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Abstract 
Objective: This paper describes the state of the art, scientific publications, and ongoing research related to the methods of analysis 
of respiratory sounds.  
Methods and Material: Narrative review of the current medical and technological literature using Pubmed and personal experience. 
Results: We outline the various techniques that are currently being used to collect auscultation sounds and provide a physical 
description of known pathological sounds for which automatic detection tools have been developed. Modern tools are based on 
artificial intelligence and techniques such as artificial neural networks, fuzzy systems, and genetic algorithms. 
Conclusion: The next step will consist of finding new markers to increase the efficiency of decision-aiding algorithms and tools. 
Keywords: State of the art, auscultation, respiratory sounds, lung sounds, crackles, wheezes, respiratory phase detection, spectral 
analysis, wavelet, respiratory phase classification, signal processing, artificial neural networks, genetic algorithm, multilayer 
perceptron, fuzzy rule-based identification system, rhonchus, snoring, squawk, stridor.  

 
 

Introduction 

Distinguishing between normal respiratory (lung) 
sounds and abnormal ones (such as crackles and 
wheezes) is crucial for establishing an accurate medical 
diagnosis. Respiratory sounds include all the invaluable 
information concerning the physiology and pathology of 
lung and airway obstruction [1]. 

Evaluation of the sounds produced by the human 
body can be traced back as far as ancient Egypt [1]. 
Papyrus records from the 17th century B.C. have been 
uncovered describing listening to sounds inside the body 
as a way to learn about illnesses. Up to the beginning of 
the 19th century, doctors still examined their patients this 
way, pressing the ear to the thorax to listen to the noises 
within [2]. We call this “immediate auscultation”. 

In 1817, Laennec created a new technique he 
labeled “auscultation médiate”, meaning auscultation 
through a medium (Traité de l’auscultation médiate, Paris, 
1817) (Fig. 1a) [1]. Doctor Laennec also built the first 
paper-based (a cone made out of 24 sheets of paper) and 
wood-based stethoscopes (Fig. 1b). Not only did this 
enable him to listen to internal noises without being in 

direct contact with his patient, but it also provided a much 
stronger and clearer perception of the noises. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. 1a: Doctor René-Théophile-Hyacinthe Laennec, 
inventor of the stethoscope. 1b: The stethoscope is a 
system of transmission and amplification of sound by 
resonance. Its principle is rather simple. Using a specific 
interface (diaphragm or bell), a sound is picked up and then 
transmitted over a small distance to the user’s ears. 
Traditionally, the sound is transmitted in an aerial way via a 
conduit. 1c: The latest generation of stethoscopes is 
electronic and uses a microphone system and speakers to 
restore sounds (adapted from the chapter: Advances and 
Perspectives in the Field of Auscultation, with a Special 
Focus on the Contribution of New Intelligent 
Communicating Stethoscope Systems in Clinical Practice, 
in Teaching and Telemedicine. InTech 2012. 

http://dx.doi.org/10.5772/48402). 
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Since the 1800s, the stethoscope has become 
increasingly popular, having been adopted as the 
physician's primary medical tool. Before the turn of the 
century, this device looked much the same as it does 
today, with a binaural design, flexible tubing, and a rigid 
diaphragm. Bowles and Sprague developed the combined 
bell and diaphragm design in 1925, then shortly following 
World War II, Sprague, Rappaport, and Groom 
experimented with the design before finding the optimal 
combination of the classic double-tube Rappaport-
Sprague stethoscope [1]. During the last decade, 
considerable progress has been made to improve the 
stethoscope (Fig. 1c) [3,4]. There is limited information on 
what the standardized use of a stethoscope for chest 
auscultation should be, due to the inherent inter-listener 
variability. Electronic auscultation and the automated 
classification of recorded lung sounds may help overcome 
some of these shortcomings. Innovative technologies that 
could project the stethoscope and auscultation 
approaches into the era of evidence-based medicine and 
the world of medicine 2.0 have emerged [3]. In fact, 
during the last decade, the Internet has become 
increasingly popular and is now an important part of our 
daily life. When new “Web 2.0” technologies are used in 
health care, the terms “Health 2.0" or "Medicine 2.0” may 
be used. 

Our study describes the state of the art, scientific 
publications, and ongoing research related to the methods 
of analysis of respiratory sounds. 

Systematic review method 

Two investigators (EA, RG) conducted 

independent literary research using Medline and Google 

Scholar up to January 31, 2018. Additional data was 

obtained from the references of identified studies, the 

Cochrane Library, and the ISI Web of Knowledge. We 

searched for studies relating to respiratory sound 

analysis. Keywords included “respiratory sounds”, “lung 

sounds”, “lung auscultation”, “electronic auscultation”, 

“acoustic signal processing”, “computerized respiratory 

sound analysis”, “computerized lung sound analysis”,  

“automated classification of respiratory sounds”, 

“automated classification of lung sounds”, “crackle 

detection”, “wheeze detection”, and “telemedicine 2.0”. 

We restricted our search to the English and French 

languages because both investigators were fluent in these 

two languages.  

We independently reviewed and compared the 

resulting list of relevant articles and determined the 

eligibility of the full report and evaluated each of the 

included studies for their analysis of respiratory sounds. 

All the studies were analyzed by all the contributing 

authors. 

Physiological data 

Limits of human audition 
Studies were performed in order to test the 

human ear’s capability to detect crackles in auscultation 
signals 2. The methods used consisted of simulated 
crackles superimposed on real breathing sounds. The 
results indicated that the most significant detection errors 
are owed to the following factors: 

 The intensity of the respiratory signal: deep 
breathing masks more crackles than 
superficial breathing; 

 The type of crackles: fine crackles are easily 
recognizable as their waveform differs more 
significantly from that of classic lung sounds; 

 The amplitude of the crackles. 
It can be inferred from these studies that 

auscultation should not be used as the sole reference for 
validating automatic crackle detection algorithms. 

