhibitors.

We will address the correction of hyponatremia by saline
infusion. In patients with CKD, the importance of an accurate

estimate of TBW—in the calculation of the volume of infused
saline, as well as in the overall management of these patients,

acquires even greater importance than in patients with preserved
renal function.

The aims of correcting hyponatremia by saline infusion
include prevention of brain herniation, improvement of
symptoms, and prevention of osmotic demyelination (5). The
risk of osmotic demyelination from the rapid rise in [Na]
is higher in chronic than in acute hyponatremia. During the
rapid correction of chronic hyponatremia, organic osmolyte
accumulation in the intracellular compartment of brain cells
occurs slowly leading to shrinkage of their intracellular volume.
These changes are thought to be linked to the development of

Frontiers in Medicine | www.frontiersin.org 6 December 2021 | Volume 8 | Article 769287

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Arzhan et al. Dysnatremias in Chronic Kidney Disease

TABLE 3 | Methods of treating hyponatremia in the general population (5).

General measures

-Hypertonic saline infusion (severe or moderate hyponatremia)

-Restriction of fluid intake (primary treatment in CKD-associated hyponatremia)

-Loop diuretics

-Urea administration

Specific measures

-Vaptans (hyponatremia associated with concentrated urine and high serum vasopressin levels)

-Desmopressin infusion (anticipated large water diuresis during treatment of hyponatremia caused by hypovolemia, primary polydipsia, beer potomania, and low

solute intake)

-Isotonic saline infusion (hypovolemic hyponatremia)

-Potassium salt administration (hyponatremia due to potassium deficit)

-Glucocorticoid administration (hyponatremia caused by cortisol deficit)

-Thyroid hormone replacement (hyponatremia caused by severe hypothyroidism)

-Increased dietary solute intake (hyponatremia due to low solute intake or beer potomania)

-Dialytic methods (hyponatremia in patients with advanced CKD)

osmotic myelinolysis (92). The European guidelines recommend
rapid correction of hyponatremia with severe symptoms,
regardless of whether the hyponatremia is acute or chronic,
by the infusion of hypertonic saline, frequent measurements
of [Na] in the first hour of treatment, and evaluation of
the symptoms after the increase of [Na] by 5 mmol/L; if
symptoms improve, the guidelines recommend stopping the
hypertonic saline and limiting the rise in [Na] to a total
of 10 mmol/L within the first 24 h and then managing the
condition that caused the hyponatremia and increasing [Na] by
8 mmol/L every 24 h thereafter until [Na] reaches 130 mmol/L:
if symptoms do not improve, the guidelines suggest continuing
the infusion of hypertonic saline with an increase in [Na] by
1 mmol/L hourly until a total rise of 10 mmol/L or [Na]
reaches 130 mmol/L (85). Tandukar et al. (93) summarized
the findings of 19 publications reporting 21 patients who
developed osmotic demyelination syndrome after the correction
of hyponatremia by ≤10 mmol/L per 24 h. Sterns and coauthors
recommend a change in [Na] during treatment of symptomatic
chronic hyponatremia up to 6 mmol/L in the first 6 h, unless
symptoms persist when even higher rates of increase in [Na]
are indicated, 6–8 mmol/L in the first 24 h, 12–14 mmol/L in
48 h, and 14–16 mmol/L in 72 h (94). Overcorrection should
be prevented rigorously (95) and corrected promptly with
hypotonic infusions if it occurs. Acute hyponatremia may
be treated faster. Whether the same rates of correction of
hyponatremia should be applied to patients with early stages of
CKD and those treated by dialysis will need to be investigated.
In the absence of new information, it would be prudent to apply
these guidelines along with clinical judgment to patients with
hyponatremic CKD.

