

Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products

Alexander O. Terent'ev^{*1,§}, Dmitry A. Borisov¹, Vera A. Vil^{'1} and Valery M. Dembitsky^{1,2}

Review		Open Access
Address: ¹ N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of	<i>Beilstein J. Org. Chem.</i> 2014 , <i>10</i> , 34–114. doi:10.3762/bjoc.10.6	
Sciences, Leninsky Prospect 47, Moscow, 119991, Russia and ² Institute for Drug Research, P.O. Box 12065, Hebrew University,	Received: 17 August 2013	
Jerusalem 91120, Israel	Accepted: 16 November 2013 Published: 08 January 2014	
Email: Alexander O. Terent'ev [*] - alterex@vandex.ru	Associate Editor: T. P. Yoon	
* Corresponding author § Tel +7-916-385-4080	© 2014 Terent'ev et al; licensee Beilstein-Institut. License and terms: see end of document.	
Keywords: cyclic peroxides; 1,2-dioxanes; 1,2-dioxenes; 1,2-dioxolanes; ozonides; 1,2,4,5-tetraoxanes; 1,2,4-trioxanes; 1,2,4-trioxolanes		
ozoniues, 1,2,4,5-tetraoxanes, 1,2,4-thoxanes; 1,2,4-thoxonanes		

Abstract

The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.

Introduction

Approaches to the synthesis of five and six-membered cyclic peroxides, such as 1,2-dioxolanes I, 1,2,4-trioxolanes (ozonides) II, 1,2-dioxanes III, 1,2-dioxenes IV, 1,2,4-trioxanes V, and 1,2,4,5-tetraoxanes VI, published from 2000 to present are reviewed. These compounds are widely used in synthetic and medicinal chemistry (Figure 1). In the last decade, two reviews on this rapidly progressing field were published by McCullough and Nojima [1] and Korshin and Bachi [2] covering earlier studies. There are several review articles on medicinal chemistry of peroxides, where the problems of their synthesis are briefly considered. In addition to these reviews other publications dealing with this subject

appeared: Tang et al. [3], O'Neill, Posner and colleagues [4,5], Masuyama et al. [6], Van Ornum et al. [7], Jefford [8,9], Dembitsky et al. [10-15], Opsenica and Šolaja [16], Muraleedharan and Avery [17], and other [18-27] including dissertations [28-32].

Reviews published earlier on the chemistry of ozone [33-36] and on the chemistry and biological activity of natural peroxides, and cyclic peroxides [37-46] are closely related to this review. Generally speaking, state-of-the-art approaches to the synthesis of cyclic peroxides are based on three key reagents: oxygen, ozone, and hydrogen peroxide. These reagents and their derivatives are used in the main methods for the introduction of the peroxide group, such as the singlet-oxygen ene reaction with alkenes, the [4 + 2]-cycloaddition of singlet oxygen to dienes, the Mukaiyama–Isayama peroxysilylation of unsaturated compounds, the Kobayashi cyclization, the nucleophilic addition of hydrogen peroxide to carbonyl compounds, the ozonolysis, and reactions with the involvement of peroxycarbenium ions.

Each part of the review deals with a particular class of the above-mentioned peroxides in accordance with an increase in

the number of oxygen atoms and the ring size. In the individual sections, the data are arranged mainly according to the common key step in the synthesis of the cyclic peroxides. Examples of the synthesis of peroxide derivatives via modifications of functional groups, with the peroxide bond remaining unbroken, are given in the end of each chapter. In most cases, the syntheses of compounds having high biological activity are considered.

Currently, the rapid progress in chemistry of organic peroxides is to a large degree determined by their high biological activity. In medicinal chemistry of peroxides, particular emphasis is given to the design of compounds having activity against causative agents of malaria and helminth infections. The World Health Organization (WHO) considers malaria as one of the most dangerous social diseases. Worldwide, 300–500 million cases of malaria occur each year, and 2 million people die from it [47,48].

Due to a high degree of resistance in malaria to traditional drugs as quinine, chloroquine, and mefloquine, an active search for other classes of new drugs is performed. In this respect, organic peroxides play a considerable role. In medicinal chemistry of peroxides, artemisinin a natural peroxide exhibiting high antimalarial activity, is the most important drug in use for approximately 30 years. Artemisinin was isolated in 1971 from leaves of annual wormwood (*Artemesia annua*) [49-51]; the 1,2,4trioxane ring V is the key pharmacophore of these drugs. A series of semi-synthetic derivatives of artemisinin were synthesized: artesunate, artemether, and artemisone (Figure 2). Currently, drugs based on these compounds are considered as the most efficacious for the treatment of malaria [52-76].

The discovery of arterolane, a synthetic 1,2,4-trioxolane, is a considerable success in the search for easily available synthetic peroxides capable of replacing artemisinin and its derivatives in medical practice. Currently, this compound is currently in phase III clinical trials [77-81].

The mechanism of antimalarial action of peroxides is unusual for pharmaceutical chemistry. According to the commonly accepted mechanism, peroxides diffuse into *Plasmodium*infected erythrocytes, and the heme iron ion of the latter reduces the peroxide bond to form a separated oxygen-centered radical anion, which rearranges to the C-centered radical having a toxic effect on *Plasmodium* [82-87].

In the course of the large-scale search for synthetically accessible and cheap antimalarial peroxides (compared with natural and semi-synthetic structures), it was found that structures containing 1,2-dioxolane [88-90], 1,2,4-trioxolane [91-101], 1,2-dioxane [102-112], 1,2-dioxene [113-119], 1,2,4-trioxane [120-127] or 1,2,4,5-tetraoxane rings [128-146] exhibit pronounced activity, and in some cases, even superior to that of artemisinin.

Another important field of medicinal chemistry of organic peroxides includes the search for antihelminthic drugs. For example, compounds containing 1,2-dioxolane [147], 1,2,4-trioxolane [148-152], 1,2,4-trioxane [153-158] or bridged 1,2,4,5-tetraoxane [159] moieties show activity against *Schistosoma*. Schistosomiasis is one of the most widespread helminthic diseases; 800 million people are at risk of acquiring this infection [160-174].

Additionally, based on synthetic peroxides, several compounds exhibiting antitumor activity were synthesized. These compounds contain 1,2-dioxolane [10-15,175-178], 1,2-dioxane [10-15,112,178-181], 1,2-dioxene [114,182-185] or 1,2,4-trioxane [10-15,175,176] rings. More than 300 peroxides are known to have a toxic effect on cancer cells [10-15,73,186-206].

Synthetic peroxides exhibit also other activities. For example, compounds containing the 1,2,4-trioxane ring are active against *Trichomonas* [207], compounds with the 1,2-dioxane ring show antitrypanosomal and antileishmanial activities [208-212], and

compounds containing the 1,2-dioxene ring possess fungicidal [210,213-224] and antimycobacterial activities [128-131,225-228]. The present review covers literature relating to 5- and 6-membered cyclic peroxide chemistry published between 2000 and 2013.

Review

1. Synthesis of 1,2-dioxolanes

The modern approaches to the synthesis of 1,2-dioxolanes are based on the use of oxygen and ozone for the formation of the peroxide moiety, the Isayama–Mukaiyama peroxysilylation, and reactions involving peroxycarbenium ions. Syntheses employing hydrogen peroxide and the intramolecular Kobayashi cyclization are less frequently used.

1.1. Use of oxygen for the peroxide ring formation

The singlet-oxygen ene reaction with alkenes provides an efficient tool for introducing the hydroperoxide function. The reaction starts with the coordination of oxygen to the double bond followed by the formation of hydroperoxides presumably by a stepwise or concerted mechanism [229,230]. The oxidation of α,β -unsaturated ketones **1a**-**c** by singlet oxygen affords 3-hydroxy-1,2-dioxolanes **3a**-**c** via the formation of β -hydroperoxy ketones **2a**-**c** (Scheme 1) [231].

Dioxolane **6** was synthesized in 36% yield by the reaction of oxygen with hydroperoxide **4** in the presence of di-*tert*-butyl peroxalate (DTBPO) followed by the treatment of the reaction mixture with acetic anhydride and pyridine at room temperature (Scheme 2).

It should be emphasized that a mixture of dioxolanes **5** and **6** in a ratio of 7:3 is formed already in the first step [232].

The photooxygenation of oxazolidines **7a–d** through the formation of hydroperoxides **8a–d** gives spiro-fused oxazolidinecontaining dioxolanes **9a–d** in low yields (12–30%) (Scheme 3) [233].

The reaction was performed in a temperature range from -10 to -5 °C. The conversion of oxazolidines 7 and the yields of dioxolanes 9 were determined by ¹H NMR spectroscopy.

An efficient method for the synthesis of 1,2-dioxolanes is based on the oxidation of cyclopropanes by oxygen in the presence of transition-metal salts as the catalysts. The reactions of bicycloalkanols 10a-e with singlet oxygen in the presence of catalytic amounts of Fe(III) acetylacetonate produce peroxides 12a-e, which can also be synthesized starting from silylated bicycloalkanols 11a-e with the use of Cu(II) acetylacetonate (Scheme 4, Table 1) [234].

Scheme 4: Oxidation of cyclopropanes 10a-e and 11a-e with preparation of 1,2-dioxolanes 12a-e.

	Bicycloalkanol silylated bicycloalka	10a–e , anol 11a–e		1,2-D	oxolane 12a–e	
			Method A ^a		Method B ^b	
	R	n	Reaction time, h	Yield, %	Reaction time, h	Yield, %
a	CH ₃	1	3	35	5	54
b	C ₄ H ₉	1	3	55	3.5	84
C	C ₆ H ₁₃	1	3	68	-	_
d	CH ₂ Ph	1	3	50	5	78
е	CH ₃	2	36	54	6	80

Similarly, the reactions of silylated bicycloalkanols 13a-c with oxygen in the presence of the catalyst VO(acac)₂ yielded dioxolanes 14a-c, which made it possible to perform the oxidation without irradiation (Scheme 5, Table 2) [235].

Scheme 5: VO(acac)₂-catalyzed oxidation of silylated bicycloalkanols 13a-c.

Table	Table 2: Structures and yields of dioxolanes 14a-c.							
Silylated bicycloalkanol 13a–c								
	R ¹	R ²	Solvent	Yield 14a–c , %				
a b c	H H Me	Me Bn Me	EtOH CF ₃ CH ₂ OH CF ₃ CH ₂ OH CF ₃ CH ₂ OH	45 86 43 43				

This reaction gives β -hydroxyketones as by-products that are formed as a result of the decomposition of dioxolanes 14.

Cyclopropanols **15a–g** are readily oxidized by molecular oxygen in the presence of Mn(II) abietate or acetylacetonate (Scheme 6) [236].

Presumably, the reaction proceeds via the intermediate formation of O- and C-centered radicals **16a–g** and **17a–g**, respectively. According to this method, dioxolanes **18a–g** (exist in equilibrium with the open form **19a–g**) were synthesized in 60–80% yields.

Like hydroxycyclopropanes, aminocyclopropanes are transformed into 1,2-dioxolanes. For example, *N*-cyclopropyl-*N*phenylamines **20a–c** form dioxolanes **21a–c** in the presence of atmospheric oxygen (Table 3). It was found that the reaction rate substantially increases in the presence of catalytic amounts of $[(phen)_3Fe(III)(PF_6)_3]$ or equimolar amounts of benzoyl peroxide or di-*tert*-butyl peroxide. The possible mechanism of the oxidation is shown in Scheme 7 [237].

According to the ¹H NMR data, dioxolanes **21a–c** are formed under the above-mentioned conditions in almost quantitative yields; the yields based on the isolated product were not higher than 80% [237].

Scheme 6: Mn(II)-catalyzed oxidation of cyclopropanols 15a-g.

Table 3: Peroxidation of N-cyclopropyl-N-phenylamines 20a-c to form 3-(1,2-dioxalanyl)-N-phenylamines 21a-c.

Dioxolane 21a-c

	R ¹	R ²	Reaction conditions
а	Н	Н	 (BzO)₂ (1 mol/1 mol 20a), CHCl₃, dark, −20 °C, 3 days. (<i>t</i>-BuO)₂ (1 mol/1 mol 20a), CHCl₃, UV (254 nm), ambient temperature, aerobic, 2 h. [(phen)₃Fe(III)(PF₆)₃] (0.6 % mol), CHCl₃, ambient temperature, aerobic, 1 h.
b	Me	Н	1. (t-BuO) ₂ (1 mol/1 mol 20b), CHCl ₃ , UV (254 nm), ambient temperature, aerobic, 2 h.
с	Н	Me	1. (<i>t</i> -BuO) ₂ (1 mol/1 mol 20c), CHCl ₃ , UV (254 nm), ambient temperature, aerobic, 2 h. 2. [(phen) ₃ Fe(III)(PF ₆) ₃] (0.6 % mol), CHCl ₃ , ambient temperature, aerobic, 1 h.

Structurally similar 3-ethyl-6a-methyl-6-(4-phenoxyphenyl)hexahydro[1,2]dioxolo[3,4-*b*]pyrroles **24a** and **24b** were synthesized from (*Z*)-*N*-(hex-3-enyl)-*N*-(4-phenoxyphenyl)acetamide (**22**). It was suggested that aminocyclopropane **23** is formed in situ, which is subsequently oxidized in air on silica gel (Scheme 8) [238]. The total yield of both isomers **24** was 31%.

Trifluoromethyl-containing dioxolane **25** (Figure 3) was synthesized according to this method in 40% yield [239].

A series of 1,2-dioxolanes **27a–e** containing various functional groups R were prepared by the oxidation of cyclopropanes **26a–e** (Scheme 9, Table 4).

The reaction was performed in the presence of Ph_2Se_2 (10 mol %) and azobisisobutyronitrile (AIBN, 8 mol %) in air under irradiation for two days. The product was purified by

Scheme 9: Synthesis of 1,2-dioxolanes 27a-e by the oxidation of cyclopropanes 26a-e.

flash chromatography to obtain a mixture of cis and trans isomers, whose ratio depends primarily on the nature of the substituent in cyclopropanes 26a-e [240].

The oxidation of methylenecyclopropanes 28a and 28b under photoinduced electron-transfer conditions is described by a similar scheme (Scheme 10).

The reaction was performed in acetonitrile or in a mixture of toluene and acetonitrile with the use of 9,10-dicyanoanthracene (DCA), 1,2,4,5-tetracyanobenzene (TCNB), or N-methyl-quinolinium tetrafluoroborate (NMQ⁺BF₄⁻) as sensitizers. Under these conditions, dioxolane 29a was obtained in quantitative yield (¹H NMR data), the yield of **29b** was not reported [241].

Under irradiation in the presence of oxygen, 1,5-bis(4methoxyphenyl)bicyclo[3.1.0]hexane (30) and 1,5-bis(4methoxyphenyl)-6,7-diazabicyclo[3.2.1]oct-6-ene (31) were transformed into bicyclic dioxolane 33. It was suggested that both reactions proceed via the formation of 1,3-radical cation 32 (Scheme 11).

Scheme 11: Irradiation-mediated oxidation.

Dioxolane 33 was synthesized in the highest yields (91% from 30 and 100% from 31) in acetonitrile with the use of 9,10dicyanoanthracene (DCA) as the sensitizer [242].

After irradiation of diazene 34 in an argon matrix at 10 K, biradical 35 was detected by IR spectroscopy and the reaction of the latter with oxygen at 10 K proceeded regioselectively to give dioxolane 36 (Scheme 12) [243].

Bicyclic peroxide 2-heptyl-3,4-dioxabicyclo[3.3.0]oct-1(8)-ene was prepared by a similar process [244].

The oxidation of arylacetylenes 37a-h with atmospheric oxygen in the presence of catalytic amounts of Mn(OAc)3 in an

Scheme 12: Application of diazene 34 for dioxolane synthesis.

excess of acetylacetone afforded dioxolanes **38a-h** in moderate yields (34–64%) (Scheme 13, Table 5) [245].

Scheme 13: Mn(OAc)₃-catalyzed cooxidation of arylacetylenes 37a–h and acetylacetone with atmospheric oxygen.

Table 5: Structures and yields of dioxolanes 38a-h and epoxides 39a-h.

37a–h	R ¹	Yield 38a–h , %	Yield 39a–h , %
а	Ph	45	5
b	4-MeC ₆ H ₄	52	7
С	4-MeOC ₆ H ₄	64	2
d	4-CIC ₆ H ₄	38	2
е	4-FC ₆ H ₄	41	6
F	1-naphthyl	54	6
g	2-naphthyl	52	8
h	3,4-(MeO) ₂ C ₆ H ₃	34	11

The reaction was performed at 23 °C in glacial acetic acid in air; the $37/acetylacetone/Mn(OAc)_3$ molar ratio was 1/10/10. The reaction gave oxiranes 39 as by-products, which can also be synthesized in quantitative yields by the treatment of dioxolanes 38 with silica gel in methanol [245].

1.2. Peroxidation of alkenes with the Co(II)/Et₃SiH/ O₂ system (Isayama–Mukaiyama reaction)

Peroxysilylation of alkenes with molecular oxygen in the presence of triethylsilane catalyzed by cobalt(II) diketonates was described for the first time by S. Isayama and T. Mukaiyama in 1989 [246,247]. Currently, this approach is one of the main methods for the preparation of peroxides from alkenes.

Compounds (oxidized by the Isayama–Mukaiyama reaction) containing a reaction center that can be subjected to the attack

by a peroxide radical, are able to undergo intramolecular cyclization to form the 1,2-dioxolane ring. For example, the $Co(modp)_2$ -catalyzed peroxysilylation (modp = 1-morpholino-5,5-dimethyl-1,2,4-hexanetrionate) of (2-vinylcy-clopropyl)benzene (**40**) affords triethyl(1-(5-phenyl-1,2-dioxolan-3-yl)ethylperoxy)silane (**41**) in 37% yield (Scheme 14).

The reaction was carried out in 1,2-dichloroethane at room temperature, and the reaction products were separated by column chromatography. 1-Hydroxy-1-phenylpentan-3-one (**42**) was isolated as a by-product in 16% yield [248].

The peroxidation of 1,4-dienes 43a,b with the Co(modp)₂/ Et₃SiH/O₂ system according to a similar reaction scheme gave dioxolanes 44a,b. Acetophenone (45) was obtained as the by-product (Scheme 15, Table 6) [249].

The desilylation of the initially formed silicon peroxide followed by cyclization of the hydroperoxide accompanied by the attack on the electrophilic center is another example of the use

Table 6: Synthesis of dioxolanes 44a,b.									
1,4-Diene 43	R	Reaction time, h	Conversion, %	Yiel	d, %				
				44	45				
а	Н	4.5	47	27	49				
b	COOEt	2	44	56	22				

of the Isayama–Mukaiyama reaction for the synthesis of cyclic peroxides. In some cases, the reaction with 1,5-dienes **46a–d** produces, along with 1,2-dioxanes **51** (desilylation products of the corresponding 1,2-dioxanes **48**), 1,2-dioxolanes (**52b**,d) as a result of cyclization of the corresponding peroxysilyl epoxides **49**. In these reactions, unsaturated triethylsilyl peroxides **47** are formed as by-products, which are desilylated during hydrolysis

to give the unsaturated hydroperoxides **50** (Scheme 16, Table 7) [249].

1,2-Dioxolanes can be produced from oxetanes **53a,b** containing a double bond in the side chain according to a similar scheme. The first step afforded peroxysilanes **54a,b**, which upon treatment with aqueous HF gave the target dioxolanes **55a,b** (Scheme 17) [250].

A similar way to 1,2-dioxolanes used an oxirane cycle for the stages of ring opening followed by 1,2-dioxolane ring closing [251].

The synthesis of spirodioxolane **59** involved the peroxysilylation of 1,3-dicyclohexenylpropan-2-yl acetate (**56**) catalyzed by cobalt complexed with 2,2,6,6-tetramethylheptane-3,5-dione $(Co(THD)_2)$ as the first step giving 1,3-bis(1-(triethylsilylperoxy)cyclohexyl)propan-2-yl acetate (**57**) that was subse-

Piere 10 Yield ^a , %									
Diene 46	R'	R-	Reaction time, h	Conversion, %	45	49	50	51	52
а	н	Н	6	82	4	_	13	31	_
b	Н	Me	2.5	83	36	-	12	13	33
с	н	Ph	3.5	75	57	38	7	27	-
d	Me	Me	3	84	51	_	_	31	26

quently transformed into the carbonyl-containing diperoxide (1,3-bis(1-(triethylsilylperoxy)cyclohexyl)propan-2-one) (58) in two steps. The latter was treated with *p*-TsOH to give the target peroxide 59 (Scheme 18) [252].

1.3. The use of ozone. Peroxycarbenium ions in the 1,2-dioxolanes synthesis

The ozonolysis of unsaturated compounds is a reliable and facile method for the introduction of the peroxide functional group. As in the above-considered studies, the intramolecular cyclization of ozonolysis products can be performed with the use of the hydroperoxide group provided that there is an appropriate electrophilic center. are formed immediately in the reaction mixture rather than in the course of the treatment or purification of the reaction products. It was suggested that the reaction proceeds via the formation of hydroperoxy acetals **61a,b** (Scheme 19) [250].

The ozonolysis of 9-methyleneheptadecane-7,11-diylbis(methanesulfonate) (63) gave 9-oxoheptadecane-7,11-diylbis(methanesulfonate) (64). The latter reacted with H_2O_2 in the presence of sulfuric acid (or iodine) as the catalyst to form 9,9dihydroperoxyheptadecane-7,11-diyl-bis(methanesulfonate) 65, and the replacement of the mesyl groups in the latter compound afforded 3,8-dihexyl-1,2,6,7-tetraoxaspiro[4.4]nonane (66, Scheme 20). The yield of dioxolane 66 was 36% based on 63 [252].

The reaction of oxetanes **60a**,**b** with ozone in methanol produced 3-alkoxy-1,2-dioxolanes **62a**,**b**. The analysis of the reaction mixture (TLC, NMR) confirmed that cyclic peroxides

The treatment of 3,3'-(cyclohexa-3,6-diene-1,3-diyl)dipropan-1ol (67) and 4,4'-(cyclohexa-3,6-diene-1,3-diyl)dibutan-2-ol (69)

with ozone in MeOH/CH₂Cl₂ followed by the addition of a catalytic amount of *p*-TsOH lead to the intramolecular peroxyketalization that proceeds through the formation of the peroxycarbenium ion (shown in Scheme 21 for the ozonolysis of **67** as an example) to give finally dispiro-1,2-dioxolanes: 1,8,12,13tetra-oxadispiro-[4.1.4.2]tridecane **68** (yield 67%) and two isomers of 2,9-dimethyl-1,8,12,13-tetraoxadispiro[4.1.4.2]tridecane **70** and **71** (combined yield 72%) (Scheme 21) [253].

The spirohydroperoxydioxolanes, 5-hydroperoxy-2',3'-dihydrospiro[[1,2]dioxolane-3,1'-indene] (**75a**) and 5-hydroperoxy-3',4'-dihydro-2'*H*-spiro[[1,2]dioxolane-3,1'-naphthalene] (**75b**), were synthesized by the ozonolysis of 1-allyl-1-hydroperoxy-2,3-dihydro-1*H*-indene (**72a**) and 1-allyl-1-hydroperoxy-1,2,3,4-tetrahydronaphthalene (**72b**), respectively, in an Et₂O/ CF₃CH₂OH system (2:1). The reaction proceeds via the formation of ozonide **73** followed by elimination of formaldehyde to give peroxycarbenium ion **74** that undergoes cyclization via the attack of the hydroperoxide group on the carbon center of peroxycarbenium ion **74** (Scheme 22) [254].

Spirohydroperoxydioxolane **75a** (n = 1) was obtained in 71% yield (the diastereoisomeric ratio was 1:1); the yield of **75b** (n = 2) was 21% (the diastereoisomeric ratio was 1:1).

5'-Hydroperoxyspiro[chromane-2,3'-[1,2]dioxolane] (77, yield 18%) and (3*S*,5*S*)-3,5-dihydroperoxy-3-(3-phenylpropyl)-1,2-dioxolane (79, yield 22%) (Scheme 23) were synthesized in a similar way starting from 2-allyl-2-hydroperoxychromane (76) and (4,4-dihydroperoxyhept-6-enyl)benzene (78), respectively [254].

An oxidative rearrangement takes place in the reaction of azepino[4,5-*b*]indole **80** with ozone. The addition of ozone to the endocyclic double bond (molozonide **81**) and the formation of the Criegee intermediate are followed by a 1,3-dipolar interaction of the peroxycarbenium ion with the double bond (**82**) to form dioxolane **83**. The yield was not lower than 48% but no exact yield was reported (Scheme 24) [255].

The peroxycarbenium ions produced by the decomposition of 1,2,4-trioxolanes can be trapped with allyltrimethylsilane. For example, the SnCl₄-mediated fragmentation of ozonides **84a–I**

Scheme 23: Synthesis of spirohydroperoxydioxolane 77 and dihydroperoxydioxolane 79.

in the presence of allyltrimethylsilane in dichloromethane gives a complex mixture of products **85–94**, including dioxolanes **86a–i**, **87i**, **90j–l**, and **91j** (Scheme 25, Table 8) [256].