Despite this, we still have some way to go before 
we perfectly understand the mechanisms linked to the 
creation of breath sounds. By recording and analyzing 
respiratory sounds, we will be able to improve this 
understanding [3] and establish an objective relationship 
between abnormal respiratory sounds and respiratory 
pathology. Furthermore, an objective analysis would 
enable classification systems to be developed [1,4] 
making it possible to precisely differentiate between 
normal and adventitious respiratory sounds. 

While conventional stethoscope auscultation is 
subjective and difficult to reproduce from case to case, 
these systems should provide rapid, objective diagnostic 
help, with better sensitivity and reproducibility of the 
results [5]. Moreover, applications like diagnosis 
evaluation, monitoring, and data exchange through the 
internet are natural complementary tools to objective and 
automatic auscultation sound analysis. Sensory devices 
will enable long-term monitoring of patients at home or at 
the hospital. This could also be a useful solution for less-
developed countries and remote communities [6]6. In 
addition, this type of system has the great advantage of 
keeping auscultation non-invasive and affordable. 
Sestini’s studies [7] indicate that an association between 
acoustical signal and image is beneficial to breath sound 
learning and understanding for medical science students. 

 
Mechanisms of breath sound production 
Sarkar [8] offers a useful description of breath 

sound production. Normal breath sound is produced by 
the air flow through the trachea-bronchial tree. However, 
not all types of airflow produce breath sounds. Only 
turbulent and vorticose airflow generates breath sounds. 
Airflow moves parallel to the walls in a parabolic shape as 
the air in the central layers moves faster compared to the 
peripheral layers, with little or no transverse flow. Thus, 
there is little mixing or collision between gas layers. 
Laminar flow pattern follows the Poiseuille equation. 



Journal of Medicine and Life Vol. 11, Issue 2, April-June 2018 

91 

Propagation of respiratory sounds 
The propagation and deformation of breath 

sounds are linked to several factors [9]: 

 The acoustical response of the stethoscope, 
the asymmetry of the sounds (potentially 
indicating the presence of a pathology), the 
heterogeneous composition of the body 
(bones, muscles, and skin) that behave like 
filters; 

 The analysis point: measurements indicate 
that lung sounds are lower in amplitude than 
tracheal sounds. 
 

Definition of experimental conditions 
Rossi et al. [10] give recommendations 

concerning the experimental conditions required for 
recording respiratory sounds. They describe the optimal 
conditions (principally concerning background noise, 
including non-breathing sounds such as vocal sounds) 
and specific procedures according to the type of sounds 
targeted for recording (breaths, coughs, snores), 
information for the recording (diagnosis, evaluation of a 
therapy, monitoring), the age of the subject (baby, infant, 
child, adult), and the recording method (free field, 
endobronchial microphone). 

In practice, for short recordings, a sitting position 
is recommended, while the patient should preferably be 
lying down for long recordings [8]. 

Definition of terms 

Nowadays, there are several definitions of 
common marker characteristics, such as wheezes and 
crackles [1]. Thus, a universal semantic must be created. 
Several works have tried to collect term definitions in 
relation to respiratory sounds and have created a 
definitive collection of 162 terms commonly utilized in the 
“Computer Respiratory Sound Analysis” (CORSA) 
[5,9,11]. 

Nevertheless, this still does not provide 
physicians with common definitions of the terms that are 
used. Consequently, the descriptions of sound 
characteristics are still based on imaged illustrations. For 
example, a wheeze is currently associated with a 
“whistling sound” and a crackle with “a sound of rice in a 
frying pan”. 

Sovijarvi et al. [1, 11] provided accurate 
definitions of currently used terms in the pulmonary 
auscultation and sound analysis fields. We list the most 
pertinent below. 

 
Sounds 
Adventitious sounds: These are defined as 

additional respiratory sounds overlying normal breath 
sounds [1, 11]. They can be continuous (like wheezes) or 
discontinuous (such as crackles), and some can be both 

(like squawks). The presence of such sounds usually 
indicates a pulmonary disorder. 

Breath sounds: These include normal and 
adventitious sounds recorded over the chest wall, trachea 
or at the level of the mouth [1, 9, 11]. They are created by 
airflow in the respiratory tract. Acoustically, these sounds 
are characterized by broad-spectrum noises at 
frequencies ranging according to the location they are 
detected in. 

Lung sounds: These are all respiratory sounds 
heard or detected over the chest wall or within the chest, 
including breath sounds and adventitious sounds detected 
in this location [1, 9, 11]. 

Normal breath sounds: At the chest wall, a 
respiratory sound is characterized as low noise during 
inspiration and hardly audible during expiration [1, 11]. In 
the trachea, normal respiratory sounds are characterized 
by a broader spectrum of noises (containing higher-
frequency components, for example), audible both during 
inspiratory and expiratory phases. Normal breath sounds 
include vesicular sounds, bronchovesicular sounds, 
bronchial and tracheal sounds, together with sounds 
emitted through the mouth.  

Abnormal sounds: As opposed to those 
classified as “normal”, abnormal sounds are those which 
may indicate a lung problem, the absence of sound where 
there should be one or sounds detected where they 
should not ordinarily exist [1, 9 11]. These usually indicate 
a lung problem, such as inflammation or an obstruction. 

 
Known trackers 
Crackles: These explosive and discontinuous 

adventitious sounds generally appear during inspiration 
[1, 5, 9, 11]. They are characterized by their specific 
waveform, duration and location in the respiratory cycle. A 
crackle can be characterized as fine (short duration) or 
coarse (long duration). Crackles usually indicate that 
there is a pathological process in the pulmonary tissue or 
airways. “Coarse” crackles occurring during the beginning 
of inhalation indicate a chronic bronchial disease. When 
occurring in the middle of inhalation they indicate 
bronchiectasis and when at the end of inhalation, they are 
generated by the peripheral bronchi and could be a sign 
of pneumonia. “Fine” crackles are generated by the 
peripheral bronchi. They are symptoms of infection or 
pulmonary edema. “Coarse” crackles sound like salt 
poured into a hot pan, while “fine” crackles sound more 
like Velcro strips being slowly pulled apart or a bottle of 
sparkling water being opened. 