Changes in [Na] resulting from the change in body sodium
content are determined by the total change in body sodium
and by TBW (6). Consequently, TBW, which changes in the
same direction and by the same magnitude as ECV in isotonic
ECV disturbances, is used when calculating the volume of
saline-infused to correct hyponatremia. The Adrogué–Madias
formula, which has been used extensively in the management of

hyponatremias, calculates the rise in [Na] after infusion of 1 L of
saline hypertonic to the serum as follows (86):

[Na]Final − [Na]Initial =
[Na]Infusate − [Na]Initial

TBWInitial + 1
(2)

Where [Na]Initial is the pre-infusion and [Na]Final is the post-
infusion [Na], [Na]Infusate is the sodium concentration in
the infused saline, and TBWInitial is the pre-infusion TBW.
Determination of the volume of infused saline (VInfused) required
to produce the desired rise in [Na] using this formula requires
one more calculation. For example, in a patient with [Na]Initial =
110mmol/L and TBWInitial = 40 L, the Adrogué–Madias formula
calculates that infusion of 1 L of 513 mmol/L (3%) saline will
result in a 9.8 mmol/L rise in [Na]. If the desired rise in [Na]
is 6 mmol/L, VInfused = 1 × 6/9.8 = 0.6 L. A formula published
subsequently, and based on the same principles as the Adrogué–
Madias formula, calculates directly VInfused, as follows (19):

VInfused = TBWInitial ×
[Na]Final − [Na]Initial

[Na]Infusate − [Na]Final
(3)

In the above example, Equation(3) calculates also a VInfused

of 0.6 L.
One potential source of variance between [Na]Final values

predicted by Equations (2) or (3) and observed relates to the
fact that these formulas do not include urinary excretions of
water, sodium, and potassium. The urinary excretion may vary
considerably during treatment between various categories of
hyponatremia (19). Renal excretion of water and monovalent
cations during treatment may be less of an issue in patients with
advanced CKD.

Another source of variance may be due to an inaccurate
estimate of TBWInitial (19). Hyponatremias in both the general
and CKD populations can develop in the settings of hypovolemia,
euvolemia, or hypervolemia (5, 19). Several conditions and
pathogenic mechanisms are responsible for the development of
hyponatremia in patients with normal, low, or high ECV, and

Frontiers in Medicine | www.frontiersin.org 7 December 2021 | Volume 8 | Article 769287

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Arzhan et al. Dysnatremias in Chronic Kidney Disease

consequently abnormal TBWInitial values. The importance of
the estimate of TBWInitial entered in formulas 2 or 3 is greater
in patients with CKD, because of the limited capacity of their
kidney to correct errors. Whether ECV and TBW are normal, i.e.,
whether patients are at their dry weight, is critical in advanced
CKD not only for the evaluation of the mechanism and for the
management of dysnatremias, but also other clinical reasons, e.g.,
prevention of cardiovascular complications of hypervolemia or
management of hypertension.

Several methods have been proposed for estimating TBW
in hyponatremic patients. The older method calculates TBW
as an arbitrary fraction of body weight, the difference between
women and men, and the difference between older and younger
individuals in each gender (86). This method may provide
estimates with error because it does not account for body
composition at dry weight, in particular about the body fat
content, or changes in TBW accompanying the hyponatremia.
In addition, the use of sex differences poses a challenge among
transgender patients.

Another method for estimating TBW is based on the
anthropometric formulas, which represent statistical regression
analyses in populations with euvolemia. These statistical analyses
compared the TBW measurements by isotopic dilution methods
and gender, age, body weight, height, and, in some formulas,
the race of the studied subjects. The formulas provided by these
studies appropriately account for weight change secondary to a
change in body fat, but not for weight change caused by a change
in body water. Water gain increases body weight and the fraction
of TBW/body weight, while the gain in body fat increases body
weight and TBW but decreases the fraction of TBW/body weight
(96). The anthropometric formulas always calculate a decrease
in the fraction TBW/body weight as weight increases (96). In
patients with disorders of TBW, TBW should be estimated as
the TBW at dry weight calculated by an anthropometric formula
plus or minus the difference between actual and dry weights (19,
96, 97). The drawbacks of this method are that anthropometric
formulas, which have large margins of error, and that dry weight
is not known in many cases and even when known it may have
been miscalculated.