Treatment of the bicyclic ozonide 1-methyl-6,7,8trioxabicyclo[3.2.1]octane **84m**, with SnCl₄ in the presence of allyltrimethylsilane produces a mixture of two *cis* diastereomers and two *trans* diastereomers (in a ratio of 35:35:15:15) of 7-(3-methyl-5-((trimethylsilyl)methyl)-1,2-dioxolan-3-yl)hept-1-en-4-ol **95** in a total yield of 48% (Scheme 26) [256].

Scheme 25: SnCl₄-mediated fragmentation of ozonides 84a-I in the presence of allyltrimethylsilane.

						Yield, %		
Ozonide 84	R ¹	R ²	T, ℃	Lactone 85	Dioxolane 86	Dioxolane 87	Ketone 88	Alcohol 89
a	-(CH ₂)	4-	-78 to 0	11	50	_	88a (traces)	_
o	-(CH ₂)	5-	-78 to 0	17	57	-	88b (traces)	_
C	-(CH ₂)	6-	-78 to 0	39	24	-	88c (traces)	_
d	CH_3	Ph	−78 to 0	25	61	-	88d (93%)	_
9	C₄H ₉	C ₄ H ₉	-78 to 0	40	14	-	88e (70%)	75
F	Н	C ₈ H ₁₇	-78	_	56	-	_	50
g	Н	Ph	-78	_	79	-	_	13
h	Н	Н	-78	_	10	_	_	_
	CH_3	$C(CH_3)_3$	−78 to 0	31	21	9 (<i>cis</i>)	-	-
Ozonide 84	R ¹	R ²	<i>T</i> , °C	Dioxolane 90 (<i>cis:trans</i>)	Dioxolane 91	Carbonyl compound 92	Alcohol 93	Alkene 94
l	Н	C ₃ H ₇	-78	15 (1:1)	7	39	93j (20%)	_
k	Н	Н	-78	15 (1:1)	_	22	93j (24%)	-
l	CH ₃	Н	-78	9 (1:1)	_	43	_	2.5

Table 8: The SnCl₄-mediated fragmentation of ozonides 84a-I in the presence of allyltrimethylsilane

These syntheses of dioxolanes involve the formation of the peroxycarbenium ion as the key step. The reaction of the latter with allyltrimethylsilane followed by the intramolecular cyclization finally leads to the dioxolane ring.

Dioxolanes **99–102** are produced from alkoxyhydroperoxides **96a–g** (ozonolysis products of alkenes) in a similar way. The first step results in the formation of peroxycarbenium ions **97**, which are trapped with allyltrimethylsilane under the formation of intermediate hydroperoxides **98**. Then either cyclic dioxolanes **99–102** or unsaturated compounds **103–107** are formed as the major reaction products depending on the nature of the substituents and the Lewis acid (Scheme 27, Table 9) [257].

Scheme 27: MCl_4 -mediated fragmentation of alkoxyhydroperoxides 96 in the presence of allyltrimethylsilane.

Table 9: Synthesis of	1,2-dioxo	lanes 99–102 .				
Hydroperoxide 96	R ¹	R ²	R ³	М	Dioxolane 99–102 (yield, %)	Alkene 103–107 (X, yield, %)
а	Me	Me	Ме	Ti	99 (31)	-
b	Me	Me	(CH ₂) ₂ OMe	Sn	99 (56)	-
b	Me	Me	(CH ₂) ₂ OMe	Ti	99 (12)	103 (–OOH, 23)
с	4- <i>tert-</i> butyl- cyclohexylidene		Ме	Ti	-	104 (–O ₂ –, 31)
c	4- <i>tert-</i> cycloh	butyl- iexylidene	Ме	Sn	100 (42)	-
d	4- <i>tert-</i> cycloh	butyl- iexylidene	(CH ₂) ₂ OMe	Sn	100 (59)	-
е	Me	BnOCH ₂	Me	Ti	101 (12)	105 (=O, 62)
f	Bu	Н	Me	Ti	102 (7)	106 (OMe, 63)
g	Bu	Н	(CH ₂) ₂ OMe	Ti	102 (15)	107 (O(CH ₂) ₂ OMe, the yield was not determined)

The reaction of trialkylsilylperoxyacetals with alkenes in the presence of Lewis acids also proceeds through the formation of peroxycarbenium ions. For example, the reaction of methyl 2-(4-methoxy-4-(triethylsilylperoxy)cyclohexyl)acetate (**108**) with 2-methyleneadamantane (**109**) produced adamantane-2-spiro-3',8'-methoxycarbonylmethyl-1',2'-dioxa-spiro[4.5]decane (**110**) in 40% yield (Scheme 28) [258]. nium ions **112** enabled the synthesis of 1,2-dioxolanes containing various functional groups **113–130** in good yields by the reactions with alkenes (Scheme 29, Table 10) [88,90,259].

1.4. Methods for the synthesis of 1,2-dioxolanes from hydrogen peroxide and hydroperoxides

This section deals with reactions, in which hydrogen peroxide or hydroperoxides are used for the construction of the fivemembered peroxide ring. In all syntheses, the final (key) step involves the intramolecular cyclization of hydroperoxide with

Scheme 29: SnCl₄-catalyzed reaction of triethylsilylperoxyacetals 111 with alkenes.

the attack on the electrophilic center (an activated double bond or a carbon atom of a keto or ester group).

The desilylation of *tert*-butyldimethylsilylperoxy ketones **131a,b** with HF followed by cyclization and subsequent reaction with monomethylethylene glycol afforded dioxolanes **132a,b** in 75 and 88% yield, respectively. The intermediate hydroxydioxolanes **131'a,b** were used in the second step without isolation (Scheme 30) [260]. A series of analogues of plakinic acids were synthesized by the modification of the peroxyketal moiety of dioxolanes **132a** and **132b** [260].

The monoperoxy ketal moiety of 4-(2-methoxypropan-2ylperoxy)nonan-2-one (133) was used for the generation of the hydroperoxide group. The intramolecular cyclization afforded 3-methyl-5-pentyl-1,2-dioxolan-3-ol (134), which could be easily reacted with monomethylethylene glycol to form 3-(2methoxyethoxy)-3-methyl-5-pentyl-1,2-dioxolane (135). Allylation of the latter produced 3-allyl-3-methyl-5-pentyl-1,2-dioxolane (136) in 47% yield (Scheme 31) [261].

The asymmetric peroxidation of methyl vinyl ketones **137a–e** with 9-amino-9-deoxyepiquinine **138** and CCl₃COOH afforded

Scheme 30: Desilylation of tert-butyldimethylsilylperoxy ketones 131a,b followed by cyclization.

hydroxydioxolanes **139a–e** with high enantiomeric excess (ee 94–95%) (Scheme 32) [262].

The Kobayashi synthesis of 1,2-dioxolanes represents an intramolecular version of the Michael reaction, in which the hydroperoxide group acts as the nucleophile. Generally, the reaction is performed in fluorinated alcohols (CF_3CH_2OH or (CF_3)₂CHOH) in the presence of diethylamine or, in some cases, of cesium hydroxide. Initially, the method was proposed for the synthesis of the 1,2-dioxane moiety (examples are considered in the corresponding section) [263]. However, it was shown that this method is also applicable to the preparation of structurally complex 1,2-dioxolanes, such as methyl 2-(5-(5-methylfuran-2-yl)-1,2-dioxolan-3-yl)acetate (141) from the

furan derivative (*E*)-methyl 5-hydroperoxy-5-(5-methylfuran-2yl)pent-2-enoate (**140**) (Scheme 33) [264].

A simple method was developed for the synthesis of cyclopropane-containing oxodioxolanes **143a–j** and is based on the hydroperoxidation of tertiary alcohols **142a–j** in an acidic medium followed by cyclization of the intermediate hydroperoxides through the ester group (Scheme 34) [265].

This method allows for the use of a nonhazardous 30% hydrogen peroxide solution. However, the authors mentioned that structurally similar tertiary alcohols, without a cyclopropane substituent, are inert under the reported conditions.

				\rightarrow	OEt -	>		⊳ 0		
			\vee	R' \ R ³		THF, 0–5 °C, 4–6 h		χ ³		
142a–j 143a–j										
		R ¹	R^2	R ³	Yield, %		R ¹	R^2	R ³	Yield, %
	143a	Me	н	н	80	143f	Ph	Н	н	42
	143b	Me	Н	Me	38	143g 4	-chlorophenyl	Н	Н	55
	143c cyc	clopropyl	Н	Н	69	143h	Me	Н	Et	52
	143d cyc	clopropyl	Н	Me	39	143i	Me	Me	Me	33
	143e cyc	clopropyl	Н	Et	35	143j су	/clopropyl	Ме	Ме	30
Schem	e 34: Synthe	esis of oxodio	kolanes 14	3a–j.						

Haloperoxidation reaction that is accompanied by intramolecular ring closure represents another version of the cyclization reaction. For example, the reaction of bromine with unsaturated hydroperoxide **146** (produced by reaction of 1,4,5,8-tetrahydronaphthalene (**144**) with singlet oxygen via the formation of 4a-hydroperoxy-1,4,4a,5-tetrahydronaphthalene (**145**) gives hydroperoxide-containing bromonium cation **147** as the intermediate, which undergoes cyclization to form 1,2-dioxolane-containing 7-bromo-4,5,10,11-tetraoxatetra-cyclo[7.2.2.1^{3,6}.0^{3,9}]tetradec-12-ene (**148**) (Scheme 35).

The cyclization occurs selectively because the hydroperoxide group in intermediate **147** attacks only one of two possible electrophilic carbon centers [266].

1.5. 1,2-Dioxolane ring formation through oxidation of the allylic position

1,2-Dioxolane-containing compounds **150a–d** were synthesized by the oxidation of triterpenes **149a–d** with $Na_2Cr_2O_7/N$ hydroxysuccinimide (Scheme 36). The resulting compounds exhibit antitumor activity comparable with that of betulinic acid [175-177].

1.6. Structural modifications, in which the 1,2-dioxolane ring remains intact

The possibility of performing the Curtius and Wolff rearrangements to form 1,2-dioxolane ring-retaining products was exemplified by the synthesis of ethyl (3,5,5-trimethyl-1,2-dioxolan-3yl)methylcarbamate (**152**) and methyl 3-(3,5,5-trimethyl-1,2dioxolan-3-yl)propanoate (**154**) (through formation of stable diazodioxolane **153**) from 2-(3,5,5-trimethyl-1,2-dioxolan-3yl)acetic acid (**151**) (Scheme 37) [267].

Dioxolane **155** that contains a free hydroxy group was synthesized by the oxidative desilylation of silicon-containing peroxide **124** with *n*-Bu₄NF and H_2O_2 (Scheme 38) [259].

Dioxolane **158** with the aminoquinoline antimalarial pharmacophore was synthesized in two steps by the oxidation of alcohol **156** with $H_5IO_6/RuCl_3$ followed by amidation of the

Scheme 38: Oxidative desilylation of peroxide 124.

acid **157** (Scheme 39) [88]. It was shown that compound **158** exhibits antimalarial activity comparable with that of artemisinin [88].

Plakinic acids belong to a large family of natural products, which were shown to be highly cytotoxic toward cancer cells and fungi. Diastereomers of plakinic acid A, **162a** and **162b** were synthesized starting from dioxolane ((R)-3-((2R,3E,6S,7E)-2,6-dimethyl-8-phenylocta-3,7-dienyl)-5-(2-methoxyethoxy)-3,5-dimethyl-1,2-dioxolane) (**159**) [260]. In the first step, dioxolane **159** was treated with (1-(ethylthio)viny-loxy)-trimethylsilane in the presence of TiCl₄ to obtain *S*-ethyl 2-((R)-5-((2R,3E,6S,7E)-2,6-dimethyl-8-phenylocta-3,7-dienyl)-3,5-dimethyl-1,2-dioxolan-3-yl)-ethanethioate (**160**). The subsequent reaction with sodium methoxide in methanol

produced the corresponding esters **161a** and **161b**, which were hydrolyzed to prepare the target plakinic acids (Scheme 40).

2. Synthesis of 1,2,4-trioxolanes (ozonides)

The currently most widely used methods for the synthesis of 1,2,4-trioxolanes are based on reactions of ozone with unsaturated compounds, such as the ozonolysis of alkenes, the crossozonolysis of alkenes with carbonyl compounds, and the crossozonolysis of O-alkylated oximes in the presence of carbonyl compounds (Griesbaum coozonolysis).

2.1. Ozonolysis of alkenes

According to the mechanism proposed by R. Criegee [268,269] the ozonolysis of alkenes **163** involves several steps: the 1,3-dipolar cycloaddition of ozone to the double bond to form

unstable 1,2,3-trioxolane 164 (so-called molozonide) that is followed by its decomposition to a peroxycarbenium ion and a carbonyl compound (Criegee intermediates). The 1,3-dipolar cycloaddition of the intermediates with each other form the 1,2,4-trioxolane 165 (Scheme 41, Table 11). Generally, the ozonolysis is performed in aprotic solvents at low temperatures and in some cases, on polymeric substrates. Since various compounds containing a C=C group are easily available, a wide range of functionalized 1,2,4-trioxolanes can be synthesized in moderate to high yields.

Table 11: Examples of 1,2,4-trioxolanes produced by the ozonolysis of alkenes.								
Alkene 163	Ozonolysis conditions	1,2,4-Trioxolane 165	Yield, %	Reference				
Ph Ph Ph	Et₂O, −70 °C	MeO OOH Ph O O O O	24	[270]				
MeQ OOH	Et₂O, −70 °C	MeQ OOH OOO	27	[270]				
\rightarrow	hexane, −78 °C		78	[256]				

Table 11: Examples of 1,2,4-trioxolanes produced by the ozonolysis of alkenes. (continued)								
Ph C ₃ H ₇	hexane, -78 °C	$Ph C_3H_7$	73	[256]				
/=== Ph	hexane, −78 °C	O-O Ph	77	[256]				
Ph	hexane, −78 °C	Ph	61	[256]				
OMe T Me ₃ SiO NH OBn	isooctane/CCl₄, −78 °C, 1 h	Me ₃ SiO NO ₂ O	>82	[271]				
°	CH₂Cl₂, −78 °C		95	[272]				
°,	CH₂Cl₂, −78 °C	0-0-0	90	[272]				
	CH₂Cl₂, −78 °C		92	[272]				
	CH₂Cl₂, −78 °C		93	[272]				
°	CH ₂ Cl ₂ , −78 °C		93	[272]				
Ph	CH ₂ Cl ₂ , −78 °C	Ph O	94	[272]				
$\langle \overset{Ph}{\overset{O}} \rangle$	pentane, −78 °C	$\langle Ph $ $\langle O $	63	[272]				
F F $F_3C(F_2C)_5$ F	freon-113, 15–20 °C, 2 h	$F_3C(F_2HC)_5$ $F_3C(F_3HC)_5$ $F_3C(F_3HC)_$	The yield was not determined	[273,274]				
$F_{3}C(F_{2}C)_{4}$ $F_{3}C(F_{2}C)_{4}$ $F_{3}C(F_{2}C)_{4}$ $F_{3}C(F_{2}C)_{4}$ F	freon-113, 15–20 °C, 2 h	$F_{3}C(F_{2}C)_{4}$ CF_{3} F $F_{3}C(F_{2}C)_{4}$ F_{4} $F_{3}C(F_{2}C)_{4}$ CF_{3} $F_{3}C(F_{2}C)_{4}$ CF_{3} CF_{3} CF_{3} CF_{3} F_{4} CF_{3} CF_{3	The yield was not determined	[273]				
/ C ₇ H ₁₅	CH₂Cl₂, −78 °C	0-0 C ₇ H ₁₅	96	[275]				

Table 11: Examples of 1,2,4-trioxolanes produced by the ozonolysis of alkenes. (continued)					
	polymer-based, −78 °C, 8 h		23	[276]	
	polymer-based, −78 °C, 3 h		38	[276]	
	CH₂Cl₂, −70 °C		48	[277]	
(F ₃ C) ₂ FCFC=CFCF ₃	without solvent, −133 to −43 °C	$F_3C \xrightarrow{O-O}_{CF_3} F_{CF_3}$	100	[278]	
AcO AcO AcO OMe	1) CH ₂ Cl ₂ , −78 °C, 15 min. 2) Me ₂ S, rt, 6 h	AcO AcO AcO OMe	71	[279]	
	hexane, −78 °C, 30 min		6	[280]	
	CH ₂ Cl ₂ , −78 °C, 20 min		The yield was not determined	[281]	
TBDMSO	CH ₂ Cl ₂ , −78 °C, 2 h		>97	[282]	
CHOMe	CDCl ₃ , −65 °C	O ^C CHOMe O O	88	[283]	
MeO ₂ C	CFCl ₃ , −70 °C	H O CO ₂ Me	100	[283]	
Ph ^w O	CH₂Cl₂, −78 °C, 1 h	Ph ^w 0 ^w 0 0 0 0	85	[284]	

2.2. Cross-ozonolysis of alkenes with carbonyl compounds

The peroxycarbenium ion produced by the decomposition of 1,2,3-trioxolane (molozonide) can react with externally introduced carbonyl compounds to form the corresponding 1,2,4trioxolanes. The pathway of decomposition of 1,2,3-trioxolanes is determined by the structure of the starting alkene **166**. In some cases, a high selectivity of the formation of cross-ozonolysis products 1,2,4-trioxolanes (ozonides) **167**, can be achieved (Scheme 42, Table 12).

Alkene 166	Carbonyl compound	Ozonolysis conditions	1,2,4-Trioxolane 167	Yield, %	Reference
$n(H_2C)$ n = 1, 2, 3, 4, 8	$R^{5} = H CH_{3} C_{6}H_{5} H$ $R^{6} = H CN CN CH_{3}$	CH₂Cl₂, −78 °C	$R_{y}^{5} O^{-O} O^{-$	17–74	[291]
	$R_{5}^{5}O^{-}O$ $R_{6}^{6}O^{-}(CH_{2})_{n+2}^{-}O^{-}$ $R_{7}^{5} = H CH_{3} C_{6}H_{5} H$ $R_{6}^{6} = H CN CN CH_{3}$	CH₂Cl₂, −78 °C	$\overbrace{O}^{O} (CH_2)_{n+2} \xrightarrow{O} O_{C_n} (CH_2)_{n+2} \xrightarrow{O} R^5 $	9–57	[291]
\bigcup	$R^{5} = H CH_{3}$ $R^{6} = H CN$	CH₂Cl₂, −78 °C	R ⁵ O-O R ⁶ O (CH ₂) ₄ O	50 42	[291]
	$R_{4}^{5} O^{-O} (CH_{2})_{4} O^{-O}$ $R^{6} O^{-O} (CH_{2})_{4} O^{-O}$ $R^{5} = H CH_{3}$ $R^{6} = H CN$	CH₂Cl₂, −78 °C	$\overbrace{}^{O-O}_{O} (CH_2)_4 \xrightarrow{}^{O-O}_{C} \xrightarrow{}^{O$	38 32	[291]
	$ \begin{array}{c} O\\ R^{5} R^{6}\\ R^{5} = CH_{3} C_{6}H_{5} H\\ R^{6} = CN CN CH_{3} \end{array} $	CH₂Cl₂, −78 °C	$O = \begin{pmatrix} O - O R^5 \\ O R^6 \\ R^6 \end{pmatrix}$	18–48	[291]
	$O = O = CH_3 C_6H_5 H$ $R^6 = CN CN CH_3$	CH₂Cl₂, −78 °C	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ R^{6} \end{array}$	25–37	[291]
	$ \begin{array}{c} O \\ R^5 \\ R^6 \\ R^5 = H \\ Ch_3 \\ C_6H_5 \\ H \\ R^6 = H \\ CN \\ CN \\ Ch_3 $	CH₂Cl₂, −78 °C	0 ⁻⁰ , R ⁵ 0 ⁻⁰ , R ⁶	63–80	[291]
↓ °↓	$R^5 = H CH_3 C_6H_5 H$ $R^6 = H CN CN CH_3$	CH₂Cl₂, −78 °C	0-0, R ⁵ 0, R ⁶ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	55–77	[291]
	$R^{5} = H CN CN$	CH₂Cl₂, −78 °C	$ \begin{array}{c} $	49–74	[291]

57

For the ozonolysis of the bicyclic cyclohexenone, 2,3,4,5,6,7,8,9,10,11,12,13,14,15-tetradecahydro-1*H*-benzo[13]annulen-1-one (**168**), two reaction pathways can be proposed through intermediate **169** to form ozonides **170** and **171**. It appeared that the reaction gave only 16,17,18-trioxatricyclo[10.3.2.11,12]octadecan-2-one **171** as two isomers, with the *anti* isomer in 60% and the *syn* isomer in 10% yield

(Scheme 43) [294]. The structures of these compounds were established by X-ray diffraction [294].

The cross-ozonolysis of enol ethers **172a**,**b** with cyclohexanone enabled the synthesis of 1,2,4-trioxolanes **173a**,**b** containing the easily oxidizable C–H fragment in the third position (Scheme 44) [256].

Scheme 44: Cross-ozonolysis of enol ethers 172a,b with cyclohexanone.

2.3. Cross-ozonolysis of O-alkyl oximes in the presence of carbonyl compounds (Griesbaum co-ozonolysis)

In 1995, K. Griesbaum and co-workers reported a new type of cross-ozonolysis [295]. This method enables the synthesis of tetrasubstituted ozonides **176** by an ozone-mediated reaction of O-alkyl oximes **174** with ketones **175** (Scheme 45, Table 13). The selective synthesis of ozonides has attracted great interest because it allows the preparation of compounds exhibiting high antiparasitic activity.

Scheme 45: Griesbaum co-ozonolysis.

Table 13: Examples of ozonides (1,2,4-trioxolanes) synthesized by the Griesbaum method.

Oxime 174	Ketone 175	Ozonolysis conditions	1,2,4-Trioxolane 176	Yield, %	Ref.
, OMe Ń	$R^{1} = -(CH_{2})_{4^{-}} = R^{2}$ $R^{1} = -(CH_{2})_{5^{-}} = R^{2}$ $R^{1} = -(CH_{2})_{5^{-}} = R^{2}$ $R^{1} = -(CH_{3})_{6^{-}} = R^{2}$ $R^{1} = CH_{3}; R^{2} = Ph$ $R^{1} = C_{4}H_{9}; R^{2} = C_{4}H_{9}$	hexane, -78 °C	$\mathbb{R}^{1} \xrightarrow{O^{-O}}_{\mathbb{R}^{2}} \xrightarrow{O^{-O}}_{\mathbb{R}^{2}}$	47–67	[256]
(H ₂ C) ₇ OMe	↓ C C C C C C C C C C C C C C C C C C C	pentane, CH ₂ Cl ₂ , 0 °C	0-0 (CH ₂) ₇	54	[91]
OMe	$O = \bigvee X$ X = CH ₂ , C=O, O, NCO ₂ Et, SO ₂ , NCO ₂ t-Bu NCOR, NSO ₂ R R = Alk, Ar	pentane, CH ₂ Cl ₂ , 0 °C		10–75	[91,94] [95,296]
OMe	$O = \bigvee_{R}^{R} R$ R = OCH ₂ C(CH ₃) ₂ CH ₂ O, Me, Ph, CO ₂ Et	pentane, CH ₂ Cl ₂ , 0 °C		23–50	[91-93]
OMe	0=	pentane, 0 °C		48	[92,93]

The Griesbaum method is widely applicable and allows the selective synthesis of symmetrical and unsymmetrical 1,2,4-trioxolanes, which are not accessible by direct ozonolysis of alkenes or the cross-ozonolysis of alkenes or enol ethers in the presence of carbonyl compounds. In addition, this method does not need tetrasubstituted alkenes or enol ethers as starting materials, which are difficult to prepare. Taking into account a wide range of commercially available ketones, it can be concluded that this is the most universal method for the synthesis of 1,2,4-trioxolanes in terms of selectivity and structural diversity of the final products.

2.4. Other methods for the synthesis of 1,2,4-trioxolanes

The reactions of aryloxiranes **177a**,**b** with oxygen in the presence of 9,10-dicyanoanthracene (DCA) and biphenyl (BiP) under irradiation produced 1,2,4-trioxolanes **178a** and **178b** (Scheme 46). It should be noted that the oxirane moiety is oxidized rather than the double bond in these reactions [299].

Scheme 46: Reactions of aryloxiranes 177a,b with oxygen.

This unusual result was obtained upon treatment of the hydroxydioxepane, 3 - methoxy - 3 - methyloctahydro-3Hbenzo[c][1,2]dioxepin-9a-ol (**179**) with TMSOTf/Et₃SiH. Thus, the peroxide moiety was not reduced with Et₃SiH, and the reaction produced the bicyclic peroxide, 1-methyl-10,11,12-trioxatricyclo[7.2.1.0^{4,9}]dodecane (**180**) containing the 1,2,4-trioxolane moiety, as the major product (Scheme 47) [270].