Cough sounds: These are transient sounds 
induced by the cough reflex with a frequency range of 50 
to 3,000 Hz [5, 11]. The characteristics of cough sounds 
differ among pulmonary diseases. Cough sounds 
containing wheezes are typical in asthma. 

Rhonchus: Rhonchus is a low-pitched wheeze 
containing rapidly damping periodic waveforms with 
durations >100 ms and a frequency <300 Hz [1, 5, 11]. 
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Rhonchi can be found in patients with secretions, a 
narrowing of the central airways or presenting increased 
airway collapsibility or chronic bronchitis. 

Snoring sounds: These are low-frequency 

respiratory sounds with periodic components 

(fundamental frequency: 30-250 Hz), usually detected 

during sleep and caused by abnormal vibrations in the 

walls of the oropharynx [1, 9, 11]. While typically it is a 

sound of inspiration, some small snoring sounds may 

appear during exhalation, especially in patients with 

obstructive sleep apnea. 

Squawks: These are relatively short adventitious 

inhalation sounds of a musical nature, occasionally found 

in patients with interstitial lung disorders [1, 11]. 

Acoustically, these waveforms may resemble short 

wheezes, though they are often preceded by a crackle. 

The duration of squawks may vary between 50 and 

400ms. The basic underlying mechanisms probably differ 

from those of wheezes in obstructive lung diseases. 

Squawks usually occur from the middle to the end of the 

inhalation cycle in bronchial hyperresponsiveness and 

infectious pneumonia. 

Stridor: This is a very low-frequency wheeze 

originating in the larynx or trachea [5, 9, 11]. It appears 

most frequently during inspiration. It can be audible at the 

level of the mouth, trachea and chest wall without even 

using a stethoscope. Stridor can appear in whooping 

cough and laryngeal or tracheal stenosis. 

Wheeze: This is a continuous adventitious 

musical sound [1, 9, 11]. Acoustically, it is characterized 

by periodic waveforms with a dominant frequency usually 

over 100 Hz and lasting over 100ms, thus always 

including at least 10 successive vibrations. Wheezes are 

usually associated with an airway obstruction resulted 

from various causes. If the wheeze essentially contains a 

single frequency, it is classed as monophonic; polyphonic 

wheezes contain several frequencies. A wheeze can be 

located at the site of an anatomic obstruction or can be 

diffused in cases of asthma. Shaharum et al. [12] 

recommend placing the stethoscope over the trachea to 

determine its type and avoid listening to the signal across 

the chest, which acts as a low-pass filter, thus preserving 

more signal bandwidth. 

Pleural friction rub or simply pleural rub: This is 

an audible signal present in cases of pleurisy or other 

diseases affecting the chest cavity [1, 9, 11]. Pleural rubs 

are non-polyphonic sounds that can be characterized by 

their duration, approximately 15ms. These sounds are 

caused by the pleural membranes rubbing together during 

respiration. They can be heard during either inspiration or 

expiration. They are low in pitch (below 350 Hz) and can 

be caused by pleurisy or a pleural tumor. They are 

described as similar to the sound of walking on snow. 

Visualization methods 
Pneumo-phonogram: This is a simultaneous, 

overlapped display of sound signal and airflow over time, 
acquired/recorded during respiration [1, 5, 11]. 

Pneumo-spectrogram: This is a tool displaying 
the time (on the abscissa), the frequency (on the ordinate) 
and the intensity of the signal (represented by a color 
palette) [1, 5, 11]. Figure 2 gives an example of a 
spectrogram, showing the intensity ranging from black to 
blue, then yellow to red. 

 

 
 
 
 

 

 

Capture techniques 

Clinicians use stethoscopes to help them 
diagnose respiratory disorders. However, here is a limited 
application of stethoscopes in research due to inherent 
inter-observer variability and subjectivity in the 
interpretation of respiratory sounds using this tool [5]. 
Improved diagnostic value of auscultation in detecting 
abnormal respiratory sounds in clinical research could be 
achieved by applying an objective and standardized 
approach when interpreting observations. 

The computerized analysis of recorded 
respiratory sounds could offer a systematic approach to 
the diagnosis of different respiratory conditions via an 
automated classification of acoustic patterns. This 
process has the advantage of including an adapted 
capture chain of the sound preceding the analysis phase 
[13-15], typically consisting of the following elements [3, 
16]: 

 Sound capturing: the position of the 
microphone is important, as the chest acts 
like a reducer and low-pass filter. Kraman et 
al. [17] studied the effects of different 
microphones and concluded that the most 
effective one was the electret microphone 
with conical coupler, 10-15mm in diameter; 

 Amplification of the signal; 

 Filtering and sampling; 

Fig. 2. Example of a pneumo-spectrogram of normal 

breath sound (data collected in the ASAP project [Analysis 

of Auscultatory and Pathological Sounds] developed by the 

French National Agency for Research [ANR 2006 - TLOG 

21 04]). 
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 Reduction of cardiac sounds and other noises 
produced by the skin during movement; 

 Sound recording. 
Cheetham et al.[18] outlined the most significant 

points to consider when digitizing auscultation sound 
records, including sampling frequency, filtering, and 
signal-to-noise ratio introduced by the analog-to-digital 
conversion.  

Considering these factors, it seems appropriate 
to mention “Egophony” [19, 20].  This is when a clinician 
asks the patient to pronounce the “E” vowel sound, while 
listening to their lungs with a stethoscope. Under normal 
conditions, the sound pronounced by the patient crosses 
the lungs and chest wall without any noticeable change. 
When the lungs are filled with liquid or a solid mass, such 
as tumor, however, the long “E” vowel sound is altered 
and sounds more like an “A”. This is known as the “E to A 
transition”, associated with fever, short breath and cough, 
indicating pneumonia. 