Various other methods, which have been applied for
evaluating ECV and TBW in dialysis patients, have limitations
(98, 99). ECV associated with optimal perfusion of vital organs,
i.e., with the effective arterial blood volume, may vary from the
normal value in disease states, e.g., in congestive heart failure
(100). Measurement of TBW and ECV by bioimpedance and
simultaneous performance of lung ultrasonography to evaluate
the extravascular lung ECV is considered a promising method
for estimating the dry weight (98, 101, 102). Careful clinical
evaluation of the fluid status of patients on hemodialysis
is imperative (103, 104). In the future, bioimpedance may
become the method of choice for the TBW value used to
calculate the volume of the saline infusate in hyponatremic
CKD patients. The management of ECV in these patients is
best done by combining clinical evaluation, bioimpedance, and
lung ultrasonography.

Another source of imprecision in Equations 2 and 3 is that
they do not account for exchanges of sodium between the

extracellular compartment and the osmotically inactive sodium
stored in polyanionic proteoglycans, mainly glycosaminoglycan
found in skin, cartilage, and other tissues when [Na] is changing
(7). In a study of infusion of hypertonic saline in normal
individuals, the rise in [Na] at the end of infusion was almost
identical to the rise predicted by the Adrogué–Madias formula,
but [Na] decreased 4 h later (105); this decrease in [Na] was
not explained by the urinary losses of sodium, potassium, and
water. The authors of this study proposed that it was due to
the uptake of sodium by proteoglycans. For all these reasons,
monitoring of [Na] during and after saline infusion for correction
of hyponatremia is critical in patients with or without CKD (19).
Measuring urine volume and monovalent cation concentrations
in urine will not be needed in every case, but will be useful
in some cases with early stages of CKD, foremost in cases
of hypovolemic hyponatremia in which infusion of hypertonic
saline not only will raise [Na] but also at some point will
remove the volume stimulus for vasopressin release, which
will result in the production of large volumes of dilute urine.
Monitoring urine volume and measuring sodium and potassium
concentrations in this urine volume when treatment started
and after urine volume starts increasing may provide important
therapeutic information.

Treatment of Hypernatremia in Patients With CKD Not

on Dialysis
Hypernatremia may also develop in the setting of hypovolemia,
euvolemia, or hypervolemia (82, 106). The proper management
of hypernatremia requires the identification of the underlying
cause and careful correction (107). The prevention of cerebral
edema during treatment is of paramount importance. If
hypernatremia is chronic (≥48 h) or of unknown duration,
correction of [Na] should not exceed 0.5–1.0 mmol/L per hour
or 8–10 mmol/L in the first 24 h, to prevent cerebral edema,
permanent neurologic damage, or death (107). Asymptomatic
chronic hypernatremia may be corrected over 48 h or longer.
More rapid correction (up to 1 mmol/L per hour, up to 8–
15 mmol/L over the first 8 h) may be appropriate if the onset
of hypernatremia is acute (<48 h), e.g., in accidental sodium
loading, and unstable patients (107). In these settings, rapid
correction improves the prognosis without increasing the risk of
cerebral edema (107). The volume of hypotonic saline needed
to produce the desired decrease in [Na] can be computed by
modification of Equation 3 as follows (82):

VInfused = TBWInitial ×
[Na]Initial − [Na]Final

[Na]Final − [Na]Infusate
(4)

Hypernatremia can be corrected by infusion intravenously of
sterile water (108). When infusion of sterile water is used,
Equation 4 should be modified as follows (82):

VInfused = TBWInitial ×
[Na]Initial − [Na]Final

[Na]Final
(5)
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Monitoring of [Na] is also imperative during treatment and for a
period of at least 24 h after the treatment of hypernatremia with
the infusion of hypotonic fluid.

Treatment of Dysnatremias by Dialytic Methods
Dangoisse et al. (109) and Rosner and Connor (110) summarized
the principles of management of dysnatremias by continuous
renal replacement therapy (CRRT): this management requires
customizing either the CRRT circuit or the dialysis solution.
The CRRT circuit in continuous venovenous hemofiltration or
hemodiafiltration can be customized by computing the sodium
concentration at the end of the circuit and then adding a
post-filter replacement volume of hypertonic or hypotonic fluid
calculated to bring the sodium concentration of the circuit to
the desired level. The CRRT dialysis solutions for treating severe
dysnatremias are customized by adding to the dialysis solution
an appropriate volume of hypertonic saline for hypernatremia or
sterile water for hyponatremia calculated by a nomogram to bring
the sodium concentration of the dialysis fluid to the desired level.
The drawbacks of this approach are that the concentrations of
other important ingredients of the dialysis fluid, e.g., potassium,
calcium, and magnesium are decreased and there are increased
chances of error (110).