The same bicyclic peroxide **180** was synthesized in good yield by the reaction of 2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)cyclohexanone (**181**) with hydrogen peroxide in the presence of phosphomolybdic acid (PMA) (Scheme 48) [300].

2.5. Structural modifications, in which 1,2,4-trioxolane ring remains intact

Scheme 49 shows possible modifications of substituents at the ozonide ring by the reduction of the ester group in *cis*-adamantan e-2-spiro-3'-8'-ethoxycarbonyl-1',2',4'-trioxaspiro[4.5]decane **182** to form the alcohol *cis*-adamantane-2-spiro-3'-8'-hydroxymethyl-1',2',4'-trioxaspiro[4.5]decane **183**. The latter was mesylated to **184** (*cis*-adamantane-2-spiro-3'-8'-methanesulfonylmethyl-1',2',4'-trioxa-spiro[4.5]decane), and used in the reaction with sodium 1-methyl-1*H*-tetrazole-5-thiolate **185** for the synthesis of *cis*-adamantane-2-spiro-3'-8'-[[(1'-methyl-1'H-tetrazol-5'-yl)thio]methyl]-1',2',4'-trioxaspiro[4.5]decane) for the mesyl group by the thio group of tetrazole **185** (Scheme 49) [297].

Ozonide **188** was synthesized by Mitsunobu reaction of alcohol **183** with pyridin-4-ol (**187**) (Scheme 50) [93]. It should be emphasized that this method can be applied in spite of the use of triphenylphosphine, which is a strong reducing agent for peroxides.

The alkylation of the sodium salt of alcohol **183** with 2-chloropyrimidine in dimethylformamide gave ozonide **189** (Scheme 51). In this reaction, neither sodium hydride nor sodium salt **183** cleave the ozonide ring to a substantial degree. The resulting 1,2,4-trioxolanes **188** and **189** exhibit high in vitro antimalarial activity comparable with that of artemisinin and in vivo even higher activity than that of artemisinin [93].

Aminoquinoline-containing 1,2,4-trioxalane **191** was synthesized by reductive amination of adamantane-2-spiro-3'-8'-oxo-

Scheme 50: 1,2,4-Trioxolane 188 with a pyridine fragment.

1',2',4'-trioxaspiro[4.5]-decane **190** (Scheme 52). Ozonide **191** is an example of a combination of two known antiparasitic pharmacophores, viz. a peroxide and an aminoquinoline moiety [296].

Arterolane is a fully synthetic 1,2,4-trioxalane, also known as OZ277. It has high antimalarial activity and is currently in the final stage of clinical trials. As drug, this compound is used in combination with piperaquine. The synthesis of arterolane is based on the Griesbaum coozonolysis of a mixture of adamantan-2-one O-methyloxime (192) and 4-carbomethoxycyclohexanone 193 to form cis-adamantane-2-spiro-3'-8'methoxycarbonylmethyl-1',2',4'-trioxaspiro[4.5]decane 194. The latter is hydrolyzed to cis-adamantane-2-spiro-3'-8'carboxymethyl-1',2',4'-trioxaspiro[4.5]decane 195, followed by mild amidation with the formation of the intermediate ozonide 196 that on treatment with 2-methylpropane-1,2-diamine finally gives the target compound (Scheme 53). The in vitro and in vivo studies showed that arterolane is more active against causative agents of malaria than artemisinin, chloroquine, and mefloquine [77,78,81].

3. Synthesis of 1,2-dioxanes

Modern approaches to the synthesis of 1,2-dioxanes are based on reactions with singlet oxygen, the oxidative coupling of carbonyl compounds and alkenes in the presence of manganese and cerium salts, the co-oxidation of alkenes and thiols with oxygen, the Isayama–Mukaiyama peroxidation, the Kobayashi cyclization of hydroperoxides, the reaction of 1,4-diketones with hydrogen peroxide, the intramolecular nucleophilic substitution by the hydroperoxide group, the cyclization with partici-

pation of halogenonium ion donors, acid-mediated rearrangements of peroxides, the palladium-catalyzed cyclization of compounds with C=C and -O-O- groups, and reactions with the participation of peroxycarbenium ions.

3.1. Methods for the synthesis of 1,2-dioxanes using singlet oxygen

The oxidation of diarylheptadienes **197a–c** with singlet oxygen in acetonitrile afforded bicyclic peroxides **198a–c** in 33–58% yields. 2,4,6-Triphenylpyrylium tetrafluoroborate was used as the sensitizer for singlet oxygen generation (Scheme 54) [301].

It was found that tris(bipyrazyl)ruthenium(II) [(Ru(bpz)₃(PF₆)₂] is an excellent photocatalyst for the synthesis of 1,2-dioxanes by aerobic photooxygenation of α,ω -dienes [302].

The addition of singlet oxygen to substrate **199** occurs in the last step of the synthesis of natural hexacyclinol peroxide **200** (Scheme 55) [303].

The reactions of 6-methylhept-5-en-2-one (201) and 5-methylhex-4-enenitrile (203) with singlet oxygen produced 1,2-dioxanes, 3-methyl-6-(prop-1-en-2-yl)-1,2-dioxane-3-ol (202) and 6-(prop-1-en-2-yl)-1,2-dioxane-3-imine (204), containing the hydroxy and imine groups, respectively (Scheme 56) [304].

3.2. Oxidative coupling of carbonyl compounds and alkenes in the presence of manganese or cerium salts

The synthesis of 1,2-dioxanes **207** is based on the addition of alkene **205** and oxygen to carbonyl compound **206** via the inter-

mediate formation of carbon-centered peroxide radicals. The reaction occurs in the presence of catalytic amounts of manganese or cerium salts, which are involved in a redox cycle. It is assumed that the oxidation of β -dicarbonyl compounds proceeds through a formation of an enol-containing complex with a metal ion (Scheme 57, Table 14).

Scheme 57: Synthesis of 1,2-dioxanes 207 by oxidative coupling of carbonyl compounds 206 and alkenes 205.

Table 14: Examples of 1,2-dioxanes 207 synthesized by oxidative coupling of carbonyl compounds 206 and alkenes 205.

3.3. Oxidation of 1,5-dienes in the presence of thiols The co-oxidation of 1,4-dienes and thiols (thiol-olefin co-oxygenation, TOCO reaction) was described for the first time by Beckwith and Wagner as a method for the synthesis of sulfur-containing 1,2-dioxolanes [313,314]. More recently, it has been shown that under similar conditions, the oxidation of 1,5-dienes **208** affords the corresponding sulfur-containing 1,2dioxanes **209**. The reaction proceeds under oxygen atmosphere in the presence of azobisisobutyronitrile (AIBN) or di*tert*-butyl peroxalate (DBPO) as radical initiators. The resulting unstable hydroperoxides are reduced with triphenylphosphine to hydroxy derivatives **209** (Scheme 58, Table 15).

The oxidation of acetophenones **210** produces bicyclic 1,2-dioxanes **212** (Scheme 59). It is hypothesized that the reaction gives hydroperoxide **211** as the intermediate, that undergoes rapid cyclization to form the target 1,2-dioxane **212** [317].

3.4. Synthesis of 1,2-dioxanes by the Isayama–Mukaiyama method

The Isayama–Mukaiyama peroxysilylation of 1,5-dienes **213** followed by desilylation under acidic conditions gives hydroperoxide-containing 1,2-dioxanes **214** (Scheme 60, Table 16).

The oxidation of (*Z*)-ethyl 2-(3-(prop-1-en-2-yl)cyclohexylidene)acetate (**215**) gives ethyl 2-(4,4-dimethyl-2,3-dioxabicyclo[3.3.1]nonan-1-yl)-2-hydroxyacetate (**218**) in 29% yield. The oxidative reaction proceeds presumably with formation of an O-centered radical **216**, then a C-centered radical **217** and the latter adds oxygen and is reduced to the hydroxy derivative of 1,2-dioxane **218** (Scheme 61) [318]. An alternative synthesis of a 1,2-dioxane by the Isayama–Mukaiyama method includes the following sequence of reactions: peroxysilylation, desilylation, and recyclization

Scheme 61: Synthesis of bicycle 218 with an 1,2-dioxane ring.

accompanied by a ring opening of oxirane or oxetane (Scheme 62 and Scheme 63).

Cobalt(II) acetylacetonate (acac) or bis-2,2,6,6-tetramethylheptane-3,5-dienoate (thd) were used as the catalyst for the peroxidation of **219**. The cyclization of the intermediate peroxide **220** was performed with Amberlyst-15 ion-exchange resin. This approach was used in the multistep synthesis of the natural endoperoxide 9,10-dihydroplakortin, which exhibits antimalarial and anticancer activities as do its structural analogues [320,321]. 2-(3,6,6-Trimethyl-1,2-dioxan-3-yl)ethanol (**224**) was synthesized in a similar way starting with the peroxidation of 2-methyl-2-(3-methylbut-3-enyl)oxetane (**222**), followed by oxetane-ring opening in triethyl(2-methyl-4-(2-methyloxetan-2yl)butan-2-ylperoxy)silane (**223**) (Scheme 63) [250].

Dioxanes can also be synthesized by inramolecular cyclizations with the attack on a keto group. The peroxysilylation of the unsaturated ketone 1,5-dicyclohexenylpentan-3-one (**225**), with the $Co(thd)_2/Et_3SiH/O_2$ system produced 1,5-bis(1-(triethylsi-

lylperoxy)cyclohexyl)pentan-3-one (**226**), which underwent cyclization in the presence of *p*-toluenesulfonic acid to give the spiro-fused 7,8,10,11-tetraoxatrispiro[5.2.2.5.2.2]henicosane **227** (Scheme 64) [252].

3.5. Synthesis of 1,2-dioxanes by the Kobayashi method

The synthesis is based on the peroxidation of the carbonyl group of unsaturated ketones **228** with the urea-hydrogen

peroxide complex followed by a Michael cyclization of the hydroperoxy acetals **229** under basic conditions. This method is suitable for the efficient synthesis of functionalized 1,2-dioxanes **230** in moderate to high yields (Scheme 65, Table 17). In early studies, scandium(III) triflate was used as the catalyst for the hydroperoxidation of ketones with the $H_2O_2-H_2NCONH_2$ complex. More recently, it was shown that in some cases, cheaper catalysts such as *p*-toluenesulfonic and 10-camphorsulfonic acid can be used for this purpose (Table 17).

Scheme 65: Peroxidation of the carbonyl group in unsaturated ketones 228 followed by cyclization of hydroperoxy acetals 229.

Table 17: Examples of 1,2-dioxanes synthesized by the Kobayashi method.				
Unsaturated ketone 228	Reaction conditions	1,2-Dioxane 230	Yield, %	Reference
H ₃ CO O n = 0, 4, 8	1) H ₂ O ₂ ·H ₂ NCONH ₂ , Sc(OTf) ₃ , MeOH 2) Et ₂ NH, CF ₃ CH ₂ OH, 0 °C, 2 d	$H_3CO \rightarrow O-O OCH_3 \rightarrow O-O OCH_2)_nCH_3$	1) 67–83 2) 60–72	[322,323]
H ₃ CO H ₃ CO (CH ₂) ₅ OSit-BuPh ₂	1) H_2O_2 · H_2NCONH_2 , Sc(OTf) ₃ , MeOH 2) Et ₂ NH, CF ₃ CH ₂ OH 3) HF, pyridine, THF	H ₃ CO O O (CH ₂) ₅ OH	1) 52 2) 87 3) 100	[324]
$R^{1} = OMe, Ot-Bu, Me, Ph$ $R^{2} = Me, H$	1) H_2O_2 · H_2NCONH_2 , Sc(OTf) ₃ , MeOH 2) Et ₂ NH, CF ₃ CH ₂ OH	$R_{0}^{1} \xrightarrow{R^{2}} C_{5}H_{11}$	8–38	[104-106]
$H_{3}CO \qquad \qquad H_{3}CO \qquad \qquad H_{3$	1) $H_2O_2 H_2NCONH_2$, Sc(OTf) ₃ , MeOH 2) Et ₂ NH, CF ₃ CH ₂ OH		28–58	[104-106]

It was found that cesium hydroxide can be used as a base for the cyclization to give **232** and **234**. Compared to Scheme 65, the method is suitable for the cyclization of hydroperoxides **231**

and **233**, which are no ketone derivatives (Scheme 66) [264]. Et₃N in MeOH can also be used as catalyst for this type of cyclization [263].

The synthesis of peroxyplakoric acid methyl ethers A and D **238a** and **238b**, which are natural peroxides isolated from marine sponges exhibiting fungicidal and antitumor activities [329,330] is an interesting example of the synthesis of complex structures. The polyunsaturated compound (*E*)-methyl 6-methyleneundec-2-en-10-ynoate (**235**) was subjected to ozonolysis to obtain methoxyhydroperoxide, (*E*)-methyl 6-hydroperoxy-6-methoxyundec-2-en-10-ynoate (**236**), whose cyclization afforded methyl 2-(6-methoxy-6-(pent-4-inyl)-1,2-dioxan-3-yl)acetate (**237**), in which the triple bond is easily modified by palladium-catalyzed cross-coupling reactions to form the target 1,2-dioxanes **238a,b** (Scheme 67).

Initially, an attempt was made to synthesize diethyl 2,2'-(1,2,7,8-tetraoxaspiro[5.5]undecane-3,9-diyl)diacetate (**241**) by cyclization of (2*E*,9*E*)-diethyl 6,6-dihydroperoxyundeca-2,9dienedioate bis(hydroperoxide) (**240**) (the bishydroperoxidation product of (2*E*,9*E*)-diethyl 6,6-dimethoxyundeca-2,9dienedioate (**239**)) with Et₂NH in CF₃CH₂OH. However, these attempts failed. Spiroperoxide **241** was prepared in satisfactory yield by reaction of **240** with the use of mercury (II) acetate (Scheme 68) [331]. The intermediate mercury-containing peroxide produced by the cyclization of bis(hydroperoxide) **240** was reduced with NaBH₄ in an alkaline medium [331].

3.6. Synthesis of 1,2-dioxanes from 1,4-dicarbonyl compounds

The reaction of 1,4-diketones **242** (cyclohexanone derivatives) with hydrogen peroxide in a neutral medium produced 3,6-dihydroxydioxanes **243** albeit without reported yields (Scheme 69). The resulting compounds exhibit a broad spectrum of antiparasitic activities against causative agents of malaria, trypanosomiasis, and leishmaniasis [208-212].

Scheme 69: Reaction of 1,4-diketones 242 with hydrogen peroxide.

3.7. Methods for the synthesis of 1,2-dioxanes from hydroperoxides

Compounds containing a C=C group and an oxygen-containing ring are convenient starting materials for the synthesis of cyclic peroxides [250-252,332]. For example, the ozonolysis of the double bond in the oxetane-containing compound, 2-methyl-2-(3-methylbut-3-enyl)oxetane (**244**) afforded 2-(3-hydroperoxy-3-methoxybutyl)-2-methyloxetane (**245**), which underwent recyclization in the presence of ytterbium triflate to give 2-(6methoxy-3,6-dimethyl-1,2-dioxan-3-yl)ethanol (**246**) along with the seven-membered compound 2-hydroperoxy-5-methoxy-2,5dimethyloxepane (**247**) (Scheme 70) [250].

Spirodioxane 227, whose synthesis by the Isayama–Mukaiyama method was described above (Scheme 64), could also be synthesized via the ozonolysis of alkene 248 in the presence of hydrogen peroxide followed by the cyclization of bis(hydroper-oxide) 249 with potassium *tert*-butoxide (Scheme 71) [252].

An approach to the cyclization based on an intramolecular nucleophilic substitution was used also for the synthesis of diastereomers of dioxanes **252a,b** containing triple bonds. Hydroperoxides **251a,b** that were synthesized by the ozonolysis of **250** were treated with potassium *tert*-butoxide. One of the diastereomers, **252a**, was then modified first via the stereoselective hydrozirconation and iodination to **253a** and then by the Negishi cross coupling to produce silylated product **254a**,

which was desilylated to obtain alcohol **255a** (Scheme 72). 1,2-Dioxane **255a** is structurally similar to natural peroxyplakoric acids having fungicidal and antimalarial activities [332].

3.8. Use of halonium ions in the cyclization

This approach to the synthesis of 1,2-dioxane rings is based on the intramolecular cyclization of hydroperoxides containing a C=C group. In the first step, the addition of a halonium ion to the double bond results in the formation of a carbocation, which is subjected to the intramolecular attack of the hydroperoxide group.

The treatment of unsaturated monoperoxyketals **257**, **260**, and **263** (prepared by ozonolysis of **256**, **259**, and **262** in methanol, respectively) with such donors of halonium ions such as *N*-iodosuccinimide (NIS), I_2/t -BuOK, or bis(sym-collidine)iodonium hexafluorophosphate gave iodine-containing 1,2-dioxanes **258**, **261**, and **264**, in moderated yields (Scheme 73) [333]. It should be noted that attempts to synthesize related peroxides with *N*-bromosuccinimide failed [333].

In the studies [334,335] iodine-containing 1,2-dioxanes **266a–c**, **268**, and **270a**,**b** were synthesized from the corresponding hydroperoxyalkenes **265a–c**, **267**, and **269a**,**b** with bis(sym-collidine)iodonium hexaflulorophosphate (BCIH) in the cyclization step (Scheme 74).

3.9. Pd(II)-catalyzed cyclization

The palladium-catalyzed cyclization of δ -unsaturated hydroperoxides **271** represents a new route to 1,2-dioxane cyclic compounds **272** (Scheme 75). The cyclization was performed in toluene, 1,4-dioxane, or 1,2-dichloroethane at 80 °C for 3 h in the presence of *p*-benzoquinone or silver carbonate as the oxidizing agent for Pd(0) that was formed in the catalytic cycle. To the best of our knowledge, this method is the first example of a palladium acetate-catalyzed synthesis of cyclic peroxides [336].

3.10. Acid-mediated cyclizations of peroxides

The intramolecular cyclization of unsaturated peroxyacetals **273a–d** in the presence of $TiCl_4$ or $SnCl_4$ occurs via formation of peroxycarbenium ions to give methoxy- and chlorine-containing dioxanes **274a–d** as the reaction products (Scheme 76) [257].

The treatment of endoperoxides 275a-d with allyltrimethylsilane in the presence of catalytic amounts of trimethylsilyl triflate or SnCl₄ gave bicyclic 1,2-dioxanes 276a-d (Scheme 77) [337].

Scheme 77: Allyltrimethylsilane in the synthesis of 1,2-dioxanes 276a-d.

The electrophilic center of the peroxycarbenium ion produced by the decomposition of molozonide can be trapped by the hydroperoxide group of the molecule. This type of cyclization was used as the basis for the synthesis of hydroperoxidecontaining 1,2-dioxanes. The ozonolysis of 1-hydroperoxy-1methoxy-2-methyl-5-(prop-1-en-2-yl)cyclohexane (**277**) in a trifluoroethanol/dichloromethane mixture through formation of molozonide **278** and peroxycarbenium ion **279** finally afforded (6S)-6-hydroperoxy-1-methoxy-2,6-dimethyl-7,8dioxabicyclo[3.3.1]nonane (**280**) (Scheme 78) [334]. The intramolecular cyclization of intermediate **279** is only possible if the hydroperoxide group is in a particular spatial arrangement [334].

Under these conditions, ethyl 2-(3-(2-hydroperoxypropan-2yl)cyclohexylidene)acetate hydroperoxide (**281**) and ethyl 2-(3-(1-hydroperoxy-1-methoxyethyl)cyclohexylidene)acetate hydroperoxide (**283**) react to form dioxanes, (1*S*,5*S*)-1hydroperoxy-4,4-dimethyl-2,3-dioxabicyclo[3.3.1]nonane (**282**), (1S,4S,5S)-1-hydroperoxy-4-methoxy-4-methyl-2,3-dioxabicyclo[3.3.1]nonane (**284a**), and (1S,4R,5S)-1-hydroperoxy-4methoxy-4-methyl-2,3-dioxabicyclo[3.3.1]nonane (**284b**) (Scheme 79) [338].

Under similar conditions, the reaction of 5-hydroperoxy-5-(2-methoxyethoxy)-2-methylhex-1-ene (**285**) in AcOH/CH₂Cl₂ produced 3-hydroperoxy-6-(2-methoxyethoxy)-3,6-dimethyl-1,2-dioxane (**286**) (Scheme 80) [270].

Scheme 79: Synthesis of bicyclic 1,2-dioxanes.

3.11. Other methods for the synthesis of 1,2-dioxanes

The di(*tert*-butyl)peroxalate-initiated radical cyclization of unsaturated 2 - (3 - hy droperoxypropyl) - 6, 6dimethylbicyclo[3.1.1]hept-2-ene hydroperoxide (**287**) in the presence of oxygen gave 1,2-dioxane (**289**). The reaction proceeds through formation of compound **288** containing a hydroperoxide group, which is transformed into a carbonyl group by treatment with Ac₂O/pyridine (Scheme 81) [232]. The yield of **289** was 14% based on **287**.

The original cyclization occurs during the oxidation of 1,4betaines **291a–d** prepared from dienones **290a–d** containing an azide group in the side chain. The reaction yields peroxidebridged indolizinediones **292a–d** (Scheme 82) [339].

3.12. Structural modifications, in which 1,2-dioxane ring remains intact

This section deals with syntheses of compounds exhibiting high antimalarial activity that is comparable with or higher than that of artemisinin.

N-(2-(7-Chloroquinolin-4-ylamino)ethyl)-2-((*S*)-6,6-dimethyl-1,2-dioxan-3-yl)propanamide (**294**) containing the aminoquinoline moiety that is characteristic for antiparasitic compounds was synthesized by the following series of steps: reduction of the double bond in the presence of the peroxide group (transformation of ethyl 2-(6,6-dimethyl-1,2-dioxan-3-yl)acrylate (**272d**) into ethyl 2-((*S*)-6,6-dimethyl-1,2-dioxan-3-yl)propanoate (**293**)), alkaline hydrolysis, and amidation (Scheme 83) [336].

The synthesis of the sulfonyl-containing 1,2-dioxane 2-(benzyloxy)-2,6-dimethyl-6-(phenylsulfonylmethyl)-7,8dioxabicyclo[3.3.1]nonane)**297a**), included the following steps: oxidation of the sulfide group in 2,6-dimethyl-6-(phenylthiomethyl)-7,8-dioxabicyclo[3.3.1]nonan-2-ol (**295**) to form 2,6d i m e th y 1 - 6 - (ph e n y l s u l f o n y l m e th y l) - 7, 8 dioxabicyclo[3.3.1]nonan-2-ol (**296**) followed by the isolation of the isomer (6*R*)-2,6-dimethyl-6-(phenylsulfonylmethyl)-7,8dioxabicyclo[3.3.1]nonan-2-ol (**296a**) and benzylation of the latter to obtain the target peroxide **297a** (Scheme 84) [107].

Methyl 2-(6-methoxy-6-pentyl-1,2-dioxan-3-yl)acetate (**298**) was enzymatically hydrolyzed to 2-(6-methoxy-6-pentyl-1,2-dioxan-3-yl)acetic acid (**299**). The next step in the synthesis of target compound **301** involved the two-step amidation via the intermediate formation of perfluorophenyl 2-(6-methoxy-6-pentyl-1,2-dioxan-3-yl)acetate (**300**) (Scheme 85) [110].

The enzymatic hydrolysis step was necessary because attempts to hydrolize ester **298** under alkaline conditions (LiOH in dimethyl sulfoxide) failed and led to peroxide ring-opening [110].

4. Synthesis of 1,2-dioxenes

4.1. Reaction of 1,3-dienes with singlet oxygen

The reaction of singlet oxygen with the 1,3-diene system can proceed by the following pathways: the [4 + 2]-cycloaddition, the singlet-oxygen–ene reaction, and the [2 + 2]-cycloaddition to form dioxetanes. The reaction pathway depends on the nature of the solvent, and on electronic and steric factors. However, the [4 + 2]-cycloaddition ($302 + {}^{1}O_{2}$) occurs in most cases, and this reaction is frequently used for the synthesis of the 1,2dioxene system 303 (Scheme 86). Table 18 gives examples of 1,2-dioxenes synthesized by the reaction of singlet oxygen with 1,3-diene systems.

Scheme 86: Reaction of singlet oxygen with the 1,3-diene system 302.

Scheme 84: Synthesis of the sulfonyl-containing 1,2-dioxane.