 
Acquisition  
Various methods and tools have been described 

to capture sound:  
 Using one microphone: This is the most 

frequently-used method. Usually, the sensor 
is an electret microphone. The most common 
sampling frequency used is that of telephony 
codecs (8k Hz), an analog-to-digital 
conversion with a 16-bit resolution [1, 21]. 
Another option is using an accelerometer, 
which is less sensitive to background noise 
[1, 21] but offers a much poorer performance 
compared to electret microphones. 

 Using several microphones and 3D 
representations. This technique makes it 
possible to identify where the sounds 
originate. It is a dynamic method that shows 
structural and functional properties, useful for 
diagnosis [22, 23]. 

 Emitting a sound then analyzing its 
propagation. This technique, described by 
Mazic et al. [20], consists of emitting a sound 
through a loudspeaker placed in the patient’s 
mouth. The method processes the 
characteristics of the signal’s propagation 
through the respiratory airways and chest, 
analyzing energy ratios, signal time delays 
and dominant frequency.  

 Closed-loop controlled ventilation 
measurement [24, 25]. 

In our studies [5, 26, 27], we focused on the 
method that uses one electret microphone. 

 
Noise filtering and cardiac-sound canceling 
Cardiac sounds can cause interference during 

lung sound analysis. The spectrum of heart sounds is 20-
100 Hz. According to Elphick et al. [28], cardiac sounds 

can be attenuated using a simple band-pass filter [50-
2,500 Hz]. However, this filter must not be a high-pass 
filter (100 Hz) as the main components of lung sounds are 
also located in this frequency range. Consequently, 
several methods have been tested [29]: wavelets, 
adaptive filtering with a recursive least squares algorithm, 
time/frequency filtering, reconstruction, 
autoregressive/mobile average estimation (AR/MA) in 
time/frequency domain of wavelet coefficients, 
independent component analysis and the entropy-based 
method. 

The filter method proposed by Bahoura et al. [30] 
is based on a wavelet packet transformation, using two 
filters that are defined in frequency and time. This filter 
method provides more accurate and effective results than 
its rivals, performing extremely well in experimental tests. 
Moreover, it enables better recognition of the 
characteristics of stationary signals (normal sounds or 
wheezes). 

Yadollahi et al. [31] attempted to detect the 
different segments of sound that included cardiac sounds 
in order to suppress the cardiac component. They 
evaluated methods using Shannon’s entropy, Renyi’s 
entropy and multiresolution product of wavelet 
coefficients. The most efficient method was reported to be 
Shannon’s entropy. 

Of all these methods, the best results were 
obtained with adaptive filtering [32], time/frequency 
filtering, and AR/MA estimation. 

 
Deleting parasitic noise 
When “cleaning” up respiratory sounds, it is also 

important to reduce background sound. There are two 
different methods able to achieve this [3] :  

 Noise reduction through adaptive filtering 
(deleting white Gaussian noise and vocal 
sounds, reducing measurement errors); 

 Noise reduction through wavelet packets 
(Donoho and Johnstone’s method) 

More recent techniques involve simultaneous 
use of several sensors. 

 
Electrical safety 
There is no specific standard for electronic 

stethoscopes or recording devices, except that they need 
to conform to the European norm EN 60 601-1. Given that 
the device is applied to the skin of the patient, however, 
safety is critical. 

In his study, Laszlo [16] included a reminder that 
the transducers themselves are passive, but the metallic 
part of the head needs to conform to the “low safety 
voltage” directive. The bias voltage is low and comes from 
a battery (the “low safety voltage” must be less than 60 V 
d.c.); the condenser, if present, must have very low 
capacity (20-100 pF). Thus, the only current that could 
reach the patient is a dispersion current coming from the 
amplifier, which does not occur when using an amplifier 
conforming to the IEC guideline (IEC 601-1). 
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Respiratory sound characteristics 

It is commonly admitted that respiratory sound 
frequencies are in the range of 50-2,500 Hz, and tracheal 
sounds can reach up to 4,000 Hz. This means we can define 
a sampling frequency at 8 kHz [1]. The spectrum of cardiac 
sounds falls between 20 and 100 Hz for basic signals and 
higher frequency (over 500 Hz) for breaths. Abnormal 
sounds can be divided into two sub-classes [29]: 

 Continuous or stationary sounds, e.g., 
wheezes, rhonchus.; 

 Discontinuous or non-stationary sounds, 
e.g., fine or coarse crackles. 

Other adventitious sounds include squawk, 
snoring, and stridor. Below, we outline the characteristics 
of the two most extensively studied noises: wheezes and 
crackles [1]: 

 
Characteristics of respiratory cycles 
Based on his description of the analysis methods 

used, Bahoura [3] also proposed his definition of 
inspiration and expiration sound characteristics. He 
reported that tracheal sound frequencies are 60-600 Hz 
during inspiration and 60-700 Hz during expiration. He 
proposes using the Fourier transform with 4,096 points 
and two types of respiratory sound representations:  

 The waterfall method presenting the 
spectrum in three dimensions (amplitude, 
frequency, and time); 

 The spectrogram method described earlier 
in this article [5]. 

These representations generally enable a good 
visualization of respiratory cycles (Fig. 3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Normal respiratory sounds 
Various normal sounds can be heard depending 

on where the stethoscope is positioned [1, 5, 9, 11].  
 
Vesicular sounds 
Vesicular murmur can be heard on auscultation 

over most of the lung areas [1, 5, 9, 11]. These are quite 
clearly audible during inspiration, yet can only be heard 
during the beginning of the expiration phase. They are of 
a low, soft intensity that can be weakened in following 
circumstances: extensive thickening of the chest wall (for 
instance, in cases of obesity or emphysema). They are 
entirely absent in the following cases: 

 The lung is collapsed by the pressure of fluid 
or air in the pleural cavity, such as in cases of 
pneumothorax or pleurisy; 

 Absence of ventilation in the affected lung 
area, for example, in cases of lung 
compression, especially in atelectasis with 
retraction; 

 Following pneumonectomy, on the operated 
side [1, 5]. 
 