Dysnatremias are treated by hemodialysis by changing the
sodium concentration of the dialysis fluid. The treatment
of dysnatremias by peritoneal dialysis will be presented in
the peritoneal dialysis section. Attention is required for the
prevention of errors during the treatment of severe dysnatremia
by dialytic methods (110–113). These procedures require
performance in intensive care units by well-trained personnel.
During the procedure, the patient should be clinically monitored,
and [Na] should be determined frequently, e.g., every 1–2 h.
Clinical monitoring should continue and blood chemistries and
concentration of sodium in the dialysis fluid should be repeated
after the procedure. Point-of-care chemistry measurements are
required. Careful application of multidisciplinary protocols for
managing dysnatremias by dialytic methodsmay improve patient
outcomes (114).

Treatment of Hyponatremia by Dialytic Methods
Dialytic methods employed in the treatment of hyponatremia
include CRRT methods, intermittent hemodialysis, and
peritoneal dialysis. Table 4 contains reports of management of
hyponatremia by dialytic methods (115–130). One issue that
requires further study in hyponatremia treated by hemodialysis
is the effect of a decrease in plasma urea concentration during
the procedure. Experimental studies have demonstrated that
a urea concentration gradient between the brain intracellular
and extracellular compartments at the end of a hemodialysis
session causes osmotic entry of fluid into the brain cells and can
contribute to the dialysis disequilibrium syndrome: following
hemodialysis, urea concentration in the brain cells of azotemic
rats was higher than the corresponding plasma concentration
and the brain cells exhibited water gain (131). In addition, the
accumulation of organic osmolytes, in particular myoinositol and
taurine, was higher in brain cells of azotemic than non-azotemic
rats 24 h after correction of chronic hyponatremia (132).

TABLE 4 | Treatment of hyponatremia by dialytic methods.

Dialytic method Reference study

CRRT

CVVH Ji et al. (115)

Ostermann et al. (116)

Yessayan et al. (117)

Algurashi et al. (118)

CVVHD Bender (119)

Vassalo et al. (120)

Victorsdottir et al. (121)

CVVHDF Tandukar et al. (122)

Intermittent hemodialysis

Wendland et al. (123)

Lew et al. (124)

Courteau et al. (125)

Kodama et al. (126)

Lew et al. (127)

Peritoneal dialysis

Gundy and Trafford (128)

Berger et al. (129)

Inagaki et al. (130)

CRRT, continuous renal replacement therapy; CVVH, Continuous veno-venous

hemofiltration; CVVHD, continuous veno-venous hemodialysis; CVVHDF, continuous

veno-venous hemodiafiltration.

On the basis of rapid correction of severe hyponatremia by
hemodialysis with no adverse consequences in one patient, it was
suggested that azotemia protects from such consequences when
hyponatremia is treated by hemodialysis (133). However, osmotic
demyelination syndrome developed after the correction of [Na]
from 100 to 121 mmol/L over 2.5 h during the first hemodialysis
of a patient with pre-dialysis blood urea of 36.4 mmol/L or 218
mg/dl (134). Sirota and Berl (135) suggested that the risk of
osmotic demyelination from rapid correction of hyponatremia
by hemodialysis may be low in patients who have been on a
regular chronic hemodialysis schedule but is substantially higher
in patients starting hemodialysis. The treatment of hyponatremia
by hemodialysis using the correction rates of [Na] recommended
by existing guidelines for the general population should be
combined with a slow rate of reduction of blood urea level by
the use of shorter dialysis times, lower blood or dialysis fluid flow
rates, less efficient dialyzers, or combinations of these measures.
More frequent hemodialysis sessions can compensate for the slow
removal of azotemic substances.