Table 18: Examples of the use of ${}^{1}O_{2}$ in the s	ynthesis of 1,2-dioxenes.			
Alkene 302	Reaction conditions	1,2-Dioxene 303	Yield, %	Reference
$R = PhCH_2, H, Me$	O ₂ , <i>h</i> v, tetraphenylporphyrin, CH ₂ Cl ₂ , −78 °C, 1 h	R N O O V t-Bu	100	[340]
MeO MeO CF ₃ SO ₃	O ₂ , <i>h</i> v, tetraphenylporphyrin, CH ₂ Cl ₂ , −78 °C, 2 h	MeO MeO CF ₃ SO [©]	85	[341]
N N N	O ₂ , hv, fullerene C ₆₀ , CDCl ₃ , 0 °C, 2 h	N N N N N N N N N N N N N N N N N N N	93	[342]
X = 0, CH=CH	O ₂ , <i>h</i> v, tetraphenylporphyrin, CCl ₄	X O O	75	[343]
	O ₂ , <i>h</i> v, tetraphenylporphyrin, CCl ₄ , rt, 30 min		90	[344]
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	O ₂ , <i>h</i> v, tetraphenylporphyrin, CCl ₄ , rt, 18–20 h	O-O-R O	74 95	[345]
	O ₂ , <i>h</i> v, tetraphenylporphyrin, CCl ₄ , 10 °C, 1.5 h		73	[346]
	O ₂ , <i>h</i> v, tetraphenylporphyrin, CHCl ₃ , 10 °C, 45 min		94	[346]
$R = CO_2 Et, CH_3$	O ₂ , <i>h</i> v, tetraphenylporphyrin, CCl ₄ , rt, 24 h to 9 d	O-O-R	94 36	[347]
	O ₂ , <i>h</i> v, tetraphenylporphyrin, CH ₂ Cl ₂ , −10 °C, 6 h	HOO	54	[348]
CO ₂ H	1) O ₂ , <i>h</i> v, Rose Bengal, MeOH/CH ₂ Cl ₂ (1/19), 0 °C, 8 h 2) CH ₂ N ₂	CO ₂ Me	40	[182,183]

(+)-Premnalane A is a natural compound of plant origin exhibiting pronounced antimicrobial activity. The synthesis of this compound includes the following steps: oxidation of the furan ring of compound **304**, the singlet-oxygen–ene reaction of the double bond-containing bicyclic compound **305**, and acidinduced ketalization (Scheme 87) [362].

This synthesis produced a 1:1 mixture of diastereomeric (+)premnalane A and 8-epi-premnalane A in 24% combined yield and diastereomeric 1,2-dioxolanes **306** in 49% yield. Pure (+)premnalane A was isolated by column chromatography.

4.2. Structural modifications, in which 1,2-dioxene ring remains intact

Diazo-containing 1,2-dioxenes **309a-e** were synthesized starting from the corresponding acids **307a-e**, which were transformed into acid chlorides **308a-e** and then subjected to diazotization (Scheme 88) [363]. The 1,2-dioxenes **309a-e** were

used for the intramolecular insertion of carbenes, that were produced by decomposition of the diazo group, into the -O-O-bond [363].

6-Epiplakortolide E is a bicyclic peroxylactone that was isolated in low yield (0.0003%) from the marine sponge *Plakortis* sp. The structurally related plakortolide E (Figure 4) exhibits high cytotoxicity against cancer cells and shows also activity against *Toxoplasma gondii*, which is the causative agent of toxoplasmosis [184,185].

6-Epiplakortolide E was synthesized by the multistep synthesis involving the oxidation of diene **310** with singlet oxygen to give two isomeric 1,2-dioxenes **311a,b**, the isolation of dioxene **311a**, its silyl deprotection to form alcohol **312**, the oxidation of the latter to 1,2-dioxenic acid **313**, the I⁺-induced lactonization to produce **314**, and the deiodination to obtain the target product (Scheme 89) [184,185]. It should be noted that the cyclic peroxide compound **314** remains intact under the reductive conditions in the presence of tributylstannane; this step occurs in good yield (68%) [184,185].

More recently, a similar approach was used for the preparation of tetrahydrofuran-containing bicyclic peroxides **318a,b**. It involves the synthesis of 1,2-dioxenes **316** from dienes **315**, the cation-initiated cyclization to give bicyclic compounds **317**, and the reduction with Bu₃SnH. *N*-Bromo- and iodosuccinimides (NBS and NIS, respectively) were used as donors of halogenide ions. Additionallay, the cyclization was successfully performed with the use of phenylselenyl chloride as the donor of PhSe⁺ cation (Scheme 90) [364].

Scheme 89: Synthesis of 6-epiplakortolide E.

Acids **307a** and **307b** were synthesized by oxidation of the corresponding alcohols with the bis(acetoxy)iodobenzene/2,2,6,6-tetramethyl-1-piperidinyl oxyl (BAIB/TEMPO) system. The cyclization to bicyclic peroxides **319a–f** containing the lactone ring was performed with the use of N-bromo- and iodosuccinimides and PhSeCl (Scheme 91) [364]. As in the above-considered case, the peroxide ring remains unchanged upon the reduction of the C–X bond in compounds **319a–f** with Bu₃SnH [364].

The double bond in the 1,2-dioxene ring of **321** was subjected to dihydroxylation with osmium tetroxide (Scheme 92) [354,365]. The reaction was performed in aqueous *tert*-butanol,

acetone, or acetonitrile at room temperature. Several methods were used for the oxidation. For example, the commercially available AD-mix, a mixture consisting of $K_2OsO_2(OH)_4$ (catalytic amounts, a source of OsO_4) and $K_3Fe(CN)_6$ (oxidizer), was employed for this purpose. In this reaction, K_2OsO_4 (0.5 mol %) combined with oxidizers ($K_3Fe(CN)_6$, *N*-methylmorpholine *N*-oxide, citric acid, or KClO₃) was also used [354,365].

The epoxidation of 1,2-dioxenes **324** produced by the addition of singlet oxygen to dienes **323** was performed by treatment with *m*-chlorobenzoic acid (Scheme 93). It was shown that epoxidized dioxanes **325** and **326**, as well as dioxenes **324**, have

Scheme 92: Dihydroxylation of the double bond in the 1,2-dioxene ring 321 with $\mbox{OsO}_4.$

inhibiting activity against the causative agents of candidiasis infections *Candida albicans*, *Candida krusei*, and *Candida tropicalis*, that are in some cases comparable with the activity of the currently used amphotericin B, ketonazole, and nystatin [218-228]. In addition, these compounds exhibit pronounced antimalarial activity, although lower than that of artemisinin [366,367]. The cyclopropanation of the double bond in endoperoxides **327** was performed by the reaction with diazomethane in the presence of $Pd(OAc)_2$ to produce **328a,b** (Scheme 94) [368].

Pyridazine-containing bicyclic endoperoxides **334a–c** were synthesized by the inverse-electron-demand Diels–Alder cyclo-addition of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (**329**) to 1,2-dioxenes **330** followed by the elimination of dinitrogen from **331a–c** to give **332a–c**, the isomerization to **333a–c**, and the oxidation (Scheme 95) [369].

5. Synthesis of 1,2,4-trioxanes

This part is devoted to methods for the synthesis of the 1,2,4trioxane ring by the singlet-oxygen ene reaction with unsaturated alcohols, the photooxidation of enol ethers and vinyl sulfides, the [4+2]-cycloaddition of singlet oxygen to the pyran system, the Isayama-Mukaiyama peroxysilylation of unsatu-

Scheme 94: Cyclopropanation of the double bond in endoperoxides 327.

rated alcohols, reactions with hydrogen peroxide, and the intramolecular Kobayashi cyclization.

5.1. Use of singlet oxygen in the synthesis of 1,2,4trioxane

One of the widely used approaches to the synthesis of the 1,2,4trioxane ring 337 is based on the hydroperoxidation of unsaturated alcohols 335 with singlet oxygen (the singlet-oxygen ene reaction) and the acid-catalyzed condensation of the resulting vicinal hydroxy hydroperoxides 336 with ketones or aldehydes (acetals, orthoesters) (Scheme 96, Table 19).

The method was described for the first time by Singh in 1990 [370]. Due to a wide structural series of prepared 1,2,4-trioxane systems and the use of readily available inexpensive reagents, this is an efficient method for their synthesis.

Scheme 96: Synthesis of 1,2,4-trioxanes 337 by the hydroperoxidation of unsaturated alcohols 335 with ¹O₂ and the condensation of the hydroxy hydroperoxides 336 with carbonyl compounds.

A similar approach based on the co-oxidation of hydroxyalkenes **338** and thiols (TOCO-reaction, thiol-olefin co-oxygenation) was applied to the synthesis of sulfurcontaining 1,2,4-trioxanes **339** (Scheme 97).

Azobisisobutyronitrile (AIBN) was used as the initiator of the radical reaction. In the second step (condensation), cyclopentanone, cyclohexanone, *tert*-butylcyclohexanone, 1,4-cyclohexanedione, cyclododecanone, and adamantanone were employed. 1,2,4-Trioxanes **339** were prepared in 25–68% yields in two steps [120,393]. The formation of peroxyketals **342a–g** from vicinal hydroxyhydroperoxides **341** (oxidation products of unsaturated alcohols **340**) in the presence of boron trifluoride is a convenient approach to the synthesis of the 1,2,4-trioxane ring (Scheme 98) [385].

The approach to the synthesis of 1,2,4-trioxanes proposed by Jefford and co-workers in 1993 [394] is based on the photooxidation of enol ethers or vinyl sulfides **343** with oxygen followed by the rearrangement of the resulting 1,2-dioxetanes in the presence of trialkylsilyl triflates. The resulting bicyclic compound **344** is structurally similar to artemisinin. Another version of this synthesis is based on the use of the ozone/triphenylphosphite in the oxidation step 1) (Scheme 99, Table 20).

This method was applied to the synthesis of tricyclic peroxide **346** (containing one carbon atom less in the mono-oxygen ring compared to structures **344**) from the enol ether, 1-(2-(methoxymethylene)cyclohexyl)-3-phenylpropan-2-one (**345**) (Scheme 100) [207].

Scheme 98: BF₃·Et₂O-catalyzed synthesis of the 1,2,4-trioxanes 342a-g.

The reaction of endoperoxides **348a**,**b** derived from cyclohexadienes **347a**,**b** with 1,4-cyclohexanedione produced trioxanes **349a**,**b** containing a keto group which is useful for further transformations (Scheme 101) [398].

Unsaturated bicyclic trioxanes 351 are [4 + 2]-cycloaddition products of singlet oxygen to the pyran moiety in 350 (Scheme 102, Table 21).

It was shown that in this reaction the starting pyran can serve as the sensitizer for the formation of singlet oxygen [402].

5.2. Synthesis of 1,2,4-trioxanes by the Isayama–Mukaiyama method

The Isayama–Mukaiyama peroxysilylation of unsaturated alcohols **352** is a new route to hydroxy silyl peroxides **353**, whose condensation with ketones in an acidic medium affords 1,2,4-trioxanes **354** (Scheme 103, Table 22).

5.3. Use of epoxides as starting reagents in the synthesis of 1,2,4-trioxanes

An important approach to the synthesis of 1,2,4-trioxanes **357** is based on the epoxide-ring opening in **355** with hydrogen peroxide in the presence of a catalyst followed by the condensation of the vicinal hydroxy hydroperoxides **356** with ketones (Scheme 104, Table 23). The drawbacks of this method are generally low yields of **356** in the step of the epoxide-ring opening and difficulties of their isolation from the reaction mixture.

The reaction of unsaturated ketones **358** with $H_2O_2/CF_3COOH/H_2SO_4$ in dichloromethane produced 1,2,4-trioxanes **359** in 25–95% yields (Scheme 105). It is assumed that in the first step,

the hydroperoxidation of the keto group in **358** and the epoxidation of the double bond occur followed by the acid-induced intramolecular cyclization to form bicyclic compound **359** [408].

Epoxide 355	Carbonyl compound	Reaction conditions	1,2,4-Trioxane 357	Yield i) 356 ii) 357 , %	Ref.
o	∫ ∫ °	1) MoO₂(acac)₂, H₂O₂ , Et₂O, MoSO₄		i) 59 ii) 95	[405]
	° (2) TsOH, CH ₂ Cl ₂ , rt		i) 59 ii) 69	[405]
∠°	° L	1) MoO ₂ (acac) ₂ , H ₂ O ₂ , THF, MgSO ₄ 2) 10-camphor- sulfonic acid, CH ₂ Cl ₂ , rt		i) 29 ii) 46	[405]
OMe OMe	° (1) H ₂ O ₂ , Et ₂ O, 0 °C, 4 h 2) H ₂ SO ₄ , CH ₂ Cl ₂ , rt, 4 d	OMe O-O	i) 8 ii) 28	[406]
0 √ N t-Bu0 0	€ Contraction of the second s	1) MoO ₂ (acac) ₂ , H ₂ O ₂ , Et ₂ O, MgSO ₄ , rt, 22 h 2) TsOH, CH ₂ Cl ₂ , rt, 5 h	O O O O O O O O O O O O O O O O O O O	i) 98 ii) 92	[407]
<i>f</i>	O N SO ₂ Ph	1) $MoO_2(acac)_2$, H_2O_2 , Et_2O 2) 10-camphor- sulfonic acid, CH_2Cl_2	O-O N-SO ₂ Ph	i) 25 ii) 39	[407]
⟨o	RO L H	1) MoO ₂ (acac) ₂ , H ₂ O ₂ , Et ₂ O, MgSO ₄ 2) BF ₃ ·Et ₂ O, CH ₂ Cl ₂ , −78 °C to 0 °C, 5 h		i) - ii) 27–35	[175] [176]
	R= Ac, Me		R= Ac, Me		

Table 23: Examples of 1,2,4-trioxanes 357 synthesized based on epoxides 355

CF₃COOH/H₂SO₄ system.

5.4. Synthesis of 1,2,4-trioxanes by the Kobayashi method

A convenient method for the synthesis of bicyclic trioxanes **362** was developed based on the hydroperoxidation of polyfunctional compounds **360** with the urea–hydrogen peroxide complex followed by the base-mediated intramolecular cyclization of **361** (Scheme 106). The yield of hydroperoxides **361** was 86–90%. In the second step, the intramolecular cyclization was performed in the presence of a catalytic amount of diethylamine. The yields of trioxanes **362** are in the range of 10–35% [409,410].

5.5. Structural modifications, in which 1,2,4-trioxane ring remains intact

The possibility of the reduction of the double bond in tricyclic peroxides **363** by hydrogen with the use of the mixed platinum–rhodium catalyst to form products, in which the 1,2,4-trioxane moiety remains intact, was exemplified by the synthesis of peroxides **364** (Scheme 107) [411].

1,2,4-Trioxane esters **366** were synthesized in high yield from 1,2,4-trioxane ketones **365** by the Horner–Wadsworth–Emmons reaction in the presence of sodium hydride as the base (Scheme 108) [375]. Compounds **366** exhibit antimalarial activity comparable with that of artemisinin.

Peroxide dyad **369** consisting of 1,2,4-trioxane moieties of different types was synthesized by the esterification of artesunic acid with 2-((3S,6R)-1-methyl-6-(prop-1-en-2-yl)-7,8,9trioxabicyclo[3.3.1]nonan-3-yl)ethanol (**368**) (obtained by the reduction of ethyl 2-((3S,6R)-1-methyl-6-(prop-1-en-2-yl)-7,8,9-trioxabicyclo[3.3.1]nonan-3-yl)acetate (**367**)) in the presence of *N*,*N*'-dicyclohexylcarbodiimide (DCC) (Scheme 109) [392]. The particular structural feature of compound **369** is that it contains a natural peroxide moiety (artesunic acid) combined with the synthetic 1,2,4-trioxane moiety.

Trioxaquines are hybrid compounds containing the 1,2,4trioxane and aminoquinoline moieties. They attracted interest because of a dual mode of action on Plasmodium. One of these compounds, PA1103/SAR116242, was selected as a drug candidate. The final step of its synthesis involves the reductive amination of keto-containing 1,2,4-trioxane **370** with N^{1} -(7chloroquin-4-yl)cyclohexane-1,4-diamine (**371**) (Scheme 110) [86].

Trioxaferroquines, ferrocene-containing compounds, belong to a new type of hybrid molecules exhibiting high antimalarial activity. The last step of the synthesis of one of these com-

Scheme 109: Reduction of ester group by LiBH₄ in the presence of 1,2,4-trioxane moiety.

pounds (**373**) based on the reductive amination of ketone **370** with amine **372** is shown in Scheme 111. The unusual fact is that compound **373** bearing the peroxide bond and a Fe-containing moiety is stable [412].

6. Synthesis fo 1,2,4,5-tetraoxanes

The most widely used approaches to the synthesis of 1,2,4,5tetraoxanes are based on the reaction of ketones and aldehydes with hydrogen peroxide or *gem*-bishydroperoxides catalyzed by protic or aprotic acids, MeReO₃, Re₂O₇, and iodine. These

methods were used for the synthesis of a wide range of symmetrical and unsymmetrical 1,2,4,5-tetraoxanes.

6.1. Acid-catalyzed cyclocondensation of ketones and aldehydes with hydrogen peroxide

This cyclocondensation is the simplest route to some symmetrical (containing identical substituents in positions 3 and 6) 1,2,4,5-tetraoxanes **375** starting from ketones **374** (Scheme 112, Table 24). The acid-catalyzed reactions of hydrogen peroxide with dialkyl ketones, cycloalkanones, and substituted mediumsize cycloalkanones produce symmetrical 1,2,4,5-tetraoxanes in moderate to high yields. The drawback of this method is the high sensitivity of the yields of the target peroxides to the structure of the starting carbonyl compounds.

6.2. Use of the bis(trimethylsilyl)peroxide/trimethylsilyltrifluoromethanesulfonate system in the cyclocondensation of carbonyl compounds

The cyclocondensation of carbonyl compounds **376a–d** with $Me_3SiOOSiMe_3/CF_3SO_3SiMe_3$ afforded steroidal tetraoxanes **377a–d** (Scheme 113) [417,418]. The cyclocondensation of ketones **376** was performed at 0 °C in acetonitrile using a 1.5-fold molar excess of $Me_3SiOOSiMe_3$ and $CF_3SO_3SiMe_3$ with respect to ketone **376** [417,418].

6.3. MeReO₃-catalyzed peroxidation of ketones

1,1-Dihydroperoxy-4-methylcyclohexane (**379**) and symmetrical tetraoxane **380** were selectively synthesized in high yields from 4-methylcyclohexanone (**378**) with the use of the 30% $H_2O_2/MeReO_3/fluorinated alcohol system (Scheme 114) [419].$

Scheme 113: Cyclocondensation of carbonyl compounds 376a–d using Me₃SiOOSiMe₃/CF₃SO₃SiMe₃.

 $\label{eq:table_transform} \begin{array}{l} \textbf{Table 24:} \ \text{Examples of symmetrical 1,2,4,5-tetraoxanes 375 synthesized by the acid-catalyzed cyclocondensation of ketones and aldehydes with H_2O_2. \\ \end{array}$

Tetraoxane 375 ; R ¹ , R ²	Reaction conditions	Yield, %	Reference
-CH(Et)(CH ₂) ₄		24	
-CH(Pr)(CH ₂) ₄ -		7	
-CH ₂ CH(Me)(CH ₂) ₃ -		32	
-CH(Me)CH(Me)(CH ₂) ₃ -		4	
-CH(Me)CH ₂ CH(Me)(CH ₂) ₂ -		20	
-CH(Me)(CH ₂) ₂ CH(Me)CH ₂ -		26	[413]
-(CH ₂) ₂ C(Me) ₂ (CH ₂) ₂ -	H_2O_2 , MeCN, H_2SO_4 , -20 C, 48 h	29	
-CH(iPr)(CH ₂) ₂ CH(Me)CH ₂ -		20	
-CH(Me)(CH ₂) ₂ CH(iPr)CH ₂ -		26	
-CH(Me)CH ₂ C(Me) ₂ (CH ₂) ₂ -		34	
-CH ₂ C(Me) ₂ CH ₂ C(Me) ₂ CH ₂ -	68	68	
-C(Me) ₂ (CH ₂) ₄ -		26	
-CH(Me)(CH ₂) ₃ CH(Me)–		18	[414]
-(CH ₂) ₅ -	H_2U_2 , EIUH/ H_2U , H_2SU_4 , 0 °C	90	
-(CH ₂) ₅	H ₂ O ₂ , (CF ₃) ₂ CHOH	≈100	[415]
⊣, –(CH ₂) ₃ CHO	H ₂ O ₂ , EtOH/H ₂ O, H ₂ SO ₄ , −10°C, 1 h	80	[416]

The use of fluorinated alcohols as the solvent results in an increase in the selectivity of the synthesis. Under similar conditions, symmetrical 3,6-diphenyl- and 3,6-di-(*n*-heptyl)-1,2,4,5-tetraoxanes **382a**,**b** were synthesized from benzaldehyde (**381a**) and *n*-octanal (**381b**), respectively (Scheme 115) [419].

Unsymmetrical tetraoxanes **383a–d** were prepared from 4-methylcyclohexanone (**378**) by the reaction with ketones ($\mathbb{R}^1 \mathbb{COR}^2$) using of 1 equiv of HBF₄, 2 equiv of H₂O₂, and 0.1 mol % MeReO₃ in CF₃CH₂OH (TFE) at room temperature. The unsymmetrical tetraoxane, 3,3-dibutyl-6-heptyl-1,2,4,5-tetraoxane (**384**), was synthesized from octanal (**381b**) with the use of CH₃CHOHCF₃ (HFIP) (Scheme 116) [419].

This method was applied to the synthesis of 3,3,6,6-tetraalkyl-1,2,4,5-tetraoxanes **386a–c** and **388a–i** from cyclic **385a–c** and acyclic ketones **387a–i** (Scheme 117) [420], as well as of dispiro-1,2,4,5-tetraoxanes **390a–c** from 4-substituted cyclohexanones **389a–c** (Scheme 118) [421].

The use of the 30% H₂O₂/MeReO₃ (MTO)/fluorinated alcohol system enabled the synthesis of symmetrical compounds **392** from aldehydes **391** and unsymmetrical tetraoxanes **393** containing aryl (peroxide-destabilizing) substituents from aldehydes **391** (and cycloalkanones) (Scheme 119) [422].

Unsymmetrical 1,2,4,5-tetraoxanes containing adamantane (**395a–i**) and cyclodecane moieties (**396a–d**) exhibiting high

Scheme 117: Synthesis of symmetrical tetraoxanes using of MeReO₃.

Scheme 120: Preparation of unsymmetrical 1,2,4,5-tetraoxanes with high antimalarial activity.

antimalarial activity (Scheme 120) were prepared from sulfonylpiperidones 394 [138].

6.4. Re₂O₇-Catalyzed cyclocondensation of gembishydroperoxides with ketones

Re₂O₇ is an efficient catalyst for the addition of hydroperoxide groups to ketones and aldehydes. Due to these properties, Re₂O₇ can be used in the one-pot synthesis of unsymmetrical 1,2,4,5-tetraoxanes 398 from ketones 397 in good yields (Scheme 121, Table 25) [423].

6.5. Protic acid-catalyzed cyclocondensation of gem-bishydroperoxides with ketones

Unsymmetrical steroidal tetraoxanes 401 were synthesized by the hydroperoxidation of methyl 3-oxo- 7α , 12α -diacetoxy- 5β cholan-24-oate (399) in the presence of HCl followed by the

condensation of bishydroperoxide 400 with the corresponding ketone in the presence of H_2SO_4 (Scheme 122) [128, 132, 141, 142].

Structurally more simple ketones, for example, acetone, are also involved in the cyclocondensation with bishydroperoxide 400 [141].

Scheme 122: H_2SO_4 -Catalyzed synthesis of steroidal tetraoxanes 401.

The synthesis of keto-containing tetraoxane **403** was also performed in two steps [144]. Thus the intermediate 1,1-dihy-droperoxycyclohexane **402** was prepared from cyclohexanone in a neutral medium, and its condensation with 1,4-cyclohexanedione was carried out in the presence of HBF₄ (Scheme 123).

6.6. Cyclocondensation of bishydroperoxides with acetals and enol ethers

The method for the synthesis of 1,2,4,5-tetraoxanes **407** and **408** is based on the boron trifluoride etherate-catalyzed reaction of *gem*-bishydroperoxides **404** with enol ethers **405** and acetals

406 under mild conditions. More than two dozens of tetraoxanes were synthesized in yields from 45 to 95% according to this method (Scheme 124). The advantage of this method is the use of readily available starting compounds, such as acetals, enol ethers, and boron trifluoride etherate [424,425].

The bishydroperoxidation of 1,3-dioxolane **409** was carried out in the presence of H_2WO_4 . The following HBF₄-catalyzed condensation of bishydroperoxide **410** with ketones gave 1,2,4,5tetraoxanes **411a–c** containing the ester group (Scheme 125) [144].

6.7. lodine-catalyzed one-pot synthesis of symmetrical and unsymmetrical tetraoxanes

The reaction of substituted benzaldehyde **412** with hydrogen peroxide in the presence of the Lewis acid I_2 produced geminal bishydroperoxide, whose condensation with the starting or another substituted benzaldehyde gave tetraoxane **413** (Scheme 126, Table 26) [426,427].