Bronchovesicular sounds 
Normal bronchovesicular sounds can be heard 

between the scapulae at the posterior chest and center 
part of the anterior chest [1, 9, 11]. 

 
Bronchial sounds 
Bronchial sounds are audible over the chest near 

the second and third intercostal spaces [1, 5, 11]. They 
are similar to tracheal sounds, high in pitch and can be 
heard during both inspiration and expiration. They are 
more clearly heard than vesicular sounds during 
expiration. The sounds are high-pitched (higher than 
vesicular sounds), loud and tubular. 

 
Tracheal sounds 
These can be heard over the trachea, above the 

sternum, in the suprasternal notch and fall in a frequency 
range of 100-4,000 Hz [5, 9]. They are generated by 
turbulent airflow passing through the pharynx and glottis. 
These sounds are not filtered by the chest wall and thus 
provide more information. 

 
Mouth sounds 
Mouth sounds are described as falling in a 

frequency range of 200-2,000 Hz. They represent 
turbulent airflow below the glottis [5]. In the case of a 
healthy person, there should be no sound coming from 
the mouth during respiration. 

 
Abnormal respiratory sounds 
Abnormal breath sounds include the absence or 

reduced intensity of sounds where they should be heard 
or, by contrast, the presence of sounds where there 
should be none, as well as the presence of adventitious 

Fig. 3. Breathing cycles. This represents the time and frequency 

characteristics of normal vesicular sounds. The upper green 

square represents the inspiration phase and the lower one the 

expiration. This example illustrates that there is relatively the 

same frequency range in both phases. Intensity decreases 

during expiration, mainly due to the loss in high pitches. In both 

phases, the frequency energy is distributed between some Hz 

and 1 kHz. The red line corresponds to a maximum of energy 

below 100 Hz (data collected in the ASAP project [Analysis of 

Auscultatory and Pathological Sounds] developed by the French 

National Agency for Research [ANR 2006 - TLOG 21 04]). 
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sounds [1, 5, 9, 11]. Adventitious sounds are sounds that 
are superimposed over normal breath sounds. 
Adventitious sounds may be continuous or discontinuous 
based on their duration. 

 
Continuous adventitious sounds  
Continuous adventitious sounds (CAS) are 

characterized by a duration of over 250ms [1, 5, 9, 11]. 
They can be further subdivided based on their pitch: low-
pitch CAS including rhonchi and squawks; high-pitched 
CAS including wheezes or stridor. 

 
Characteristics of wheezes and whistles 
Having bronchial origin and variable intensity, 

wheezes can be audible even at a distance from the 
patient [5, 9, 11]. They include wheezes heard during 
inspiration and sibilant wheezes heard during both 
phases. 

Wheezes and rhonchi are CAS that can be 
heard in most cases during expiration and sometimes 
during inspiration or both phases. Wheezes are high-
pitched, while rhonchi are low-pitched. Wheezes are 
caused by an airway narrowing which limits airflow, while 
rhonchus is the consequence of thickened mucus in the 
larger airways. 

Wheezes, which are defined by Laennec as dry 
wheezing groans or wheezing, are sounds that last for 
longer than 50ms [33] or 100ms and less than 250ms 
[34]. 

The identification of continuous adventitious 
breath sounds, such as wheezes in the respiratory cycle, 
is extremely important for diagnosing airway obstruction 
pathologies [34]. Sovijarvi et al. [1]1 state that wheezes 
can present acoustically as symptoms of abnormalities in 
the respiratory system and can also indicate the severity 
and location of the most frequently-found airway 
obstructions in asthma and respiratory stenosis. 

Localized wheezing can be heard during 
inspiration or both respiratory phases, at similar pitches, 
caused by a partial obstruction of the trachea or bronchi 
due to the presence of a tumor or foreign body. 

Diffuse wheezing is most often bilateral, of 
various tonalities and particularly audible at the end of 
expiration, encountered in instances of bronchial asthma. 
In chronic obstructive bronchitis (bronchial pneumonia), 
diffuse expiratory wheezing can also manifest due to the 
vibration of the bronchial walls which tend to collapse 
during expiration. 

Wheeze frequency falls within 100 and 2500 Hz, 
with a fundamental frequency between 100 (or 400 [30]) 
and 1,000 Hz [33] or 1600 Hz [34]. However, some 
authors have reported that wheezes have a dominant 
frequency greater than 400 Hz [30], contrary to rhonchus, 
whose dominant frequency is of 200 Hz and below. The 
spectrogram below shows that wheeze exhibits several 
harmonic frequencies, usually up to three. 

The association between bronchiolitis and 
wheeze has been well known for over 50 years (Fig. 4), 
although the underlying factors that could explain this 
association are not yet understood. Infants aged <6 
months are at high-risk of recurrent wheeze in early 
winter. Furthermore, infants with early and severe 
bronchiolitis requiring hospital admission are at 
significantly higher risk for both recurrent wheeze and 
subsequent asthma [31]. This long-known association [32] 
is not only well-documented in respiratory syncytial virus 
(RSV) bronchiolitis [31], but has also recently been linked 
with other viruses [35]. 

 

 
 
 
 
 
 
 
 
 
 
Identifying continuous adventitious sounds like 

wheezes in the breathing cycle is of great importance for 
detecting pathologies linked to airway obstruction. 
Sovijarvi et al. declared that wheezes demonstrate not 
only the presence but also the severity and location of the 
airway obstruction. 

Asthmatic subjects typically wheeze during 
expiration, each wheeze manifesting over a duration of 
80-250ms [20]. 