The methodology used for treating hyponatremia by
peritoneal dialysis requires either the addition to the peritoneal
dialysis solution of a volume of hypotonic saline calculated to
bring the sodium concentration of this solution to the desired
level (130), or performance of hourly exchanges of dialysis
solution containing 4.25% dextrose (9). In this last method, free
water transfers from the blood compartment to the peritoneal
cavity during the early phase of a peritoneal dialysis exchange
when using hypertonic dialysis fluid because of sodium sieving
(136). One azotemic patient who was treated for the first time
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with peritoneal dialysis for a [Na] of profound 101 mmol/L
developed osmotic myelinolysis with a fatal outcome (137). [Na]
of this patient was 126 mmol/L on day 2 and 138 mmol/L on
day 3.

Treatment of Hypernatremia by Dialytic Methods
Dialytic methods for treating hypernatremia include CRRT (138–
142), intermittent hemodialysis (124, 143, 144), and peritoneal
dialysis (25, 130, 145). Management of hypernatremia by CRRT is
done by customizing the dialysis fluid (139, 141, 142), or infusing
hypertonic sodium solutions when there is an urgent need for
the very slow rate of reduction in [Na], e.g., in patients with
hypernatremia and cerebral edema (140). The rate of reduction
of [Na] in hypernatremic patients treated with CRRT should be
monitored. In a retrospective study, the hourly rate of reduction
in [Na] > 1 mmol/L and dependency on vasopressors were
shown to be risk factors for mortality (146). In contrast, a
prospective study found no relation between the rate of change in
[Na] during CRRT and mortality in dysnatremic patients (147).

Hypernatremia is corrected by hemodialysis by modifying the
sodium concentration in the hemodialysis fluid (124, 127, 144).
The rate of correction of hypernatremia should be the same as in
the section of treatment in patients with CKD not on dialysis.
For this reason, the sodium concentration in the dialysis fluid
should not differ from [Na] greatly and dialysis should be slow
as detailed in the section on the treatment of hyponatremia by
hemodialysis. A proposed novel method of producing dialysis
fluid allows a larger range of sodium concentration in the dialysis
fluid without altering the concentrations of other important
ingredients, e.g., potassium and calcium, in this fluid (127).
Correction of hypernatremia by peritoneal dialysis is done by
lowering the sodium concentration of the dialysis fluid (25)
or by using the commercial dialysis solution in documented
acute cases in which hypernatremia can be treated at a fast
rate (145).

Needs for Future Studies
There are important deficits in our knowledge about the
treatment of dysnatremias in patients with CKD not on dialysis
and by dialytic methods, particularly by peritoneal dialysis. These
deficits include the targets of change in [Na], the best method
to achieve these targets, the problems encountered during
treatment, and particularly the outcomes of the treatments

(113, 148). Whether treatment of dysnatremias in CKD improves
mortality is another important question that needs to be studied.

Finally, the prevention of dysnatremias is an important factor
in the management of patients with CKD. The range of fluid
intake that allows maintenance of [Na] within the normal range
in this patient group remains limited. Careful instruction to all
patients about fluid intake and identification of patients who
have experienced or may be prone to dysnatremias because of
dietary habits, associated diseases, or medications affecting thirst,
should be part of the routine management of patients with CKD.
A recent review of thirst in hemodialysis patients identified
differences between these patients and individuals with normal
kidney function and areas where our curiosity remains unfulfilled
(149). Studies of thirst in patients with CKD may constitute a
critical step in the prevention of dysnatremias.

CONCLUSIONS

Dysnatremias occur frequently in patients with CKD and are
associated with adverse outcomes. The aim of the treatment
of dysnatremias is the same in patients with CKD and the
general population. Whether azotemia permits faster rates of
correction of dysnatremias in patients with CKD and whether
treatment of these conditions by renal replacement methods
improves patient outcomes are questions that need to be studied.
Prevention of dysnatremias in patients with CKD requires
careful patient education about fluid intake and further research
on thirst regulation and on conditions affecting thirst in this
patient population.
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