The iodine-catalyzed one-pot synthesis of symmetrical and unsymmetrical tetraoxanes from substituted benzaldehydes has some advantages over other methods. Thus, it can be performed with the use of mild reagents (which do not decompose peroxide) and it does not need an excess of hydrogen peroxide and substituted benzaldehyde.

6.8. Acid-catalyzed condensation of β -diketones with hydrogen peroxide

The acid-catalyzed condensation of β -diketones **414a–l** with hydrogen peroxide is a simple and facile method for the synthesis of bridged 1,2,4,5-tetraoxanes **415a–l**. This method enables the synthesis of these compounds on the multigram scale in 47–77% yields (Scheme 127). The high concentration of a strong acid, such as H₂SO₄, HBF₄, or HClO₄ (2 g of the acid per 5 mL of the solvent) is the key factor determining the yield and selectivity of the synthesis of 1,2,4,5-tetraoxanes. Under these conditions, the targeted compounds are produced selectively even in the presence of an excess of hydrogen peroxide [428]. Unlike many compounds with the O–O bond, which are rearranged in acidic media, the resulting cyclic peroxides are fairly stable under these reaction conditions.

Tetraoxane 413			Tetraoxane 41	Tetraoxane 413	
ξ ¹	R ²	——— Yield, %	R ¹	R ²	——— Yield, %
-Me	o-Me	42	<i>p-(t-</i> Bu)	<i>p-(n-</i> Pr)	32
-Me	<i>m</i> -Me	33	<i>p-(t-</i> Bu)	<i>p-</i> (iPr)	38
-Me	<i>p-</i> Me	54	<i>p-(n-</i> Pr)	<i>p-</i> (iPr)	28
-Me	<i>p-</i> (iPr)	33	<i>p-(t-</i> Bu)	<i>p</i> -OMe	22
-Me	<i>p-(t-</i> Bu)	46	<i>p-</i> (iPr)	<i>p</i> -OMe	24
-Me	<i>p-</i> OMe	25	<i>p-</i> Et	<i>p</i> -Me	41
-Me	<i>p-</i> CO ₂ Me	37	<i>p-</i> Et	<i>m</i> -Me	39
-Me	o-Me	25	<i>p-</i> Et	<i>p-</i> (iPr)	37
-Me	<i>m</i> -Me	38	<i>p-</i> Et	<i>p-(t-</i> Bu)	25
-Me	<i>p-(n-</i> Pr)	37	<i>p-(n-</i> Pr)	<i>p</i> -OMe	24
-Me	Н	43	p-Cl	p-Cl	25
-Me	<i>р-</i> СНО	31	<i>p-</i> Br	<i>p-</i> Br	22
- <i>(n-</i> Bu)	<i>p-(n-</i> Bu)	40	<i>p-</i> F	<i>p-</i> F	29
- <i>(t-</i> Bu)	<i>p-(t-</i> Bu)	53	<i>p</i> -OMe	<i>p</i> -OMe	27
n-Me	<i>m</i> -Me	51	<i>p-</i> Et	<i>p-</i> Et	44
n-Me	Н	30	<i>p-(n-</i> Pr)	<i>p-(n-</i> Pr)	38
n-Me	<i>p-</i> OMe	29	p-(iPr)	p-(iPr)	41

 Table 26:
 Iodine-catalyzed one-pot synthesis of tetraoxanes 413.

Scheme 127: Synthesis of bridged 1,2,4,5-tetraoxanes 415a–I β -diketones 414a–I and H₂O₂.

It was found that phosphomolybdic acid and phosphotungstic acid efficiently catalyze the addition of H_2O_2 to β -diketones resulting in the selective formation of bridged 1,2,4,5-tetraoxanes. The use of these catalysts made it possible to obtain bridged tetraoxanes from easily oxidizable benzoylacetone derivatives and α -unsubstituted β -diketones [429].

6.9. Synthesis of symmetrical 1,2,4,5-tetraoxanes by the ozonolysis of unsaturated compounds

The dimerization of zwitterions **417** produced by decomposition of ozonides **416** affords symmetrical tetraoxanes **418** (Scheme 128).

For example, the ozonolysis of verbenone **419** via the formation of zwitterioninc structures **420** and **421** gives a mixture of two symmetrical 1,2,4,5-tetraoxanes **422** and **423** (Scheme 129) [430]. Peroxides **422** and **423** are unstable due to the presence of carbonyl groups adjacent to the O–O group, and they almost completely decompose as the temperature is raised.

3,3,6,6-Tetrapentyl-1,2,4,5-tetraoxane (**425**) was synthesized in a similar way by the ozonolysis of undecan-6-one O-methyl oxime (**424**) (Scheme 130) [431,432]. It should be noted that this approach is not widely used because of a limited number of appropriate structures and low yields of the target products.

6.10. Other methods for the synthesis of 1,2,4,5-tetraoxanes

The peroxidation of 1,1,1-trifluorododecan-2-one (**426**) with oxone afforded the symmetrical tetraoxane, 3,6-didecyl-3,6-bis(trifluoromethyl)-1,2,4,5-tetraoxane (**427**) (Scheme 131) [433].

The synthesis of unsymmetrical steroidal tetraoxane **429** in 19% yield was performed by the intramolecular cyclization of dialdehyde **428** with hydrogen peroxide under acidic conditions (Scheme 132) [434]. In the synthesis of geminal bishydroperoxides by $BF_3 \cdot Et_2O$ or $BF_3 \cdot MeOH$ -catalyzed reactions of ketals **430–432** with hydrogen peroxide in Et_2O tetraoxanes **433–435** (Scheme 133) are obtained as by-products in 12%, 6%, and 19% yields, respectively [435].

Scheme 134 shows the synthesis of 3,3,6,6-tetramethyl-1,2,4,5tetraoxane (**437**) in 90% yield by the transformation of the intermediate 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexaoxononane (**436**) in acetone [436]. This method is suitable for the preparation of the target product in amounts of only several hundred milligrams.

6.11. Structural modifications, in which 1,2,4,5tetraoxane ring remains intact

In the last two decades, 1,2,4,5-tetraoxanes were considered as the most promising compounds for the design of antiparasitic drugs. This is due, first, to the high activity of their derivatives

Scheme 132: Intramolecular cyclization of dialdehyde 428 with H_2O_2 .

and, second, to a wide scope of structural modifications, in which the tetraoxane ring remains intact.

Amides **440a,b** and amines **444a,b**, and **446** active against various strains of *P.falciparum* were synthesized from methyl 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane-3-carboxylate (**438**) containing the ester group (Scheme 135) [135,437]. To prepare aminoquinoline derivatives **440a,b**, ester **438** was

Scheme 135: Preparation and structural modifications of tetraoxanes.

hydrolyzed to 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane-3carboxylic acid (**439**) followed by the amidation of the latter. The synthesis of products **444a,b** and **446** was performed with a wide range of classical reagents for organic synthesis with the intermediate formation of compounds containing such groups as hydroxy **441**, azide **442**, amino **443**, and aldehyde **445**.

An interesting feature of the synthesis according to Scheme 135 is the use of such strong reducing agents as $LiAlH_4$ and $NaBH(OAc)_3$, with the products retaining the peroxide ring.

Steroidal tetraoxane **448**, which is approximately six times more active that Artelinic acid and 2.4 times as active as arteether against *P. falciparum*, was also synthesized by the alkaline hydrolysis of ester **401g** followed by the amidation of acid **447** (Scheme 136) [128].

Compounds containing a fluorescent moiety are of interest in terms of the mechanism of antiparasitic action of peroxides. For example, 1,2,4,5-tetraoxane **454** containing the 4-chloro-7-methylbenzo[c][1,2,5]oxadiazole moiety was synthesized according to Scheme 137. In the first step, ketone **449** was transformed in tetraoxane **450**, whose ester group was subjected to the alkaline hydrolysis to form acid **451** followed by the amidation to give **452** and the hydrolysis to obtain hydrochlo-

ride **453**. Then the reaction of the latter with 4-chloro-7-nitrobenzo[c][1,2,5]oxadiazole afforded the target compound **454** [138].

The synthesis of tetraoxane **458** (RKA182) exhibiting the in vitro and in vivo activity comparable with that of artemisinin was performed on the kilogram scale according to Scheme 138. This compound is a promising malaria drug candidate [82,83]. The key steps in this synthesis are the preparation of adamantane-containing tetraoxane **456** from ethyl 2-(4-oxocyclohexyl)acetate (**455**), the hydrolysis of **456**, and the purification to obtain acid **457**. The amidation of the latter affords target product **458**.

Conclusion

The review summarizes and generalizes studies on the synthesis of five- and six-membered cyclic peroxides published last decade (since 2000 to present). Most of the currently established methods for the synthesis of these compounds are based on the use of such key oxidizing agents as oxygen, ozone, and hydrogen peroxide. The Isayama–Mukaiyama and Kobayashi methods are widely used in the synthesis of 1,2-dioxolanes, 1,2dioxanes, and 1,2,4-trioxanes. The reactions with the participation of peroxycarbenium ions play an important role in the synthesis of peroxides.

The Griesbaum coozonolysis of ketones and O-alkyl oximes is the most flexible and efficient method for the synthesis of unsymmetrical 1,2,4-trioxolanes. The [4 + 2]-cycloaddition of oxygen to a 1,3-diene system is, in fact, the only route to 1,2dioxenes. Methods for the synthesis of 1,2,4,5-tetraoxanes are based on reactions of ketones, aldehydes, and their dialkyloxy derivatives with hydrogen peroxide or *gem*-bishydroperoxides catalyzed by protic and aprotic acids, such as MeReO₃, Re₂O₇, and iodine. Modifications of functional groups to form peroxide ringretaining products are applicable to the synthesis of cyclic peroxides of various structural types. This approach can be used to prepare complex peroxides exhibiting antiparasitic and antitumor activities.

Carbonyl compound are generally employed as the starting reagents in the synthesis of cyclic peroxides. These methods can be used for the selective peroxidation of monocarbonyl compounds. In the case of dicarbonyl compounds, there are a limited number of efficient procedures for the synthesis of cyclic peroxides.

Acknowledgements

This work is supported by the Russian Foundation for Basic Research (Grant 14-03-00237-a), the Program for Basic Research of the Presidium of the Russian Academy of Sciences, and the Ministry of Education and Science of the Russian Federation (Grant 8651).

References

- McCullough, K. J.; Nojima, M. Curr. Org. Chem. 2001, 5, 601. doi:10.2174/1385272013375346
- Korshin, E. E.; Bachi, M. D. Synthesis of cyclic peroxides. In *The* Chemistry of Peroxides; Rappoport, Z., Ed.; John Wiley & Sons, Ltd: Chichester, 2006; Vol. 2, Part 1, pp 189 ff. doi:10.1002/0470862769.ch5
- Tang, Y.; Dong, Y.; Vennerstrom, J. L. Med. Res. Rev. 2004, 24, 425. doi:10.1002/med.10066
- O'Neill, P. M.; Posner, G. H. J. Med. Chem. 2004, 47, 2945. doi:10.1021/jm030571c
- Slack, R. D.; Jacobine, A. M.; Posner, G. H. *Med. Chem. Commun.* 2012, 3, 281. doi:10.1039/c2md00277a
- Masuyama, A.; Wu, J.-M.; Nojima, M.; Kim, H.-S.; Wataya, Y. *Mini-Rev. Med. Chem.* 2005, *5*, 1035. doi:10.2174/138955705774575255
- Van Ornum, S. G.; Champeau, R. M.; Pariza, R. Chem. Rev. 2006, 106, 2990. doi:10.1021/cr040682z
- Jefford, C. W. Drug Discovery Today 2007, 12, 487. doi:10.1016/j.drudis.2007.04.009
- Jefford, C. W. Curr. Top. Med. Chem. 2012, 12, 373. doi:10.2174/156802612799362940
- Dembitsky, V. M. *Eur. J. Med. Chem.* 2008, 43, 223. doi:10.1016/j.ejmech.2007.04.019
- 11. Siddiq, A.; Dembitsky, V. Anti-Cancer Agents Med. Chem. 2008, 8, 132. doi:10.2174/187152008783497073
- 12. Dembitsky, V. M.; Levitsky, D. O. Nat. Prod. Commun. 2006, 1, 405.
- Dembitsky, V. M. Lipids 2006, 41, 883. doi:10.1007/s11745-006-5044-3
- Dembitsky, V. M. Lipids 2005, 40, 869. doi:10.1007/s11745-005-1449-2
- Dembitsky, V. M. Chem. Biodiversity 2004, 1, 673. doi:10.1002/cbdv.200490060
- Opsenica, D. M.; Šolaja, B. A. J. Serb. Chem. Soc. 2009, 74, 1155. doi:10.2298/JSC09111550

- 17. Muraleedharan, K. M.; Avery, M. A. *Drug Discovery Today* **2009**, *14*, 793. doi:10.1016/j.drudis.2009.05.008
- Kim, B. J.; Sasaki, T. Org. Prep. Proced. Int. 2006, 38, 1. doi:10.1080/00304940609355981
- 19. Baby, J.; Sujatha, S. J. Nat. Prod. (Gorakhpur, India) 2011, 4, 5.
- Hepworth, J. D.; Heron, B. M. Prog. Heterocycl. Chem. 1996, 8, 277. doi:10.1016/S0959-6380(96)80017-1
- Kabal'nova, N. N.; Khursan, S. L.; Shereshovets, V. V.; Tolstikov, G. A. *Kinet. Catal.* **1999**, *40*, 207.
- Terent'ev, A. O.; Platonov, M. M.; Levitsky, D. O.; Dembitsky, V. M. Russ. Chem. Rev. 2011, 80, 807.
 - doi:10.1070/RC2011v080n09ABEH004189
- 23. Baader, W. J.; Bastos, E. L. Sci. Synth. 2008, 38, 345–378.
- Baader, W. J.; Bastos, E. L. Sci. Synth. 2008, 38, 379–395.
 Baader, W. J.; Bastos, E. L. Sci. Synth. 2008, 38, 397–420.
- Kumar, N.; Singh, R.; Rawat, D. S. *Med. Res. Rev.* 2012, 32, 581–610. doi:10.1002/med.20223
- Zmitek, K.; Zupan, M.; Iskra, J. Org. Biomol. Chem. 2007, 5, 3895. doi:10.1039/b711647k
- Trullinger, T. K. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 2002; pp 195 ff. *Diss. Abstr. Int., B* 2003, 63, 5855.
- Dai, P. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 2004; pp 186 ff.

Diss. Abstr. Int., B 2005, 66, 281.

- Ramirez, A. P. Ph.D. Thesis, University of California, Irvine, CA, USA, 2007; pp 224 ff.
 - Diss. Abstr. Int., B 2007, 67, 6412.
- Pena-Quevedo, A. J. Ph.D. Thesis, University of Puerto Rico, Mayaguez, P. R., 2009; pp 159 ff. Diss. Abstr. Int., B 2010, 70, 4186.
- Yao, G. Ph.D. Thesis, Boston University, Boston, MA, USA, 1999; pp 243 ff.

Diss. Abstr. Int., B **1999,** 60, 193.

- 33. Morgan, N. N. Int. J. Phys. Sci. 2009, 4, 885.
- Odinokov, V. N.; Tolstikov, G. A. Russ. Chem. Rev. 1981, 50, 636. doi:10.1070/RC1981v050n07ABEH002658
- Razumovskii, S. D.; Zaikov, G. E. Russ. Chem. Rev. 1980, 49, 1163. doi:10.1070/RC1980v049n12ABEH002535
- 36. Schmidt-Szalowski, K. Przem. Chem. 2000, 79, 115.
- 37. Capon, R. J. Stud. Nat. Prod. Chem. 1991, 9, 15.
- 38. Cafferata, L. F. R. Trends Org. Chem. 1993, 4, 773.
- Tolstikov, G. A.; Tolstikov, A. G.; Tolstikova, O. V. Russ. Chem. Rev. 1996, 65, 769. doi:10.1070/RC1996v065n09ABEH000240
- McCullough, K. J. Contemp. Org. Synth. 1995, 2, 225. doi:10.1039/co9950200225
- 41. Adam, W. Acc. Chem. Res. **1979**, *12*, 390. doi:10.1021/ar50143a002
- 42. Opsenica, D. M.; Šolaja, B. A. *Maced. J. Chem. Chem. Eng.* **2012**, *31*, 137
- 43. Sawwan, N.; Greer, A. *Chem. Rev.* **2007**, *107*, 3247. doi:10.1021/cr0400717
- Clennan, E. L.; Foote, C. In Organic Peroxides; Ando, E., Ed.; Wiley: New York, 1992.
- 45. Balci, M. Chem. Rev. 1981, 81, 91. doi:10.1021/cr00041a005
- Clennan, E. L. *Tetrahedron* 1991, 47, 1343. doi:10.1016/S0040-4020(01)86413-9
- Doerig, C. D. *Nat. Chem. Biol.* 2008, *4*, 334. doi:10.1038/nchembio0608-334
- Vangapandu, S.; Jain, M.; Kaur, K.; Patil, P.; Patel, S. R.; Jain, R. Med. Res. Rev. 2007, 27, 65. doi:10.1002/med.20062
- Tu, Y. Nat. Med. (N. Y., NY, U. S.) 2011, 17, 1217. doi:10.1038/nm.2471
- Kumar, N.; Sharma, M.; Rawat, D. S. Curr. Med. Chem. 2011, 18, 3889. doi:10.2174/092986711803414340
- 51. Liao, F. Molecules 2009, 14, 5362. doi:10.3390/molecules14125362
- Morris, C. A.; Duparc, S.; Borghini-Fuhrer, I.; Jung, D.; Shin, C.-S.; Fleckenstein, L. *Malar. J.* 2011, *10*, 263. doi:10.1186/1475-2875-10-263
- Robert, A.; Dechy-Cabaret, O.; Cazalles, J.; Meunier, B. Acc. Chem. Res. 2002, 35, 167–174. doi:10.1021/ar9901640
- Hombhanje, F. W.; Huang, Q. *Pharmaceuticals* 2010, *3*, 3581. doi:10.3390/ph3123581
- Kano, S. J. Infect. Chemother. 2010, 16, 375. doi:10.1007/s10156-010-0077-1
- Li, Q.; Weina, P. *Pharmaceuticals* **2010**, *3*, 2322. doi:10.3390/ph3072322
- 57. Wright, C. W. Nat. Prod. Rep. 2010, 27, 961. doi:10.1039/c002196m
- Kaur, H.; Green, M. D.; Hostetler, D. M.; Fernandez, F. M.; Newton, P. N. *Therapy* **2010**, *7*, 49. doi:10.2217/thy.09.84
- Medhi, B.; Patyar, S.; Rao, R. S.; Byrav, D. S. P.; Prakash, A. Pharmacology 2009, 84, 323. doi:10.1159/000252658
- Eastman, R. T.; Fidock, D. A. Nat. Rev. Microbiol. 2009, 7, 864. doi:10.1038/nrmicro2239
- Ehrhardt, S.; Meyer, C. G. *Ther. Clin. Risk Manage.* 2009, *5*, 805. doi:10.2147/TCRM.S5375
- Gautam, A.; Ahmed, T.; Paliwal, J.; Batra, V. Curr. Drug Metab. 2009, 10, 289. doi:10.2174/138920009787846323
- Bathurst, I.; Hentschel, C. Trends Parasitol. 2006, 22, 301. doi:10.1016/j.pt.2006.05.011
- 64. White, N. J. Science 2008, 320, 330. doi:10.1126/science.1155165
- Nakase, I.; Lai, H.; Singh, N. P.; Sasaki, T. Int. J. Pharm. 2008, 354, 28. doi:10.1016/j.ijpharm.2007.09.003
- Nosten, F.; White, N. J. Am. J. Trop. Med. Hyg. 2007, 77 (Suppl. 6), 181.
- Stocks, P. A.; Bray, P. G.; Barton, V. E.; Al-Helal, M.; Jones, M.; Araujo, N. C.; Gibbons, P.; Ward, S. A.; Hughes, R. H.; Biagini, G. A.; Davies, J.; Amewu, R.; Mercer, A. E.; Ellis, G.; ONeill, P. M. *Angew. Chem., Int. Ed.* **2007**, *46*, 6278. doi:10.1002/anie.200604697
- Checkley, A. M.; Whitty, C. J. M. *Expert Rev. Anti-Infect. Ther.* 2007, 5, 199. doi:10.1586/14787210.5.2.199
- Tilley, L.; Davis, T. M. E.; Bray, P. G. Future Microbiol. 2006, 1, 127. doi:10.2217/17460913.1.1.127
- Gelb, M. H. Curr. Opin. Chem. Biol. 2007, 11, 440. doi:10.1016/j.cbpa.2007.05.038
- 71. Namdeo, A. G.; Mahadik, K. R.; Kadam, S. S. *Pharm. Mag.* **2006**, *2*, 106.
- Haynes, R. K. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2006, 6, 509. doi:10.2174/156802606776743129
- Begue, J.-P.; Bonnet-Delpon, D. Drugs Future 2005, 30, 509. doi:10.1358/dof.2005.030.05.901987
- Rosenthal, A. S.; Chen, X.; Liu, J. O.; West, D. C.; Hergenrother, P. J.; Shapiro, T. A.; Posner, G. H. *J. Med. Chem.* 2009, 52, 1198. doi:10.1021/jm801484v
- Nagelschmitz, J.; Voith, B.; Wensing, G.; Roemer, A.; Fugmann, B.; Haynes, R. K.; Kotecka, B. M.; Rieckmann, K. H.; Edstein, M. D. *Antimicrob. Agents Chemother.* **2008**, *52*, 3085. doi:10.1128/AAC.01585-07
- 76. Van der Meersch, H. J. Pharm. Belg. 2005, 60, 23.

- Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu, F. C. K.; Chollet, J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam, M.; Santo Tomas, J.; Scheurer, C.; Scorneaux, B.; Tang, Y.; Urwyler, H.; Wittlin, S.; Charman, W. N. *Nature* 2004, *430*, 900. doi:10.1038/nature02779
- Valecha, N.; Looareesuwan, S.; Martensson, A.; Abdulla, S. M.; Krudsood, S.; Tangpukdee, N.; Mohanty, S.; Mishra, S. K.; Tyagi, P. K.; Sharma, S. K.; Moehrle, J.; Gautam, A.; Roy, A.; Paliwal, J. K.; Kothari, M.; Saha, N.; Dash, A. P.; Bjorkman, A. *Clin. Infect. Dis.* **2010**, *51*, 684. doi:10.1086/655831
- Uhlemann, A. C.; Wittlin, S.; Matile, H.; Bustamante, L. Y.; Krishna, S. *Antimicrob. Agents Chemother.* 2007, *51*, 667. doi:10.1128/AAC.01064-06
- Gupta, A.; Singh, Y.; Srinivas, K. S.; Jain, G.; Sreekumar, V. B.; Semwal, V. P. *J. Pharm. BioAllied Sci.* **2010**, *2*, 32. doi:10.4103/0975-7406.62706
- Dong, Y.; Wittlin, S.; Sriraghavan, K.; Chollet, J.; Charman, S. A.; Charman, W. N.; Scheurer, C.; Urwyler, H.; Santo Tomas, J.; Snyder, C.; Creek, D. L.; Morizzi, J.; Koltun, M.; Matile, H.; Wang, X.; Padmanilayam, M.; Tang, Y.; Dorn, A.; Brun, R.; Vennerstrom, J. L. *J. Med. Chem.* **2010**, *53*, 481. doi:10.1021/jm901473s
- O'Neill, P. M.; Amewu, R. K.; Nixon, G. L.; ElGarah, F. B.; Mungthin, M.; Chadwick, J.; Shone, A. E.; Vivas, L.; Lander, H.; Barton, V.; Muangnoicharoen, S.; Bray, P. G.; Davies, J.; Park, B. K.; Wittlin, S.; Brun, R.; Preschel, M.; Zhang, K.; Ward, S. A. Angew. Chem., Int. Ed. 2010, 49, 5693. doi:10.1002/anie.201001026
- Bousejra-El Garah, F.; Wong, M. H.-L.; Amewu, R. K.; Muangnoicharoen, S.; Maggs, J. L.; Stigliani, J.-L.; Park, B. K.; Chadwick, J.; Ward, S. A.; O'Neill, P. M. *J. Med. Chem.* 2011, *54*, 6443. doi:10.1021/jm200768h
- Posner, G. H.; O'Neill, P. M. Acc. Chem. Res. 2004, 37, 397. doi:10.1021/ar020227u
- Sonnet, P.; Mullié, C. *Exp. Parasitol.* **2011**, *128*, 26. doi:10.1016/j.exppara.2011.01.018
- Coslédan, F.; Fraisse, L.; Pellet, A.; Guillou, G.; Mordmüller, M.; Kremsner, P.; Moreno, A.; Mazier, D.; Maffrand, J.-P.; Meunier, B. *Proc. Natl. Acad. Sci. U. S. A.* **2008**, *105*, 17579. doi:10.1073/pnas.0804338105
- Meunier, B.; Robert, A. Acc. Chem. Res. 2010, 43, 1444. doi:10.1021/ar100070k
- Martyn, D. C.; Ramirez, A. P.; Beattie, M. J.; Cortese, J. F.; Patel, V.; Rush, M. A.; Woerpel, K. A.; Clardy, J. *Bioorg. Med. Chem. Lett.* 2008, *18*, 6521. doi:10.1016/j.bmcl.2008.10.083
- Schiaffo, C. E.; Rottman, M.; Wittlin, S.; Dussault, P. H. ACS Med. Chem. Lett. 2011, 2, 316.
- Wang, X.; Dong, Y.; Wittlin, S.; Creek, D.; Chollet, J.; Charman, S. A.; Santo Tomas, J.; Scheurer, C.; Snyder, C.; Vennerstrom, J. L. *J. Med. Chem.* 2007, *50*, 5840. doi:10.1021/jm0707673
- Hartwig, C. L.; Lauterwasser, E. M. W.; Mahajan, S. S.; Hoke, J. M.; Cooper, R. A.; Renslo, A. R. *J. Med. Chem.* **2011**, *54*, 8207. doi:10.1021/jm2012003
- Dong, Y.; Chollet, J.; Matile, H.; Charman, S. A.; Chiu, F. C. K.; Charman, W. N.; Scorneaux, B.; Urwyler, H.; Santo Tomas, J.; Scheurer, C.; Snyder, C.; Dorn, A.; Wang, X.; Karle, J. M.; Tang, Y.; Wittlin, S.; Brun, R.; Vennerstrom, J. L. *J. Med. Chem.* **2005**, *48*, 4953. doi:10.1021/jm049040u

- Dong, Y.; Tan, Y.; Chollet, J.; Matile, H.; Wittlin, S.; Charman, S. A.; Charman, W. N.; Tomas, J. S.; Scheurer, C.; Snyder, C.; Scorneaux, B.; Bajpai, S.; Alexander, S. A.; Wang, X.; Padmanilayam, M.; Cheruku, S. R.; Brun, R.; Vennerstrom, J. L. *Bioorg. Med. Chem.* **2006**, *14*, 6368. doi:10.1016/j.bmc.2006.05.041
- Padmanilayam, M.; Scorneaux, B.; Dong, Y.; Chollet, J.; Matile, H.; Charman, S. A.; Creek, D. J.; Charman, W. N.; Tomas, J. S.; Scheurer, C.; Wittlin, S.; Brun, R.; Vennerstrom, J. L. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5542. doi:10.1016/j.bmcl.2006.08.046
- Yadav, G. C.; Dorwal, H. N.; Tanwar, P.; Gahlot, U. B. S. A process for the preparation of 1, 2, 4-trioxolane antimalarials. PCT Int. Appl. WO2010119425 A1, Oct 21, 2010.
- Tang, Y.; Dong, Y.; Wittlin, S.; Charman, S. A.; Chollet, J.; Chiu, F. C. K.; Charman, W. N.; Matile, H.; Urwyler, H.; Dorn, A.; Bajpai, S.; Wang, X.; Padmanilayam, M.; Karle, J. M.; Brun, R.; Vennerstrom, J. L. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 1260. doi:10.1016/j.bmcl.2006.12.007
- Tang, Y.; Wittlin, S.; Charman, S. A.; Chollet, J.; Chiu, F. C. K.; Morizzi, J.; Johnson, L. M.; Santo Tomas, J.; Scheurer, C.; Snyder, C.; Zhou, L.; Dong, Y.; Charman, W. N.; Matile, H.; Urwyler, H.; Dorn, A.; Vennerstrom, J. L. *Bioorg. Med. Chem. Lett.* 2010, *20*, 563. doi:10.1016/j.bmcl.2009.11.088
- Arora, V. K.; Madan, S.; Trehan, A.; Tyagi, P. Stable dosage forms of spiro and dispiro 1,2,4-trioxolane antimalarials. PCT Int. Appl. WO 2006123314 A2, Nov 23, 2006.
- Vennerstrom, J. L.; Dong, Y.; Chollet, J.; Matile, H.; Wang, X.; Sriraghavan, K.; Charman, W. N. Spiro and dispiro 1,2,4-trioxolane antimalarials. U. S. Pat. Appl. US 20050256185 A1, Nov 17, 2005.
- 100. Cazelles, J.; Cosledan, F.; Meunier, B.; Pellet, A. Dual molecules containing peroxy derivative, the synthesis and therapeutic applications thereof. Patent Fr. Demande FR 2862304 A1, May 20, 2005.
- 101. Vennerstrom, J. L.; Dong, Y.; Chollet, J.; Matile, H.; Padmanilayam, H.; Tang, Y.; Charman, N. W. Spiro and dispiro 1,2,4-trioxolane antimalarials. U.S. Pat. Appl. US 20040186168 A1, Sept 23, 2004.
- 102. O'Neill, P. M.; Stocks, P. A.; Pugh, M. D.; Araujo, N. C.; Korshin, E. E.; Bickley, J. F.; Ward, S. A.; Bray, P. G.; Pasini, E.; Davies, J.; Verissimo, E.; Bachi, M. D. *Angew. Chem., Int. Ed.* **2004**, *43*, 4193. doi:10.1002/anie.200453859
- 103. Fattorusso, C.; Persico, M.; Calcinai, B.; Cerrano, C.; Parapini, S.; Taramelli, D.; Novellino, E.; Romano, A.; Scala, F.; Fattorusso, E.; Taglialatela-Scafati, O. *J. Nat. Prod.* **2010**, *73*, 1138. doi:10.1021/np100196b
- 104.Kawanishi, M.; Kotoku, N.; Itagaki, S.; Horii, T.; Kobayashi, M. Bioorg. Med. Chem. 2004, 12, 5297. doi:10.1016/j.bmc.2004.04.051
- 105. Taglialatela-Scafati, O.; Fattorusso, E.; Romano, A.; Scala, F.; Barone, V.; Cimino, P.; Stendardo, E.; Catalanotti, B.; Persico, M.; Fattorusso, C. Org. Biomol. Chem. 2010, 8, 846. doi:10.1039/b918600i
- 106.Christoffers, J.; Werner, T.; Roessle, M. *Catal. Today* **2007**, *121*, 22. doi:10.1016/j.cattod.2006.11.008
- 107.Bachi, M. D.; Korshin, E. E.; Hoos, R.; Szpilman, A. M.; Ploypradith, P.; Xie, S.; Shapiro, T. A.; Posner, G. H. *J. Med. Chem.* 2003, 46, 2516. doi:10.1021/jm020584a
- 108. Fattorusso, C.; Campiani, G.; Catalanotti, B.; Persico, M.; Basilico, N.; Parapini, S.; Taramelli, D.; Campagnuolo, C.; Fattorusso, E.; Romano, A. J. Med. Chem. 2006, 49, 7088. doi:10.1021/jm060899g

- 109.Murakami, N.; Kawanishi, M.; Itagaki, S.; Horii, T.; Kobayashi, M. Bioorg. Med. Chem. Lett. 2002, 12, 69. doi:10.1016/S0960-894X(01)00673-4
- 110. Murakami, N.; Kawanishi, M.; Mostaqul, H. M.; Li, J.; Itagaki, S.; Horii, T.; Kobayashi, M. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 4081. doi:10.1016/j.bmcl.2003.08.073
- 111.Liu, H.-H.; Zhang, Q.; Jin, H.-X.; Shen, X.; Wu, Y.-K. *Chin. J. Chem.* **2006**, *24*, 1180. doi:10.1002/cjoc.200690221
- 112.Liu, H.-H.; Jin, H.-X.; Zhang, Q.; Wu, Y.-K.; Kim, H.-S.; Wataya, Y. *Chin. J. Chem.* **2005**, 23, 1469. doi:10.1002/cjoc.200591469
- 113.Givelet, C.; Bernat, V.; Danel, M.; André-Barrès, C.; Vial, H. *Eur. J. Org. Chem.* **2007**, 3095. doi:10.1002/ejoc.200700086
- 114.Rudi, A.; Talpir, R.; Kashman, Y.; Benayahu, Y.; Schleyer, M. *J. Nat. Prod.* **1993**, *56*, 2178. doi:10.1021/np50102a023
- 115.Ruiz, J.; Tuccio, B.; Lauricella, R.; Maynadier, M.; Vial, H.; André-Barrès, C. *Tetrahedron* **2013**, *69*, 6709. doi:10.1016/j.tet.2013.05.099
- 116.Kamata, M.; Hagiwara, J.-i.; Hokari, T.; Suzuki, C.; Fujino, R.; Kobayashi, S.; Kim, H.-S.; Wataya, Y. *Res. Chem. Intermed.* **2013**, 39, 127. doi:10.1007/s11164-012-0637-3
- 117.Najjar, F.; Gorrichon, L.; Baltas, M.; André-Barrès, C.; Vial, H. *Org. Biomol. Chem.* **2005**, *3*, 1612. doi:10.1039/b503402g
- 118.Kondo, K.; Matsumoto, M.; Hatsutani, M. Patent Jpn. Kokai Tokkyo Koho JP 49061179 A, June 13, 1974.
- 119.Bernat, V.; Saffon, N.; Maynadier, M.; Vial, H.; André-Barrès, C. Tetrahedron **2009**, *65*, 7372. doi:10.1016/j.tet.2009.07.030
- 120. Amewu, R.; Gibbons, P.; Mukhtar, A.; Stachulski, A. V.; Ward, S. A.; Hall, C.; Rimmer, K.; Davies, J.; Vivas, L.; Bacsa, J.; Mercer, A. E.; Nixon, G.; Stocks, P. A.; O'Neill, P. M. *Org. Biomol. Chem.* **2010**, *8*, 2068. doi:10.1039/b924319d
- 121.Chauhan, S. S.; Sharma, M.; Chauhan, P. M. S. *Drug News Perspect.* 2010, *23*, 632. doi:10.1358/dnp.2010.23.10.1468390
- 122.Fernandez, I.; Robert, A. *Org. Biomol. Chem.* **2011**, *9*, 4098. doi:10.1039/c1ob05088e
- 123.Singh, C.; Verma, V. P.; Naikade, N. K.; Singh, A. S.; Hassam, M.; Puri, S. K. *J. Med. Chem.* **2008**, *51*, 7581. doi:10.1021/jm801006v
- 124.Brown, G. D. *Molecules* **2010**, *15*, 7603. doi:10.3390/molecules15117603
- 125.Singh, C.; Sharma, U.; Saxena, G.; Puri, S. *Bioorg. Med. Chem. Lett.* 2007, 17, 4097. doi:10.1016/j.bmcl.2007.05.055
- 126.Singh, C.; Singh, A. S.; Naikade, N. K.; Verma, V. P.; Hassam, M.; Gupta, N.; Pandey, S. Synthesis 2010, 1014. doi:10.1055/s-0029-1218639
- 127.Hencken, C. P.; Kalinda, A. S.; Gaetano D'Angelo, J. Annu. Rep. Med. Chem. 2009, 44, 359. doi:10.1016/S0065-7743(09)04418-2
- 128.Šolaja, B. A.; Terzić, N.; Pocsfalvi, G.; Gerena, L.; Tinant, B.; Opsenica, D.; Milhous, W. K. J. Med. Chem. 2002, 45, 3331. doi:10.1021/jm020891g
- 129.Kirchhofer, C.; Vargas, M.; Braissant, O.; Dong, Y.; Wang, X.; Vennerstrom, J. L.; Keiser, J. Acta Trop. 2011, 118, 56. doi:10.1016/j.actatropica.2011.02.003
- 130. Vennerstrom, J. L.; Fu, H. N.; Ellis, W. Y.; Ager, A. L., Jr.; Wood, J. K.; Andersen, S. L.; Gerena, L.; Milhous, W. K. J. Med. Chem. 1992, 35, 3023. doi:10.1021/jm00094a015
- 131.Hamann, H.-J.; Hecht, M.; Bunge, A.; Gogol, M.; Liebscher, J. Tetrahedron Lett. 2011, 52, 107. doi:10.1016/j.tetlet.2010.10.151

- 132. Opsenica, I.; Terzić, N.; Opsenica, D.; Angelovski, G.; Lehnig, L.; Eilbracht, P.; Tinant, B.; Juranić, Z.; Smith, K. S.; Yang, Y. S.; Diaz, D. S.; Smith, P. L.; Milhous, W. K.; Doković, D.; Šolaja, B. A. *J. Med. Chem.* **2006**, *49*, 3790. doi:10.1021/jm050966r
- 133.Dong, Y.; McCullough, K. J.; Wittlin, S.; Chollet, J.; Vennerstrom, J. L. Bioorg. Med. Chem. Lett. 2010, 20, 6359. doi:10.1016/j.bmcl.2010.09.113
- 134. Cvijetic, I. N.; Zizak, Z. P.; Stanojkovic, T. P.; Juranic, Z. D.; Terzic, N.; Opsenica, I. M.; Opsenica, D. M.; Juranic, I. O.; Drakulic, B. J. *Eur. J. Med. Chem.* **2010**, *45*, 4570. doi:10.1016/j.ejmech.2010.07.019
- 135. Opsenica, I.; Opsenica, D.; Lanteri, C. A.; Anova, L.; Milhous, W. K.; Smith, K. S.; Solaja, B. A. *J. Med. Chem.* **2008**, *51*, 6216. doi:10.1021/jm8006905
- 136.Bhattacharjee, A. K.; Carvalho, K. A.; Opsenica, D.; Solaja, B. A. J. Serb. Chem. Soc. 2005, 70, 329. doi:10.2298/JSC0503329B
- 137.Tonmunphean, S.; Wijitkosoom, A.; Tantirungrotechai, Y. Bioorg. Med. Chem. 2004, 12, 2005. doi:10.1016/j.bmc.2004.03.003
- 138. Ellis, G. L.; Amewu, R.; Sabbani, S.; Stocks, P. A.; Shone, A.; Stanford, D.; Gibbons, P.; Davies, J.; Vivas, L.; Charnaud, S.; Bongard, E.; Hall, C.; Rimmer, K.; Lozanom, S.; Jesús, M.; Gargallo, D.; Ward, S. A.; O'Neill, P. M. *J. Med. Chem.* **2008**, *51*, 2170. doi:10.1021/jm701435h
- 139.Liu, H.-H.; Wu, Y.-K.; Shen, X. *Chin. J. Chem.* **2003**, *21*, 875. doi:10.1002/cjoc.20030210731
- 140. Dong, Y. Mini-Rev. Med. Chem. 2002, 2, 113.
- 141.Opsenica, D. M.; Terzić, N.; Smith, P. L.; Yang, Y.; Anova, L.; Smith, K. S.; Solaja, B. A. *Bioorg. Med. Chem.* **2008**, *16*, 7039. doi:10.1016/j.bmc.2008.05.017
- 142. Terzić, N.; Opsenica, D.; Milić, D.; Tinan, B.; Smith, K. S.; Milhous, W. K.; Šolaja, B. A. *J. Med. Chem.* **2007**, *50*, 5118. doi:10.1021/jm070684m
- 143.Pis Diez, R.; Jubert, A. H. *J. Mol. Struct.: THEOCHEM* **2000**, *499*, 85. doi:10.1016/S0166-1280(99)00281-X
- 144. Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.; Bray, P. G.; Davies, J.; Labat, G.; Vivas, L.; O'Neill, P. M. Org. Biomol. Chem. 2006, 4, 4431. doi:10.1039/b613565j
- 145.Dong, Y.; Matile, H.; Chollet, J.; Kaminsky, R.; Wood, J. K.; Vennerstrom, J. L. *J. Med. Chem.* **1999**, *42*, 1477. doi:10.1021/jm980698f
- 146.Kumura, N.; Furukawa, H.; Kobayashi, M.; Onyango, A. N.; Izumi, M.; Nakajima, S.; Kim, H.-S.; Wataya, Y.; Baba, N. *Biosci., Biotechnol., Biochem.* **2009**, *73*, 217. doi:10.1271/bbb.80571
- 147.Ingram, K.; Schiaffo, C. E.; Sittiwong, W.; Benner, E.; Dussault, P. H.; Keiser, J. J. Antimicrob. Chemother. **2012**, 67, 1979.
- doi:10.1093/jac/dks141
 148.Dong, Y.; Chollet, J.; Vargas, M.; Mansour, N. R.; Bickle, Q.; Alnouti, Y.; Huang, J.; Keiser, J.; Vennerstrom, J. L. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 2481. doi:10.1016/i.bmcl.2010.03.001
- 149.Mohamed, A. E.-H. H.; El-Sayed, M. A.; Hegazy, M. E.; Helaly, S. E.; Esmail, A. M.; Mohamed, N. S. *Rec. Nat. Prod.* **2010**, *4*, 1.
- 150.Yang, Z.-S.; Wu, W.-M.; Li, Y.; Wu, Y.-L. *Helv. Chim. Acta* **2005**, *88*, 2865. doi:10.1002/hlca.200590229
- 151.Keiser, J.; Utzinger, J. *Adv. Parasitol.* **2010**, *73*, 197. doi:10.1016/S0065-308X(10)73008-6
- 152.Dembitsky, V.; Shkrob, I.; Hanus, L. O. Biomed. Pap. 2008, 152, 209. doi:10.5507/bp.2008.032

- 153.Laurent, S. A.-L.; Boissier, J.; Coslédan, F.; Gornitzka, H.; Robert, A.; Meunier, B. *Eur. J. Org. Chem.* **2008**, 895. doi:10.1002/ejoc.200700975
- 154.Jung, M.; Lee, K.; Kim, H.; Park, M. Curr. Med. Chem. 2004, 11, 1265. doi:10.2174/0929867043365233
- 155.Xiao, S.-h.; Mei, J.-y.; Jiao, P.-y. *Parasitol. Res.* **2011**, *108*, 431. doi:10.1007/s00436-010-2084-7
- 156.Boissier, J.; Coslédan, F.; Robert, A.; Meunier, B. Antimicrob. Agents Chemother. 2009, 53, 4903. doi:10.1128/AAC.00640-09
- 157.Pradines, V.; Portela, J.; Boissier, J.; Cosledan, F.; Meunier, B.; Robert, A. Antimicrob. Agents Chemother. 2011, 55, 2403. doi:10.1128/AAC.00082-11
- 158. Maurya, R.; Soni, A.; Anand, D.; Ravi, M.; Raju, K. S. R.; Taneja, I.; Naikade, N. K.; Puri, S. K.; Wahajuddin, K.; Anojiya, S.; Yadav, P. P. *Med. Chem. Lett.* **2013**, *4*, 165. doi:10.1021/ml300188t
- 159. Ingram, K.; Yaremenko, I. A.; Krylov, I.; Hofer, L.; Terent'ev, A. O.; Keiser, J. J. Med. Chem. 2012, 55, 8700. doi:10.1021/jm3009184
- 160.Keiser, J.; Brun, R.; Fried, B.; Utzinger, J. Antimicrob. Agents Chemother. 2006, 50, 803. doi:10.1128/AAC.50.2.803-805.2006
- 161.Vennervald, B. J.; Polman, K. Parasite Immunol. 2009, 31, 686. doi:10.1111/j.1365-3024.2009.01163.x
- 162. Yajima, A.; Gabrielli, A. F.; Montresor, A.; Engels, D. *Trans. R. Soc. Trop. Med. Hyg.* **2011**, *105*, 68. doi:10.1016/j.trstmh.2010.11.003
- 163.Keiser, J.; Utzinger, J.; Tanner, M.; Dong, Y.; Vennerstrom, J. L. J. Antimicrob. Chemother. 2006, 58, 1193. doi:10.1093/jac/dkl408
- 164.Cooper, P. J.; Ayre, G.; Martin, C.; Rizzo, J. A.; Ponte, E. V.; Cruz, A. A. Allergy (Oxford, U. K.) 2008, 63, 409.
- 165. Vandemark, L. M.; Jia, T.-W.; Zhou, X.-N. Adv. Parasitol. 2010, 73, 137. doi:10.1016/S0065-308X(10)73006-2
- 166.Keiser, J.; Utzinger, J. Trends Parasitol. 2007, 23, 555. doi:10.1016/j.pt.2007.07.012
- 167.Brooker, S.; Akhwale, W.; Pullan, R.; Estambale, B.; Clarke, S. E.; Snow, R. W.; Hotez, P. J. *Am. J. Trop. Med. Hyg.* **2007**, 77 (Suppl. 6), 88.
- 168.Lv, S.; Zhang, Y.; Steinmann, P.; Zhou, X.-N.; Utzinger, J. Adv. Parasitol. 2010, 72, 351. doi:10.1016/S0065-308X(10)72012-1
- 169.Xiao, S.-H.; Keiser, J.; Chollet, J.; Utzinger, J.; Dong, Y.; Endriss, Y.; Vennerstrom, J. L.; Tanner, M. Antimicrob. Agents Chemother. 2007, 51, 1440. doi:10.1128/AAC.01537-06
- 170. Cooper, P. J.; Nutman, T. B. Lung Biol. Health Dis. 2002, 164, 409.
- 171.Brooker, S. *Int. J. Parasitol.* **2010**, *40*, 1137. doi:10.1016/j.ijpara.2010.04.004
- 172.Keiser, J.; Utzinger, J. Curr. Opin. Infect. Dis. 2007, 20, 605. doi:10.1097/QCO.0b013e3282f19ec4
- 173. Feldmeier, H.; Chitsulo, L. Arzneim. Forsch. 1999, 49, 557.
- 174. Thun, M. J.; Henley, S. J.; Gansler, T. Novartis Found. Symp. 2004, 256, 6. doi:10.1002/0470856734.ch2
- 175.Niesen, A.; Barthel, A.; Kluge, R.; Köwitzsch, A.; Ströhl, D.; Schwarz, S.; Csuk, R. Arch. Pharm. Chem. Life Sci. 2009, 342, 569. doi:10.1002/ardp.200900051
- 176.Sawant, S. S.; Youssef, D. T. A.; Sylvester, P. W.; Wali, V.; El Sayed, K. A. *Nat. Prod. Commun.* **2007**, *2*, 117.
- 177. Csuk, R.; Niesen-Barthel, A.; Barthel, A.; Kluge, R.; Ströhl, D. *Eur. J. Med. Chem.* **2010**, *45*, 3840. doi:10.1016/j.ejmech.2010.05.036

- 178. Rudi, A.; Afanii, R.; Gravalos, L. G.; Aknin, M.; Gaydou, E.; Vacelet, J.; Kashman, Y. *J. Nat. Prod.* **2003**, *66*, 682. doi:10.1021/np020589a
- 179.Szpilman, A. M.; Korshin, E. E.; Rozenberg, H.; Bachi, M. D. J. Org. Chem. 2005, 70, 3618. doi:10.1021/jo050074z
- 180.Berrue, F.; Thomas, O. P.; Funel-Le Bon, C.; Reyes, F.; Amade, P. *Tetrahedron* **2005**, *61*, 11843. doi:10.1016/j.tet.2005.09.077
- 181.Rudi, A.; Kashman, Y. J. Nat. Prod. 1993, 56, 1827. doi:10.1021/np50100a027
- 182. Yao, G.; Steliou, K. Org. Lett. 2002, 4, 485. doi:10.1021/ol016943y
- 183.Jung, M.; Ham, J.; Song, J. *Org. Lett.* **2002**, *4*, 2763. doi:10.1021/ol026285x
- 184.Wijeratne, E. M. K.; Liu, M. X.; Kantipudi, N. B.; Brochini, C. B.; Gunatilaka, A. A. L.; Canfield, L. M. *Bioorg. Med. Chem.* **2006**, *14*, 7875. doi:10.1016/j.bmc.2006.07.057
- 185. Aldeco-Pérez, E.; Rudler, H.; Parlier, A.; Alvarez, C.; Apan, M. T.; Herson, P.; Toscano, A. *Tetrahedron Lett.* **2006**, *47*, 9053. doi:10.1016/j.tetlet.2006.10.093
- 186.Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. *Mini-Rev. Med. Chem.* **2007**, *7*, 571. doi:10.2174/138955707780859396
- 187.Hang, T. T. N.; Hu'o'ng, L. M.; Ha, T. T. H.; Ha, L. M. *Tap Chi Duoc Hoc* **2009**, *49*, 47.
- 188.Ma, Y.-M.; Feng, C.-L. Youji Huaxue 2008, 28, 1697.
- 189.Dai, J.; Liu, Y.; Zhou, Y.-D.; Nagle, D. G. J. Nat. Prod. 2007, 70, 130. doi:10.1021/np0604883
- 190. Rubush, D. M.; Morges, M. A.; Rose, B. J.; Thamm, D. H.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 13554. doi:10.1021/ja3052427
- 191.Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. Mini-Rev. Med. Chem. 2005, 5, 319. doi:10.2174/1389557053175362
- 192.Matsugo, S.; Kayamori, N.; Konishi, T. Niigata Yakka Daigaku Kenkyu Hokoku **1986,** 6, 23.
- 193. Ryden, A.-M.; Kayser, O. Top. Heterocycl. Chem. 2007, 9, 1. doi:10.1007/7081_2007_085
- 194. Roshchina, V. V. Uspekhi Sovrem. Biol. 2006, 126, 366.
- 195.Bradley, D. *Drug Discovery Today* **2000**, *5*, 44. doi:10.1016/S1359-6446(99)01453-1
- 196.Jiménez, M. S.; Garznm, S. P.; Rodríguez, A. D. *J. Nat. Prod.* **2003**, 66, 655.
- 197.Casteel, D. A. Nat. Prod. Rep. 1999, 16, 55. doi:10.1039/a705725c
- 198. Casteel, D. A. *Nat. Prod. Rep.* **1992**, *9*, 289. doi:10.1039/np9920900289
- 199.Lee, K. R. Saengyak Hakhoechi 1991, 22, 145.
- 200.Kasozi, D. M.; Rahlfs, S.; Becker, K. Drug Discovery Infect. Dis. 2011, 2, 413.
- 201.Denisov, E. T.; Solodova, S. L.; Denisova, T. G. Russ. Chem. Rev. 2010, 79, 981. doi:10.1070/RC2010v079n11ABEH004143
- 202.Davies-Coleman, M. T. Stud. Nat. Prod. Chem. 2005, 32, 61. doi:10.1016/S1572-5995(05)80054-7
- 203.Mancini, I.; Guella, G.; Defant, A. *Mini-Rev. Med. Chem.* **2008**, *8*, 1265. doi:10.2174/138955708786141007
- 204.Lupulescu, A. Prostaglandins, Leukotrienes Essent. Fatty Acids 1996, 54, 83. doi:10.1016/S0952-3278(96)90064-2
- 205.Ridley, R. G.; Hudson, A. T. Curr. Opin. Infect. Dis. 1998, 11, 691. doi:10.1097/00001432-199812000-00008
- 206.Mohammed, R.; Peng, J.; Kelly, M.; Yousaf, M.; Winn, E.; Odde, S.; Bie, Z.; Xie, A.; Doerksen, R. J.; Hamann, M. T. Aust. J. Chem. 2010, 63, 877. doi:10.1071/CH09665