Fiz et al. [36] and Albers et al. [37] were able to 
objectively identify the presence of an obstructive 
pathology. Likewise, Meslier et al. [38] associate wheeze 
with the following pathologies: 

 Infections, such as croup (generally affecting 
infants under 3 years old), whooping cough, 
laryngitis, and acute trachea-bronchiolitis; 

 Laryngeal-, trachea-, or bronchomalacia; 

 Laryngeal or tracheal tumors; 

 Tracheal stenosis; 

 Emotional laryngeal stenosis; 

 Foreign body aspiration; 

 Airway compression; 

Fig. 4: Example of a pneumo-phonogram and spectrogram 

of bronchiolitis with numerous wheezes in preschool 

children (data collected in the ASAP project [Analysis of 

Auscultatory and Pathological Sounds] developed by the 

French National Agency for Research [ANR 2006 - TLOG 

21 04]). 



Journal of Medicine and Life Vol. 11, Issue 2, April-June 2018 

96 

 Asthma (Fig. 5) [39], identification of 
physiological nocturnal wheeze [40]; 

 Chronic obstructive pulmonary disease; 

 Foreign body in the airways. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rhonchi or snoring 

Also of bronchial origin, sonorous rhonchi are 

low-pitched, occur during both inspiration and expiration 

and are altered by coughing [9, 11]. They are 

encountered in acute or chronic bronchitis accompanied 

by bronchial hypersecretion. They are usually cleared by 

coughing, except in cases of “fixed rhonchus” in which 

coughing does not dislodge them, generally associated 

with downstream foreign body airway obstruction. 

 

Characteristics of stridor 

Inspiration requires much more energy than 

expiration [5, 9] typically below 500 Hz, but with some 

peaks at over 2,000 Hz (Fig. 6). 

Stridor is a wheeze-like CAS of a sibilant and 

musical nature. It is primarily heard during inspiration. It is 

caused by a turbulent airflow in the larynx or lower 

bronchial tree. Associated diseases are epiglottitis, 

foreign body, croup or laryngeal edema. Stridor is high-

pitched (above 500 Hz) and lasts for over 250ms.  

 

Squawk 
Squawks are continuous sounds lasting 

approximately 200ms [1, 11]. A squawk usually occurs 
during inspiration, is low-pitched (200 to 300 Hz), and 
often accompanies pneumonia. 

 
 
 
 
 
 
 
 
 
Discontinuous adventitious sounds (DAS) 
Characteristics of crackles 
Crackles are short explosive sounds, generally 

associated with pulmonary disorders [41-43] (for instance 
lung infection, pneumonia or pulmonary edema). They are 
typically generated when the airways that were 
abnormally closed during inspiration open up, or when the 
airways close at the end of expiration (Fig. 7). 

 

 
 
 
 
 
 
 
 
 
Crackle detection is important because the 

number of generated cracks can potentially indicate the 
severity of a pulmonary disorder [41] or airway disorders 

Fig. 5: Example of a pneumo-phonogram and spectrogram 

of a wheezing sound in the context of asthma (data 

collected in the ASAP project [Analysis of Auscultatory and 

Pathological Sounds] developed by the French National 

Agency for Research [ANR 2006 - TLOG 21 04]) 

Fig. 6: Example of a pneumo-phonogram and spectrogram 

of a stridor sound in the context of tracheal carcinoma (data 

collected in the ASAP project [Analysis of Auscultatory and 

Pathological Sounds] developed by the French National 

Agency for Research [ANR 2006 - TLOG 21 04]). 

Fig. 7: Example of a pneumo-phonogram and spectrogram 
of crackles in the context of pneumonia (data collected in 
the ASAP project [Analysis of Auscultatory and Pathological 
Sounds] developed by the French National Agency for 

Research [ANR 2006 - TLOG 21 04]). 
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[44]. Nevertheless, even more important than counting the 
crackles is locating them in the respiratory cycle and 
analyzing their waveform, both of which can inform 
physicians on the type of lung pathology [1]. 

Crackles generally begin with a width deflection, 
followed by a long damped sinusoidal wave [45, 46], as 
represented in Fig. 8. Initial deflection width (IDW) 
represents the duration between the beginning of the 
crackle and the first deflection. Two-cycle duration (2CD) 
is the duration from the beginning of the crackle to the 
time at which the waveform completed two cycles. TDW 
corresponds to the total duration of the signal crackle. 
Crackles have been defined [30] as lasting for less than 
20ms and ranging between 100 and 200 Hz in frequency. 

 

 
 
 
 
 
In addition, crackles can be divided into two 

families: 

 Fine crackles (what Laennec labels “wet 
groan”) that are characterized ([47] and [48], 
respectively) as IDW=0.50ms or 0.90ms, 
2CD=3.3ms or 6ms and TDW=4ms. These 
are exclusively detected during inspiration. 
Fine crackles are usually associated with 
pneumonia, congestive heart failure and 
lung fibrosis. Also called fine rales, they emit 
discontinuous, thin, dry noises that are high 
and evenly pitched, occurring in spells 
during inspiration. They become more 
distinctive after coughing and usually point 
to an alveolar disease process. Due to 
alveolar wall detachment and their 
pathological features, they are observed 
primarily in cases of pneumonia and 
interstitial alveolar or pulmonary edema 
subsequent to heart failure, though it can 
also occur in pulmonary fibrosis and some 
cases of interstitial pneumonia. 

 Coarse crackles are characterized by 
IDW=1.0ms, 2CD=5.1ms, TDW=6.7ms for 
[43] and by IDW=1.25ms, 2CD=9.50ms for 
[46]. They generally occur during inspiration, 
but can also be produced during expiration. 

Coarse crackles are generated by air 
bubbles in the large bronchi. They occur 
with chronic bronchitis and chronic 
obstructive pulmonary disease (COPD). 
Also called mucous rales and bubbling rales, 
coarse crackles or rales are discontinuous 
and of short duration. The sound emitted is 
irregular, uneven, intense, and observed in 
both phases of respiration, changing after 
coughing. They make a gurgling noise in the 
large airways and are often associated with 
bronchial congestion due to mucus 
hypersecretion. They are predominantly 
observed in bronchitis. 