- 207.Camuzat-Dedenis, B.; Provot, O.; Cointeaux, L.; Perroux, V.; Berrien, J.-F.; Bories, C.; Loiseau, P. M.; Mayrargue, J. *Eur. J. Med. Chem.* **2001**, *36*, 837. doi:10.1016/S0223-5234(01)01278-8
- 208. Howarth, J.; Wilson, D. Bioorg. Med. Chem. Lett. 2003, 13, 2013. doi:10.1016/S0960-894X(03)00326-3
- 209.Van Assche, T.; Deschacht, M.; Inocencio da Luz, R. A.; Maes, L.; Cos, P. Free Radical Biol. Med. 2011, 51, 337. doi:10.1016/i.freeradbiomed.2011.05.011
- 210.Lim, C.-W.; Kim, Y.-K.; Jang, M. S.; Park, J.-I.; Park, H.-Y. J. Fish. Sci. Technol. 2006, 9, 175.
- 211.Oguri, H.; Hiruma, T.; Yamagishi, Y.; Oikawa, H.; Ishiyama, A.; Otoguro, K.; Yamada, H.; Omura, S. *J. Am. Chem. Soc.* **2011**, *133*, 7096. doi:10.1021/ja200374q
- 212.Feng, Y.-J.; Davis, R. A.; Sykes, M.; Avery, V. M.; Camp, D.; Quinn, R. J. J. Nat. Prod. 2010, 73, 716. doi:10.1021/np900535z
- 213. Macreadie, P.; Avery, T.; Greatrex, B.; Taylor, D.; Macreadie, I. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 920. doi:10.1016/j.bmcl.2005.10.101
- 214.Manzo, E.; Ciavatta, M. L.; Melck, D.; Schupp, P.; de Voogd, N.; Gavagnin, M. J. Nat. Prod. 2009, 72, 1547. doi:10.1021/np900310j
- 215.Dembitsky, V. M. *Tetrahedron* **2003**, *59*, 4701. doi:10.1016/S0040-4020(03)00701-4
- 216.Dembitsky, V. M.; Srebnik, M. Eurasian Chem.–Technol. J. 2002, 4, 221.
- 217.Chen, Y.; Chilson, K.; Killday, K. B.; Harmody, D.; McCarthy, P. J.; Pomponi,, S. A.; Schimoler, R.; Selitrennikoff, C.; Wright, A. E. Cyclic peroxides as novel antifungal agents. U. S. Patent US 6521661 B1, Feb 18, 2003.
- 218. Avery, T. D.; Macreadie, P. I.; Greatrex, B. W.; Robinson, T. V.; Taylor, D. K.; Macreadie, I. G. *Bioorg. Med. Chem.* **2007**, *17*, 36. doi:10.1016/j.bmc.2006.10.021
- 219. Dembitsky, V. M.; Srebnik, M. Prog. Lipid Res. 2002, 41, 315. doi:10.1016/S0163-7827(02)00003-6
- 220.Fattorusso, E.; Parapini, S.; Campagnuolo, C.; Basilico, N.; Taglialatela-Scafati, O.; Taramelli, D. J. Antimicrob. Chemother. 2002, 50, 883. doi:10.1093/jac/dkg008
- 221.Macreadie, I. G.; Avery, T. D.; Robinson, T. V.; Macreadie, P.; Barraclough, M.; Taylor, D. K.; Tiekink, E. R. T. *Tetrahedron* **2008**, *64*, 1225. doi:10.1016/j.tet.2007.11.071
- 222.Kishi, M.; Maeno, K.; Natsuhara, M.; Kususe, M. Mold removal agent composition. Patent Jpn. Kokai Tokkyo Koho JP 11166196 A, June 22, 1999.
- 223.Gunasekera, S. P.; Gunasekera, M.; Gunawardana, G. P.; McCarthy, P.; Burres, N. *J. Nat. Prod.* **1990**, *53*, 669. doi:10.1021/np50069a021
- 224.Phillipson, D. W.; Rinehart, K. L., Jr. J. Am. Chem. Soc. 1983, 105, 7735. doi:10.1021/ja00364a045
- 225.Rugutt, J. K.; Rugutt, K. J. *Nat. Prod. Lett.* **2002**, *16*, 107. doi:10.1080/10575630290020000
- 226.Modi, I. A.; Ghosh, P. K.; Bhardwaj, D.; Desai, N. M.; Khamar, B. M. P38 inhibitors. PCT Int. Appl. WO 2008114119 A2, Sept 25, 2008.
- 227.Kyle, D. E.; Milhous, W.; Opsenica, D. M.; Pocsfalvi, G.; Solaja, B. Mixed steroidal 1,2,4,5-tetraoxane compounds and methods of making and using thereof. PCT Int. Appl. WO 2003068736 A2, Aug 21, 2003.
- 228.Chen, L.-W.; Cheng, M.-J.; Peng, C.-F.; Chen, I.-S. Chem. Biodiversity **2010**, *7*, 1814. doi:10.1002/cbdv.200900227
- 229.Stratakis, M.; Orfanopoulos, M. Tetrahedron 2000, 56, 1595. doi:10.1016/S0040-4020(99)00950-3

- 230.Clennan, E. L.; Pace, A. *Tetrahedron* **2005**, *61*, 6665. doi:10.1016/j.tet.2005.04.017
- 231. Frimer, A. A.; Afri, M.; Baumel, S. D.; Gilinsky-Sharon, P.; Rosenthal, Z.; Gottlieb, H. E. J. Org. Chem. 2000, 65, 1807. doi:10.1021/jo991803b
- 232. Cointeaux, L.; Berrien, J.-F.; Mayrargue, J. *Tetrahedron Lett.* **2002**, 43, 6275. doi:10.1016/S0040-4039(02)01122-X
- 233.Adam, W.; Peters, K.; Peters, E.-M.; Schambony, S. J. Am. Chem. Soc. **2000**, *122*, 7610. doi:10.1021/ja0011131
- 234.Barnier, J.-P.; Morisson, V.; Blanco, L. Synth. Commun. 2001, *31*, 349. doi:10.1081/SCC-100000523
- 235. Kirihara, M.; Kakuda, H.; Ichinose, M.; Ochiai, Y.; Takizawa, S.; Mokuya, A.; Okubo, K.; Hatano, A.; Shiro, M. *Tetrahedron* **2005**, *61*, 4831. doi:10.1016/j.tet.2005.03.033
- 236.Kulinkovich, O. G.; Astashko, D. A.; Tyvorskii, V. I.; Ilyina, N. A. *Synthesis* **2001**, 1453. doi:10.1055/s-2001-16089
- 237.Wimalasena, K.; Wickman, H. B.; Mahindaratne, M. P. D. *Eur. J. Org. Chem.* 2001, 3811.
 doi:10.1002/1099-0690(200110)2001:20<3811::AID-EJOC3811>3.0.C
 O;2-6
- 238. Ouhamou, N.; Six, Y. Org. Biomol. Chem. 2003, 1, 3007. doi:10.1039/b306719j
- 239.Madelaine, C.; Buzas, A. K.; Kowalska-Six, J. A.; Six, Y.; Crousse, B. *Tetrahedron Lett.* **2009**, *50*, 5367. doi:10.1016/j.tetlet.2009.07.031
- 240.Zhao, Q.; Wong, H. N. C. Tetrahedron 2007, 63, 6296. doi:10.1016/j.tet.2007.02.121
- 241. Ikeda, H.; Akiyama, K.; Takahashi, Y.; Nakamura, T.; Ishizaki, S.; Shiratori, Y.; Ohaku, H.; Goodman, J. L.; Houmam, A.; Wayner, D. D. M.; Tero-Kubota, S.; Miyashi, T. *J. Am. Chem. Soc.* 2003, *125*, 9147. doi:10.1021/ja0277982
- 242.lkeda, H.; Hoshi, Y.; Miyashi, T. Tetrahedron Lett. 2001, 42, 8485. doi:10.1016/S0040-4039(01)01786-5
- 243.Abe, M.; Kawanami, S.; Masuyama, A.; Hayashi, T. J. Org. Chem. 2006, 71, 6607. doi:10.1021/jo060587l
- 244.Gbur, R. K.; Little, R. D. *J. Org. Chem.* **2012**, *77*, 2134–2141. doi:10.1021/jo300297u
- 245. Tsubusaki, T.; Nishino, H. *Tetrahedron* **2009**, *65*, 3745. doi:10.1016/j.tet.2009.02.045
- 246. Isayama, S.; Mukaiyama, T. *Chem. Lett.* **1989**, 573. doi:10.1246/cl.1989.573
- 247. Isayama, S. Bull. Chem. Soc. Jpn. 1990, 63, 1305. doi:10.1246/bcsj.63.1305
- 248. Tokuyasu, T.; Kunikawa, S.; Masuyama, A.; Nojima, M. *Org. Lett.* **2002**, *4*, 3595. doi:10.1021/ol0201299
- 249. Tokuyasu, T.; Kunikawa, S.; McCullough, K. J.; Masuyama, A.; Nojima, M. J. Org. Chem. 2005, 70, 251. doi:10.1021/jo048359j
- 250.Dai, P.; Dussault, P. H. *Org. Lett.* **2005**, *7*, 4333. doi:10.1021/ol051407h
- 251.Barnych, B.; Vatèle, J.-M. *Tetrahedron* **2012**, *68*, 3717. doi:10.1016/j.tet.2012.03.024
- 252.Ghorai, P.; Dussault, P. H.; Hu, C. *Org. Lett.* **2008**, *10*, 2401. doi:10.1021/ol800657m
- 253.Kumar, D. N.; Sudhakar, N.; Rao, B. V.; Kishore, K. H.; Murty, U. S. Tetrahedron Lett. 2006, 47, 771. doi:10.1016/j.tetlet.2005.11.107
- 254.Hamann, H.-J.; Wlosnewski, A.; Greco, T.; Liebscher, J. *Eur. J. Org. Chem.* **2006**, 2174. doi:10.1002/ejoc.200500803
- 255.Stewart, S. G.; Ghisalberti, E. L.; Skelton, B. W.; Heath, C. H. Org. Biomol. Chem. 2010, 8, 3563. doi:10.1039/c003742g
- 256.Dussault, P. H.; Lee, H.-J.; Liu, X. J. Chem. Soc., Perkin Trans. 1 2000, 3006. doi:10.1039/B001391I

- 257.Dussault, P. H.; Lee, I. Q.; Lee, H.-J.; Lee, R. J.; Niu, Q. J.; Schultz, J. A.; Zope, U. R. J. Org. Chem. 2000, 65, 8407. doi:10.1021/jo991714z
- 258.Zhao, Q.; Vargas, M.; Dong, Y.; Zhou, L.; Wang, X.; Sriraghavan, K.; Keiser, J.; Vennerstrom, J. L. *J. Med. Chem.* **2010**, *53*, 4223. doi:10.1021/jm100226t
- 259.Ramirez, A.; Woerpel, K. A. *Org. Lett.* **2005**, *7*, 4617. doi:10.1021/ol051703u
- 260.Dai, P.; Trullinger, T. K.; Liu, X.; Dussault, P. H. J. Org. Chem. 2006, 71, 2283. doi:10.1021/jo0522254
- 261.Lu, X.; Liu, Y.; Sun, B.; Cindric, B.; Deng, L. J. Am. Chem. Soc. 2008, 130, 8134. doi:10.1021/ja802982h
- 262.Reisinger, C. M.; Wang, X.; List, B. *Angew. Chem., Int. Ed.* **2008,** *47,* 8112. doi:10.1002/anie.200803238
- 263.Silva, E. M. P.; Pye, R. J.; Brown, G. D.; Harwood, L. M. *Eur. J. Org. Chem.* **2012**, 1209. doi:10.1002/ejoc.201101477
- 264. Guerra, F. M.; Zubia, E.; Ortega, M. J.; Moreno-Dorado, F. J.; Massanet, G. M. *Tetrahedron* **2010**, *66*, 157. doi:10.1016/j.tet.2009.11.026
- 265.Singh, C.; Srivastav, N. C.; Srivastava, N.; Puri, S. K. Tetrahedron Lett. 2005, 46, 2757. doi:10.1016/j.tetlet.2005.02.158
- 266.Kishali, N.; Sahin, E.; Kara, Y. *Org. Lett.* **2006**, *8*, 1791. doi:10.1021/ol060272s
- 267.Dussault, P. H.; Xu, C. *Tetrahedron Lett.* **2004**, *45*, 7455. doi:10.1016/j.tetlet.2004.08.059
- 268. Criegee, R. Angew. Chem., Int. Ed. Engl. **1975**, 87, 745. doi:10.1002/anie.197507451
- 269. Geletneky, C.; Berger, S. *Eur. J. Org. Chem.* **1998**, 1625. doi:10.1002/(SICI)1099-0690(199808)1998:8<1625::AID-EJOC1625> 3.0.CO;2-L
- 270. Tokuyasu, T.; Ito, T.; Masuyama, A.; Nojima, M. *Heterocycles* 2000, 53, 1293. doi:10.3987/COM-00-8874
- 271.Nicolaou, K. C.; Rodriguez, R. M.; Mitchell, H. J.; Suzuki, H.;
 Fylaktakidou, K. C.; Baudoin, O.; van Delft, F. L. *Chem.–Eur. J.* 2000,
 6, 3095.
 doi:10.1002/1521-3765(20000901)6:17<3095::AID-CHEM3095>3.0.C
- 272.Hon, Y.-S.; Lu, L.; Chang, R.-C.; Lin, S.-W.; Sun, P.-P.; Lee, C.-F. Tetrahedron **2000**, *56*, 9269. doi:10.1016/S0040-4020(00)00903-0

0.2-4

- 273.Odinokov, V. N.; Akhmetova, V. R.; Savchenko, R. G.; Bazunova, M. V.; Paramonov, E. A.; Khalilov, L. M. Russ. Chem. Bull. 2000, 49, 1103. doi:10.1007/BF02494903
- Odinokov, V. N.; Akhmetova, V. R.; Bazunova, M. V.;
 Savchenko, R. G.; Paramonov, E. A.; Khalilov, L. M.
 Russ. J. Org. Chem. 2001, *37*, 321. doi:10.1023/A:1012311903712
- 275.Dussault, P. H.; Raible, J. M. Org. Lett. **2000**, *2*, 3377. doi:10.1021/ol006478p
- 276.Jung, I. C. Eur. J. Org. Chem. 2001, 1899. doi:10.1002/1099-0690(200105)2001:10<1899::AID-EJOC1899>3.0.C O;2-L
- 277.Caronna, T.; Gabbiadini, S.; Mele, A.; Recupero, F. *Helv. Chim. Acta* 2002, *85*, 1.

doi:10.1002/1522-2675(200201)85:1<1::AID-HLCA1>3.0.CO;2-C

- 278.Kiryukhin, D. P.; Barkalov, I. M.; Ismoilov, I. L. Russ. J. Appl. Chem. 2001, 74, 1740. doi:10.1023/A:1014829924249
- 279.Chen, L.; Wiemer, D. F. *J. Org. Chem.* **2002,** *67*, 7561. doi:10.1021/jo020362k
- 280.Rücker, G.; Manns, D.; Schenkel, E. P.; Hartmann, R.; Heinzmann, B. M. Arch. Pharm. Pharm. Med. Chem. 2003, 336, 205. doi:10.1002/ardp.200300740

- 281.Hitchcock, P. B.; Papadopoulos, K.; Young, D. W. Org. Biomol. Chem. 2003, 1, 2670. doi:10.1039/b304607a
- 282.Wattanasereekul, S.; Maier, M. E. Adv. Synth. Catal. 2004, 346, 855. doi:10.1002/adsc.200404004
- 283.Schank, K.; Beck, H.; Pistorius, S. Helv. Chim. Acta 2004, 87, 2025. doi:10.1002/hlca.200490182
- 284.Laventine, D. M.; Davies, M.; Evinson, E. L.; Jenkins, P. R.; Cullis, P. M.; Fawcett, J. *Tetrahedron Lett.* **2005**, *46*, 307. doi:10.1016/j.tetlet.2004.11.032
- 285.Laventine, D. M.; Davies, M.; Evinson, E. L.; Jenkins, P. R.; Cullis, P. M.; Garcia, M. D. *Tetrahedron* **2009**, *65*, 4766. doi:10.1016/j.tet.2009.04.011
- 286.Wang, C.; Liu, J.; Ji, Y.; Zhao, J.; Li, L.; Zhang, H. Org. Lett. 2006, 8, 2479. doi:10.1021/ol060382z
- 287.Schwartz, C.; Raible, J.; Mott, K.; Dussault, P. H. *Org. Lett.* **2006**, *8*, 3199. doi:10.1021/ol061001k
- 288.Schwartz, C.; Raible, J.; Mott, K.; Dussault, P. H. Tetrahedron 2006, 62, 10747. doi:10.1016/j.tet.2006.08.092
- 289.Schiaffo, C. E.; Dussault, P. H. J. Org. Chem. 2008, 73, 4688. doi:10.1021/jo800323x
- 290.Percy, J. M.; Roig, R.; Singh, K. Eur. J. Org. Chem. 2009, 1058. doi:10.1002/ejoc.200801130
- 291.Shin, H. S.; Lee, C.; Lee, J. Y.; Huh, T. S. *Eur. J. Org. Chem.* **2000**, 335.

doi:10.1002/(SICI)1099-0690(200001)2000:2<335::AID-EJOC335>3.0 .CO;2-2

- 292.Park, S. H.; Lee, J. Y.; Huh, T. S. *Eur. J. Org. Chem.* **2001,** 3083. doi:10.1002/1099-0690(200108)2001:16<3083::AID-EJOC3083>3.0.C O;2-K
- 293.Kawamura, S.-i.; Yamakoshi, H.; Abe, M.; Masuyama, A.; Nojima, M. Tetrahedron **2002**, *58*, 891. doi:10.1016/S0040-4020(01)01183-8
- 294. Griesbaum, K.; Frank, A.; McCullough, K. J. Eur. J. Org. Chem. 2006, 1978. doi:10.1002/ejoc.200500806
- 295. Griesbaum, K.; Bikem, Ö.; Huh, T. S.; Dong, Y. Liebigs Ann. 1995, 1571. doi:10.1002/jlac.1995199508217
- 296.Araújo, N. C. P.; Barton, V.; Jones, M.; Stocks, P. A.; Ward, S. A.; Davies, J.; Bray, P. G.; Shone, A. E.; Cristiano, M. L. S.; O'Neill, P. M. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 2038. doi:10.1016/j.bmcl.2009.02.013
- 297.Tang, Y.; Dong, Y.; Karle, J. M.; DiTusa, C. A.; Vennerstrom, J. L. *J. Org. Chem.* **2004**, *69*, 6470. doi:10.1021/jo040171c
- 298.Zhou, L.; Alker, A.; Ruf, A.; Wang, X.; Chiu, F. C. K.; Morizzi, J.; Charman, S. A.; Charman, W. N.; Scheurer, C.; Wittlin, S.; Dong, Y.; Hunziker, D.; Vennerstrom, J. L. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 1555. doi:10.1016/j.bmcl.2008.01.087
- 299.Kamata, M.; Komatsu, K.-i.; Akaba, R. *Tetrahedron Lett.* **2001**, *42*, 9203. doi:10.1016/S0040-4039(01)01972-4
- 300.Li, Y.; Hao, H.-D.; Zhang, Q.; Wu, Y. Org. Lett. 2009, 11, 1615. doi:10.1021/ol900262t
- 301.Kamata, M.; Ohta, M.; Komatsu, K.-i.; Kim, H.-S.; Wataya, Y. *Tetrahedron Lett.* **2002**, *43*, 2063. doi:10.1016/S0040-4039(02)00166-1
- 302.Parrish, J. D.; Ischay, M. A.; Lu, Z.; Guo, S.; Peters, N. R.; Yoon, T. P. Org. Lett. 2012, 14, 1640. doi:10.1021/ol300428q

303.La Clair, J. J. Angew. Chem., Int. Ed. 2006, 45, 2769. doi:10.1002/anie.200504033

- 304.Griesbeck, A. G.; Cho, M. Tetrahedron Lett. 2009, 50, 121. doi:10.1016/j.tetlet.2008.10.094
- 305. lwahama, T.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 2317. doi:10.1039/b007182j