Piirilä et al. [41] described the principal 
pathologies where crackles can be found:  

 Pulmonary fibrosis (2CD <8ms, approximate 
frequency of 200 Hz); 

 Asbestosis (approximate duration of 10ms); 

 Bronchiectasis (2CD >9ms, generally 
appearing late in the inspiratory cycle and 
are relatively long compared to the 
respiratory phase); 

 COPD (2CD >9ms, generally starting early 
in inspiration and ending before the mid-
point of inspiration); 

 Heart failure (2CD >10ms); 

 Pneumonia (2CD between 9 and 11ms, 
appearing at the mid-point of inspiration); 

 Sarcoidosis.  
 

Pleural rub 

A pleural rub is a discontinuous signal lasting 

over 15ms and pitched below 350 Hz [1]. This non-

polyphonic (musical) signal is generated by the pleural 

membranes rubbing against each other. This may be 

caused by an inflammation of the lung membrane or a 

lung tumor. It can be heard during both inspiration and 

expiration.  

Some authors describe a pleural rub as a dry 

grating and superficial sound, unchanged by coughing. It 

can be discrete in intensity, such as parchment rust, or 

louder, such as the creaking of new leather. It occurs at 

the onset of pleurisy, at its upper limit or after fluid 

evacuation. The differential diagnosis with coarse 

crackles may be challenging, although unlike the latter, 

the pleural rubs appear soon after the start of inspiration. 

 

Summary of normal and adventitious sounds 

Normal breath sounds 

Pramono et al. [49] provide a useful summary of 

normal breath sound characteristics. As shown in Table 1, 

most of the energy is below 1,000 Hz for the signals 

captured over the chest. This increases to up to 2,000 Hz 

Fig. 8: The waveform of a crackle 



Journal of Medicine and Life Vol. 11, Issue 2, April-June 2018 

98 

in the mouth and 5,000 Hz over the trachea, with a drop 

at 800 Hz. 

Summary of adventitious sounds 

Table 2 presents the details of adventitious 
sound energy [1, 11]. 

 

 
Table 1. Normal breath sounds. 

Breath sound Location Frequency range 
Vesicular Most of the lung 100 to 1,000 Hz, with energy drop at 200 Hz 
Broncho vesicular Between the scapula and center of the back 100 to 2,000 Hz, with energy drop at 600 Hz 
Bronchial The area between second and third intercostal 

spaces 
100 to 4,000 Hz, with energy drop at 800 Hz 

Tracheal Over the trachea 100 to 4,000 Hz, with energy drop at 800 Hz 
Mouth In the mouth 200 to 2,000 Hz 

 
Table 2. Adventitious sounds. 

Sound Duration Phase Frequency range Disease 
Wheeze >80ms BI and mostly BO >400 Hz Asthma, COPD, foreign body 
Rhonchus >80ms BI and mostly BO <200 Hz Bronchitis, COPD 
Stridor >250ms Mostly BI, BO, both >500 Hz Epiglottitis, foreign body, 

laryngeal edema 
Fine crackle ~5ms BI 650 Hz Pneumonia, congestive heart 

failure, lung fibrosis 
Coarse crackle ~15ms Mostly BI, BO, both 350 Hz Chronic bronchitis, 

bronchiectasis, COPD 
Pleural rub >15ms BI and BO <350 Hz Inflammation of lung membrane, 

lung tumor 
Squawk ~200ms BI 200 to 300 Hz Pneumonia 

ms: milliseconds. BI: breathing in. BO: breathing out. COPD: chro nic obstructive pulmonary disease. 
 

Detection of known markers  

The known markers commonly analyzed by 
automatic tools are crackles and wheezes. The principal 
algorithm families of detection of these markers are 
summarized in Table 3. Different analysis methods are 

described, including temporal analysis of the waveform for 
crackle detection, frequency analysis (Fourier transform, 
spectrogram in 2D or 3D [1] and sonogram [50] used for 
wheeze detection. 

 

 
Table 3: Principal algorithm families of detection of the known markers. 
Signal Characteristics and processing 

[7] 
Analysis  

Normal sounds 
Lungs Low-pass filtering (between 100 

and 1,000 Hz) 
Periodogram (power spectral density - PSD), autoregressive models [38]Error! 
Reference source not found. 

Trachea Noise with resonances [100, 
3,000 Hz] 

 

Adventitious sounds 
Wheezes Sinusoid (range ~ 100 and 1,000 

Hz; duration >80ms) 
Periodogram (PSD), STFT (short-time Fourier transform), FFT, linear prediction of 
coefficients [69], genetic algorithms [27], neural networks [27],, wavelet [46] 

Rhonchi Series of sinusoid ( <300 Hz and 
a duration >100ms) 

 

Crackles Wave deflection (duration 
typically <20ms) 

Temporal analysis [44], FFT, linear prediction of coefficients [45], fuzzy non 
stationary filter [41], genetic algorithms [27], neural networks [27], wavelet [27, 46] 

Snores  Temporal analysis, periodogram (PSD)[38] 
Stridors  Periodogram (PSD), STFT, autoregressive models [27, 44] 

 
In techniques of spectral analysis, the main 

parameters are the average frequency of the spectrum, 
the frequency of maximal power, the number of dominant 
peaks, and the exponential decay. Finally, time-amplitude 
and time-frequency analyses are classically implemented 
using wavelet transform. 

 

 
Among the different complex solutions, there are 
possibilities of using multi-layer perception in a neuronal  
network, genetic algorithms or a hybrid solution of both. 
The parameters search is performed using a learning 
method. Guler et al. [51] remarked that the hybrid solution 
is the most effective. 
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Finally, Murphy et al. [52] demonstrated that a 
multi-channel analyzer (several sensors used 
simultaneously) is able to detect significant differences 
between the pulmonary sounds of patients suffering from 
pneumonia and those of asymptomatic patients. 