- 306.Kumabe, R.; Nishino, H.; Yasutake, M.; Nguyen, V.-H.; Kurosawa, K. Tetrahedron Lett. 2001, 42, 69. doi:10.1016/S0040-4039(00)01884-0
- 307. Christoffers, J.; Werner, T.; Frey, W.; Baro, A. Eur. J. Org. Chem. 2003, 4879. doi:10.1002/ejoc.200300439
- 308. Rössle, M.; Werner, T.; Frey, W.; Christoffers, J. Eur. J. Org. Chem. 2005, 5031. doi:10.1002/ejoc.200500487
- 309.Kumabe, R.; Nishino, H. Tetrahedron Lett. 2004, 45, 703. doi:10.1016/j.tetlet.2003.11.054
- 310.Asahi, K.; Nishino, H. *Tetrahedron* **2005**, *61*, 11107. doi:10.1016/j.tet.2005.09.029
- 311.Asahi, K.; Nishino, H. *Tetrahedron* **2008**, *64*, 1620. doi:10.1016/j.tet.2007.12.017
- 312. Asahi, K.; Nishino, H. Eur. J. Org. Chem. 2008, 2404. doi:10.1002/ejoc.200701232
- 313.Beckwith, A. L. J.; Wagner, R. D. J. Am. Chem. Soc. 1979, 101, 7099. doi:10.1021/ja00517a069
- 314.Beckwith, A. L. J.; Wagner, R. D. J. Chem. Soc., Chem. Commun. 1980, 485. doi:10.1039/C39800000485
- 315.Korshin, E. E.; Hoos, R.; Szpilman, A. M.; Konstantinovski, L.; Posner, G. H.; Bachi, M. D. *Tetrahedron* **2002**, *58*, 2449. doi:10.1016/S0040-4020(02)00126-6
- 316. O'Neill, P. M.; Verissimo, E.; Ward, S. A.; Davies, J.; Korshin, E. E.; Araujo, N.; Pugh, M. D.; Cristiano, M. L. S.; Stocks, P. A.; Bachi, M. D. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2991. doi:10.1016/j.bmcl.2006.02.059
- 317.Kim, J.; Li, H. B.; Rosenthal, A. S.; Sang, D.; Shapiro, T. A.; Bachi, M. D.; Posner, G. H. *Tetrahedron* **2006**, *62*, 4120. doi:10.1016/j.tet.2006.02.008
- 318. Tokuyasu, T.; Kunikawa, S.; Abe, M.; Masuyama, A.; Nojima, M.; Kim, H.-S.; Begum, K.; Wataya, Y. J. Org. Chem. 2003, 68, 7361. doi:10.1021/jo030107f
- 319.Wu, J.-M.; Kunikawa, S.; Tokuyasu, T.; Masuyama, A.; Nojima, M.; Kim, H.-S.; Wataya, Y. *Tetrahedron* **2005**, *61*, 9961. doi:10.1016/j.tet.2005.08.025
- 320.Gemma, S.; Martí, F.; Gabellieri, E.; Campiani, G.; Novellino, E.; Butini, S. *Tetrahedron Lett.* **2009**, *50*, 5719. doi:10.1016/j.tetlet.2009.07.137
- 321.Gemma, S.; Gabellieri, E.; Coccone, S. S.; Martí, F.; Taglialatela-Scafati, O.; Novellino, E.; Campiani, G.; Butini, S. *J. Org. Chem.* **2010**, *75*, 2333. doi:10.1021/jo1001559
- 322. Murakami, N.; Kawanishi, M.; Itagaki, S.; Horii, T.; Kobayashi, M. *Tetrahedron Lett.* 2001, *42*, 7281. doi:10.1016/S0040-4039(01)01493-9
- 323.Murakami, N.; Kawanishi, M.; Itagaki, S.; Horii, T.; Kobayashi, M. Bioorg. Med. Chem. Lett. 2002, 12, 69. doi:10.1016/S0960-894X(01)00673-4
- 324. Murakami, N.; Kawanishi, M.; Itagaki, S.; Horii, T.; Kobayashi, M. Bioorg. Med. Chem. Lett. **2004**, *14*, 3513. doi:10.1016/j.bmcl.2004.04.086
- 325.Jin, H.-X.; Liu, H.-H.; Zhang, Q.; Wu, Y. Tetrahedron Lett. 2005, 46, 5767. doi:10.1016/j.tetlet.2005.06.110
- 326.Jin, H.-X.; Zhang, Q.; Kim, H.-S.; Wataya, Y.; Liu, H.-H.; Wu, Y. *Tetrahedron* **2006**, *62*, 7699. doi:10.1016/j.tet.2006.05.065
- 327.Jin, H.-X.; Liu, H.-H.; Zhang, Q.; Wu, Y. J. Org. Chem. 2005, 70, 4240. doi:10.1021/jo050139y
- 328.Li, Y.; Zhang, Q.; Wittlin, S.; Jin, H.-X.; Wu, Y. Tetrahedron 2009, 65, 6972. doi:10.1016/j.tet.2009.06.050
- 329.Xu, C.; Raible, J. M.; Dussault, P. H. Org. Lett. 2005, 7, 2509. doi:10.1021/ol050291m

- 330. Fontana, A.; d'Ippolito, G.; D'Souza, L.; Mollo, E.; Parameswaram, P. S.; Cimino, G. J. Nat. Prod. 2001, 64, 131. doi:10.1021/np0002435
- 331.Zhang, Q.; Li, Y.; Wu, Y.-K. Chin. J. Chem. 2007, 25, 1304. doi:10.1002/cjoc.200790242
- 332.Xu, C.; Schwartz, C.; Raible, J.; Dussault, P. H. *Tetrahedron* **2009**, *65*, 9680. doi:10.1016/j.tet.2009.09.068
- 333. Tokuyasu, T.; Masuyama, A.; Nojima, M.; McCullough, K. J. J. Org. Chem. 2000, 65, 1069. doi:10.1021/jo991499m
- 334. Tokuyasu, T.; Masuyama, A.; Nojima, M.; Kim, H.-S.; Wataya, Y. *Tetrahedron Lett.* **2000**, *41*, 3145. doi:10.1016/S0040-4039(00)00372-5
- 335.Kim, H.-S.; Begum, K.; Ogura, N.; Wataya, Y.; Tokuyasu, T.; Masuyama, A.; Nojima, M.; McCullough, K. J. *J. Med. Chem.* **2002**, *45*, 4732. doi:10.1021/jm020208q
- 336. Harris, J. R.; Waetzig, S. R.; Woerpel, K. A. Org. Lett. 2009, 11, 3290. doi:10.1021/ol901046z
- 337.O'Neill, P. M.; Rawe, S. L.; Storr, R. C.; Ward, S. A.; Posner, G. H. Tetrahedron Lett. 2005, 46, 3029. doi:10.1016/j.tetlet.2005.03.022
- 338. Tokuyasu, T.; Masuyama, A.; Nojima, M.; McCullough, K. J.; Kim, H.-S.; Wataya, Y. *Tetrahedron* **2001**, *57*, 5979. doi:10.1016/S0040-4020(01)00557-9
- 339.Rostami, A.; Wang, Y.; Arif, A. M.; McDonald, R.; West, F. G. Org. Lett. 2007, 9, 703. doi:10.1021/ol070053m
- 340.Matsumoto, M.; Nasu, S.; Takeda, M.; Murakami, H.; Watanabe, N. Chem. Commun. 2000, 821. doi:10.1039/b002161j
- 341.López, D.; Quiñoá, E.; Riguera, R. J. Org. Chem. 2000, 65, 4671. doi:10.1021/jo000288a
- 342. Takabatake, T.; Miyazawa, T.; Hasegawa, M.; Foote, C. S. *Tetrahedron Lett.* 2001, 42, 987. doi:10.1016/S0040-4039(00)02216-4
- 343.Özen, R.; Kormalı, F.; Balci, M.; Atasoy, B. *Tetrahedron* **2001**, *57*, 7529. doi:10.1016/S0040-4020(01)00702-5
- 344.Daştan, A.; Saracoglu, N.; Balci, M. Eur. J. Org. Chem. 2001, 3519. doi:10.1002/1099-0690(200109)2001:18<3519::AID-EJOC3519>3.0.C O;2-2
- 345. Güney, M.; Daştan, A.; Balci, M. Helv. Chim. Acta 2005, 88, 830. doi:10.1002/hlca.200590061
- 346.Daştan, A.; Balci, M. *Tetrahedron* **2006**, *62*, 4003. doi:10.1016/j.tet.2006.02.026
- 347. Güney, M.; Ceylan, Z. C.; Daştan, A.; Balci, M. Can. J. Chem. 2005, 83, 227. doi:10.1139/v05-046
- 348.Gu, X.; Zhang, W.; Salomon, R. G. J. Am. Chem. Soc. 2007, 129, 6088. doi:10.1021/ja0689785
- 349.Blay, G.; Garcia, B.; Molina, E.; Pedro, J. R. Org. Lett. 2005, 7, 3291. doi:10.1021/ol0511023
- 350.Yang, Y.-K.; Lee, S.; Tae, J. Bull. Korean Chem. Soc. 2004, 25, 1307. doi:10.5012/bkcs.2004.25.9.1307
- 351.Yang, Y.-K.; Choi, J.-H.; Tae, J. J. Org. Chem. 2005, 70, 6995. doi:10.1021/jo050957q
- 352.Avery, T. D.; Caiazza, D.; Culbert, J. A.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2005, 70, 8344. doi:10.1021/jo050806n
- 353.Van der Westhuyzen, C. W.; Parkinson, C. J. S. Afr. J. Chem. 2005, 58, 41.
- 354. Valente, P.; Avery, T. D.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2009, 74, 274. doi:10.1021/jo8020506
- 355.Kao, T.-C.; Chuang, G. J.; Liao, C.-C. *Angew. Chem., Int. Ed.* **2008**, *120*, 7435–7437. doi:10.1002/anie.200802130
- 356. Robinson, T. V.; Pedersen, D. S.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2009, 74, 5093–5096. doi:10.1021/jo900669u

- 357.Schobert, R.; Siegfried, S.; Weingärtner, J.; Nieuwenhuyzen, M. J. Chem. Soc., Perkin Trans. 1 2001, 2009. doi:10.1039/B104227K
- 358.Schobert, R.; Stehle, R.; Milius, W. J. Org. Chem. 2003, 68, 9827. doi:10.1021/jo030270a
- 359.Gavrilan, M.; André-Barrès, C.; Baltas, M.; Tzedakis, T.; Gorrichon, L. *Tetrahedron Lett.* 2001, 42, 2465. doi:10.1016/S0040-4039(01)00199-X
- 360. Najjar, F.; Baltas, M.; Gorrichon, L.; Moreno, Y.; Tzedakis, T.; Vial, H.; André-Barrès, C. *Eur. J. Org. Chem.* **2003**, 3335. doi:10.1002/ejoc.200300165
- 361.Çetin, F.; Yenil, N.; Yüceer, L. Carbohydr. Res. 2005, 340, 2583. doi:10.1016/j.carres.2005.09.006
- 362.Margaros, I.; Montagnon, T.; Vassilikogiannakis, G. Org. Lett. 2007, 9, 5585. doi:10.1021/ol702575a
- 363.Zvarec, O.; Avery, T. D.; Taylor, D. K. J. Org. Chem. 2010, 75, 450. doi:10.1021/jo902290g
- 364.Zvarec, O.; Avery, T. D.; Taylor, D. K.; Tiekink, E. R. T. Tetrahedron 2010, 66, 1007. doi:10.1016/j.tet.2009.11.068
- 365. Robinson, T. V.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2006, 71, 7236. doi:10.1021/jo060949p
- 366. Taylor, D. K.; Avery, T. D.; Greatrex, B. W.; Tiekink, E. R. T.; Macreadie, I. G.; Macreadie, P. I.; Humphries, A. D.; Kalkanidis, M.; Fox, E. N.; Klonis, N.; Tilley, L. *J. Med. Chem.* **2004**, *47*, 1833. doi:10.1021/jm0305319
- 367.del Pilar Crespo, M.; Avery, T. D.; Hanssen, E.; Fox, E.; Robinson, T. V.; Valente, P.; Taylor, D. K.; Tilley, L. Antimicrob. Agents Chemother. 2008, 52, 98. doi:10.1128/AAC.00609-07
- 368.Emerzian, M. A.; Davenport, W.; Song, J.; Li, J.; Erden, I. Adv. Synth. Catal. 2009, 351, 999. doi:10.1002/adsc.200800804
- 369. Özer, G.; Saraçoğlu, N.; Balci, M. J. Org. Chem. 2003, 68, 7009. doi:10.1021/jo0345300
- 370. Singh, C. Tetrahedron Lett. 1990, 31, 6901. doi:10.1016/S0040-4039(00)97202-2
- 371.Griesbeck, A. G.; El-Idreesy, T. T.; Fiege, M.; Brun, R. Org. Lett. 2002, 4, 4193. doi:10.1021/ol026916n
- 372.Singh, C.; Gupta, N.; Puri, S. K. Bioorg. Med. Chem. Lett. 2003, 13, 3447. doi:10.1016/S0960-894X(03)00782-0
- 373.Singh, C.; Gupta, N.; Puri, S. K. Bioorg. Med. Chem. Lett. 2002, 12, 1913. doi:10.1016/S0960-894X(02)00320-7
- 374.Singh, C.; Malik, H.; Puri, S. K. *Bioorg. Med. Chem. Lett.* 2004, 14, 459. doi:10.1016/j.bmcl.2003.10.051
- 375.Singh, C.; Malik, H.; Puri, S. K. *Bioorg. Med. Chem. Lett.* 2005, *15*, 4484. doi:10.1016/j.bmcl.2005.07.013
- 376.Singh, C.; Malik, H. Org. Lett. 2005, 7, 5673. doi:10.1021/ol052378d
- 377. Singh, C.; Malik, H.; Puri, S. K. *Bioorg. Med. Chem.* 2004, *12*, 1177. doi:10.1016/j.bmc.2003.11.021
- 378. Singh, C.; Kanchan, R.; Srivastava, N. C.; Puri, S. K. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 584. doi:10.1016/j.bmcl.2005.10.044
 270. Singh, C.; Molik, H.; Buri, S. K., J. Mod. Chem. **2006**.
- 379. Singh, C.; Malik, H.; Puri, S. K. J. Med. Chem. 2006, 49, 2794. doi:10.1021/jm051130r
- 380. Singh, C.; Verma, V. P.; Naikade, N. K.; Singh, A. S.; Hassam, M.; Puri, S. K. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4459. doi:10.1016/j.bmcl.2010.06.045
- 381.Singh, C.; Gupta, N.; Puri, S. K. Bioorg. Med. Chem. 2004, 12, 5553. doi:10.1016/j.bmc.2004.08.005
- 382.Singh, C.; Gupta, N.; Puri, S. K. Tetrahedron Lett. 2005, 46, 205. doi:10.1016/j.tetlet.2004.11.078

- 383.Singh, C.; Srivastava, N. C.; Puri, S. K. Bioorg. Med. Chem. 2004, 12, 5745. doi:10.1016/j.bmc.2004.08.042
- 384.Griesbeck, A. G.; El-Idreesy, T. T.; Höinck, L.-O.; Lex, J.; Brun, R. Bioorg. Med. Chem. Lett. 2005, 15, 595. doi:10.1016/j.bmcl.2004.11.043
- 385.Bartoschek, A.; El-Idreesy, T. T.; Griesbeck, A. G.; Höinck, L.-O.; Lex, J.; Miara, C.; Neudörfl, J. M. Synthesis 2005, 2433. doi:10.1055/s-2005-872103
- 386.Griesbeck, A. G.; El-Idreesy, T. T.; Lex, J. Tetrahedron 2006, 62, 10615. doi:10.1016/j.tet.2006.05.093
- 387.Sabbani, S.; La Pensée, L.; Bacsa, J.; Hedenström, E.; O'Neill, P. M. Tetrahedron 2009, 65, 8531. doi:10.1016/j.tet.2009.08.020
- 388. Griesbeck, A. G.; Höinck, L.-O.; Neudörfl, J. M. Beilstein J. Org. Chem. 2010, 6, No. 61. doi:10.3762/bjoc.6.61
- 389. Griesbeck, A. G.; Höinck, L.-O.; Lex, J.; Neudörfl, J.; Blunk, D.; El-Idreesy, T. T. *Molecules* **2008**, *13*, 1743. doi:10.3390/molecules13081743
- 390.Singh, C.; Kanchan, R.; Sharma, U.; Puri, S. K. J. Med. Chem. 2007, 50, 521. doi:10.1021/jm0610043
- 391.Griesbeck, A. G.; Blunk, D.; El-Idreesy, T. T.; Raabe, A. Angew. Chem., Int. Ed. 2007, 46, 8883. doi:10.1002/anie.200701397
- 392. Griesbeck, A. G.; Raabe, A. Synlett 2009, 1514. doi:10.1055/s-0029-1216740
- 393. O'Neill, P. M.; Mukhtar, A.; Ward, S. A.; Bickley, J. F.; Davies, J.; Bachi, M. D.; Stocks, P. A. Org. Lett. 2004, 6, 3035. doi:10.1021/ol0492142
- 394.Jefford, C. W.; Velarde, J. A.; Bernardinelli, G.; Bray, D. H.; Warhurst, D. C.; Milhous, W. K. *Helv. Chim. Acta* **1993**, *76*, 2775. doi:10.1002/hlca.19930760804
- 395.Posner, G. H.; Maxwell, J. P.; O'Dowd, H.; Krasavin, M.; Xie, S.; Shapiro, T. A. *Bioorg. Med. Chem.* **2000**, *8*, 1361. doi:10.1016/S0968-0896(00)00079-1
- 396.Posner, G. H.; Jeon, H. B.; Parker, M. H.; Krasavin, M.; Paik, I.-H.; Shapiro, T. A. J. Med. Chem. 2001, 44, 3054. doi:10.1021/jm0102396
- 397.Posner, G. H.; Jeon, H. B.; Ploypradith, P.; Paik, I.-H.; Borstnik, K.; Xie, S.; Shapiro, T. A. *J. Med. Chem.* **2002**, *45*, 3824. doi:10.1021/jm020210h
- 398. Dechy-Cabaret, O.; Benoit-Vical, F.; Loup, C.; Robert, A.; Gornitzka, H.; Bonhoure, A.; Vial, H.; Magnaval, J.-F.; Séguéla, J.-P.; Meunier, B. *Chem.–Eur. J.* **2004**, *10*, 1625. doi:10.1002/chem.200305576
- 399. Singh, R.; Ishar, M. P. S. *Tetrahedron Lett.* **2003**, *44*, 1943. doi:10.1016/S0040-4039(03)00086-8
- 400.Cole, K. P.; Hsung, R. P. *Chem. Commun.* **2005**, 5784. doi:10.1039/b511338e
- 401.Tang, Y.; Cole, K. P.; Buchanan, G. S.; Li, G.; Hsung, R. P. *Org. Lett.* **2009**, *11*, 1591. doi:10.1021/ol900237e
- 402.Borsarelli, C. D.; Mischne, M.; La Venia, A.; Morán Vieyra, F. E. Photochem. Photobiol. **2007**, 83, 1313.
- doi:10.1111/j.1751-1097.2007.00147.x
 403.O'Neil, P. M.; Pugh, M.; Davies, J.; Ward, S. A.; Park, B. K. *Tetrahedron Lett.* 2001, *42*, 4569.
 - doi:10.1016/S0040-4039(01)00791-2
- 404.O'Neill, P. M.; Hindley, S.; Pugh, M. D.; Davies, J.; Bray, P. G.;
 Park, B. K.; Kapu, D. S.; Ward, S. A.; Stocks, P. A. *Tetrahedron Lett.* 2003, 44, 8135. doi:10.1016/j.tetlet.2003.09.033
- 405.Tang, Y.; Dong, Y.; Wang, X.; Sriraghavan, K.; Wood, J. K.; Vennerstrom, J. L. J. Org. Chem. 2005, 70, 5103. doi:10.1021/jo050385+

- 406.Erhardt, S.; Macgregor, S. A.; McCullough, K. J.; Savill, K.; Taylor, B. J. Org. Lett. 2007, 9, 5569. doi:10.1021/ol702534d
- 407.Sabbani, S.; Stocks, P. A.; Ellis, G. L.; Davies, J.; Hedenstrom, E.; Ward, S. A.; O'Neill, P. M. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 5804. doi:10.1016/j.bmcl.2008.09.052
- 408. Ramirez, A. P.; Thomas, A. M.; Woerpel, K. A. Org. Lett. 2009, 11, 507. doi:10.1021/ol8022853
- 409.Zhang, Q.; Jin, H.-X.; Wu, Y. Tetrahedron 2006, 62, 11627. doi:10.1016/j.tet.2006.09.061
- 410.Zhang, Q.; Wu, Y. *Tetrahedron* **2007**, *63*, 10189. doi:10.1016/j.tet.2007.07.090
- 411. Riveira, M. J.; La-Venia, A.; Mischne, M. P. *Tetrahedron Lett.* **2010**, *51*, 804. doi:10.1016/j.tetlet.2009.11.135
- 412.Bellot, F.; Coslédan, F.; Vendier, L.; Brocard, J.; Meunier, B.; Robert, A. *J. Med. Chem.* **2010**, *53*, 4103. doi:10.1021/jm100117e
- 413. Vennerstrom, J. L.; Dong, Y.; Andersen, S. L.; Ager, A. L.; Fu, H.; Miller, R. E.; Wesche, D. L.; Kyle, D. E.; Gerena, L.; Walters, S. M.; Wood, J. K.; Edwards, G.; Holme, A. D.; McLean, W. G.; Milhous, W. K. *J. Med. Chem.* **2000**, *43*, 2753. doi:10.1021/jm0000766
- 414.McCullough, K. J.; Wood, J. K.; Bhattacharjee, A. K.; Dong, Y.; Kyle, D. E.; Milhous, W. K.; Vennerstrom, J. L. *J. Med. Chem.* 2000, 43, 1246. doi:10.1021/jm990530+
- 415.Berkessel, A.; Andreae, M. R. M.; Schmickler, H.; Lex, J. Angew. Chem., Int. Ed. **2002**, *41*, 4481. doi:10.1002/1521-3773(20021202)41:23<4481::AID-ANIE4481>3.0.C O;2-7
- 416. Ayala, D. A.; Romero, J. M.; Jorge, N. L.; Gómez-Vara, M. E.; Jubert, A. H.; Castro, E. A. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2006, 64, 717. doi:10.1016/j.saa.2005.06.046
- 417. Opsenica, D.; Pocsfalvi, G.; Juranić, Z.; Tinant, B.; Declercq, J.-P.; Kyle, D. E.; Milhous, W. K.; Šolaja, B. A. *J. Med. Chem.* **2000**, *43*, 3274. doi:10.1021/jm000952f
- 418. Opsenica, D.; Angelovski, G.; Pocsfalvi, G.; Juranić, Z.; Žižak, Ž.; Kyle, D.; Milhous, W. K.; Šolaja, B. A. *Bioorg. Med. Chem.* **2003**, *11*, 2761. doi:10.1016/S0968-0896(03)00224-4
- 419.Iskra, J.; Bonnet-Delpon, D.; Bégué, J. P. *Tetrahedron Lett.* **2003**, *44*, 6309. doi:10.1016/S0040-4039(03)01472-2
- 420.Žmitek, K.; Stavber, S.; Zupan, M.; Bonnet-Delpon, D.; Charneau, S.; Grellier, P.; Iskra, J. *Bioorg. Med. Chem.* **2006**, *14*, 7790. doi:10.1016/j.bmc.2006.07.069
- 421.Žmitek, K.; Stavber, S.; Zupan, M.; Bonnet-Delpon, D.; Iskra, J. *Tetrahedron* **2006**, *62*, 1479. doi:10.1016/j.tet.2005.11.022
- 422.Atheaya, H.; Khan, S. I.; Mamgain, R.; Rawat, D. S. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 1446. doi:10.1016/j.bmcl.2007.12.069
- 423.Ghorai, P.; Dussault, P. H. Org. Lett. 2009, 11, 213. doi:10.1021/ol8023874
- 424. Terent'ev, A. O.; Kutkin, A. V.; Starikova, Z. A.; Antipin, M. Y.; Ogibin, Y. N.; Nikishin, G. I. Synthesis 2004, 2356. doi:10.1055/s-2004-831171
- 425. Terent'ev, A. O.; Kutkin, A. V.; Platonov, M. M.; Vorontsov, I. I.; Antipin, M. Y.; Ogibin, Y. N.; Nikishin, G. I. *Russ. Chem. Bull.* **2004**, *53*, 681. doi:10.1023/B:RUCB.0000035657.58776.cc
- 426.Kumar, N.; Khan, S. I.; Sharma, M.; Atheaya, H.; Rawat, D. S. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 1675. doi:10.1016/j.bmcl.2009.01.103

- 427.Kumar, N.; Khan, S. I.; Beena, R.; Rajalakshmi, G.; Kumaradhas, P.; Rawat, D. S. *Bioorg. Med. Chem.* **2009**, *17*, 5632. doi:10.1016/j.bmc.2009.06.020
- 428. Terent'ev, A. O.; Borisov, D. A.; Chernyshev, V. V.; Nikishin, G. I. J. Org. Chem. 2009, 74, 3335. doi:10.1021/jo900226b
- 429. Terent'ev, A. O.; Yaremenko, I. A.; Vil', V. A.; Moiseev, I. K.; Kon'kov, S. A.; Dembitsky, V. M.; Levitsky, D. O.; Nikishin, G. I. Org. Biomol. Chem. 2013, 11, 2613–2623. doi:10.1039/c3ob27239g
- 430. Kukovinets, O. S.; Zvereva, T. I.; Kabalnova, N. N.; Kasradze, V. G.; Salimova, E. V.; Khalitova, L. R.; Abdullin, M. I.; Spirikhin, L. V. *Mendeleev Commun.* **2009**, *19*, 106. doi:10.1016/j.mencom.2009.03.019
- 431.Dong, Y.; Vennerstrom, J. L. *J. Heterocycl. Chem.* **2001**, *38*, 463. doi:10.1002/jhet.5570380224
- 432.Dong, Y.; Vennerstrom, J. L. *J. Org. Chem.* **1998**, 63, 8582. doi:10.1021/jo981261i
- 433.Song, C. E.; Lim, J. S.; Kim, S. C.; Lee, K.-J.; Chi, D. Y. *Chem. Commun.* **2000**, 2415. doi:10.1039/b005604i
- 434. Opsenica, D.; Pocsfalvi, G.; Milhous, W. K.; Šolaja, B. A. J. Serb. Chem. Soc. 2002, 67, 465. doi:10.2298/JSC02074650
- 435. Terent'ev, A. O.; Kutkin, A. V.; Platonov, M. M.; Ogibin, Y. N.; Nikishin, G. I. *Tetrahedron Lett.* **2003**, *44*, 7359. doi:10.1016/S0040-4039(03)01844-6
- 436.Dubnikova, F.; Kosloff, R.; Almog, J.; Zeiri, Y.; Boese, R.; Itzhaky, H.; Alt, A.; Keinan, E. *J. Am. Chem. Soc.* **2005**, *127*, 1146. doi:10.1021/ja0464903
- 437.Opsenica, I.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; Šolaja, B. A. J. Med. Chem. 2008, 51, 2261. doi:10.1021/jm701417a

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.10.6