 
Wheeze detection  
As explained above, Bahoura et al. describe a 

spectral analysis technique for wheeze detection. The 
main characteristic of all sounds is peaks of energy that 
can be visualized in the spectrum. The limitations of this 
method lie in the existence of peaks even in the normal 
pulmonary sounds resembling those that indicate 
wheezes, and consequently there is a significant rate of 
erroneous detections generated. 

The difficulties encountered during automatic 
wheeze detection can be overcome using a joint time-
frequency analysis [5]. The principle is as follows: 
detection in the frequency of a peak that could correspond 
to a wheeze is verified by a second time test in order to 
confirm true wheezes and reject the false ones. 

According to Homs-Cobrera et al. [53], the 
significant parameters are frequencies and the mean 
number of wheezes detected. These authors used the 
following parameters: the number of wheezes, mean 
wheeze frequency with the highest power peak, mean 
wheeze frequency with the highest the mean power, 
mean frequency, and the percentile of maneuver 
occupied by wheezes. The parameters are defined by 
dividing the frequency range into 50 Hz bands from 150 to 
200 Hz. Moreover, the present algorithm indicates that 
there is a significant correlation between the number of 
wheezes detected and the signal amplitude, due to a 
simultaneous dependence between the normalization 
factor and fuzzy rule thresholds. Spectrograms provide a 
graphical time-frequency representation of wheeze 
locations. Nevertheless, this is not sufficient to objectively 
characterize sounds. 

Another process used for automatic wheeze 
detection was proposed by Bahoura and Homs-Cobrera 
et al. [3, 53]. This approach is based on the use of 
wavelet packet decomposition and consists of two stages. 
Firstly, frequencies are detected with wheeze extraction. 
Then, inverse transform and reconstruction of the useful 
signal are performed, followed by temporal detection, 
another step rendering it possible to eliminate false 
detection generated by superposition of the spectral 
domains of some normal sounds and wheezes. 

Extrapolating from the spectrograms generated 
with recorded sounds, Lin et al. [54] made a 2D bilateral 
filtering process for edge-preserving smoothing. The 
results demonstrated the system’s high efficiency and the 
authors aim to use this system for asthmatic patient 
monitoring and the study of airway physiology. Similarly, a 
method of the continuous wavelet transform is described 
in [34], combined with a scale-dependent threshold. This 
method seems to provide a higher detection rate.  

Meslier and Charbonneau’s research [38] also 
describes the automatic wheeze analysis and the 
quantification of spectral analysis. These algorithms are 
based on the definition of a threshold upon which the 
presence of peaks in frequency is characteristic of a 
wheeze. This threshold differs among the different 
articles, with a peak at times characterized by a 15 times 
greater power than the current average or 3 times greater 
than the average value. All these studies define constant 
thresholds based on power measurements. 

Qui et al. [55] confirmed that frequency analysis 
alone generates a relatively significant number of 
erroneous detections. Their paper describes a new 
algorithm based on auditory modeling called “frequency 
and duration dependent threshold (fddt) algorithm”. In 
their approach, the parameters for average frequency and 
wheeze duration are obtained automatically and the 
notion of threshold depends on the frequency and 
duration introduced in a new wheeze detection algorithm. 
The threshold is no longer based on global power, but 
rather on power corresponding to a particular frequency 
range. 

The choice of energy instead of power was 
made based on previous study results, and the latter 
indicates that an energy threshold is more suited to short-
duration sound detection (lower than 200ms). 

 
Crackle detection  
Crackle analysis can be divided into three major 

stages: 

 Application of a noise reduction filter in order 
to delete the residual stationary noise in a 
non-stationary signal; 

 Search for the waveform corresponding to a 
crackle; 

 Classification of detected crackles into two 
categories: fine and coarse. 

Kayha and Yilmaz [56] proposed an automatic 
system of crackle detection and classification. They used 
a stationary/non-stationary filter and a wavelet packet 
transform (also called WPST-NST) that enables crackles 
to be isolated from vesicular sounds. 

Kawamura et al. [57] demonstrated the existence 
of a correlation between respiratory sounds and high-
resolution computed tomography findings. Two 
parameters, 2CD and the IDW of crackles, were induced 
by time-expanded waveform analysis. 

Kayha et al. [58] describe a system based on 
increasing transient to background ratio by adaptive 
filtering and implementing nonlinear operators to wavelet 
decomposed lung sounds. 

Yeginerand et al. also describe in their paper 
[45] the utilization of wavelet networks in order to model 
pulmonary crackles. 

The algorithm proposed by Vannuccini et al. [46] 
uses a stationary/non-stationary fuzzy-based filter (FST-
NST). The results of the separation demonstrated 
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relatively good accuracy. Their proposed algorithm deals 
with non-stationary crackles and fuzzy rules. The FST-
NST filter was applied to sounds coming from three 
databases. First, crackles were separated from the 
vesicular sounds. Next, fuzzy “if-then” rules were used. 
The results of the separation are reliable, objective and of 
high quality, as the FST-NST filter was found able to 
automatically identify the location of crackles in the 
original signal. 

Hadjileontiadis et al. [46] detected crackles and 
bowel sounds using a fractal dimension analysis of the 

records. Their results seem to be conclusive and, 
moreover, their method robust to noise stress. 

Our comparison of the results of these different 
methods is summarized in Table 4. The most fitting 
classifying results were obtained using wavelet analysis. 
The representation of Prony’s method indicates a 
correlation between the type of pathology, crackle 
occurrence compared to pulmonary volume, and Prony’s 
frequency [56]. 

 

 
Table 4: Summary of several methods of crackle detection. 

Methodology Parameters References  
Time-frequency analysis Gaussian band width, peak frequency, total deflection 

width, maximal deflection width 
[46] (correct classification level: 
87.78%) 

Time-frequency analysis Gaussian band width, peak frequency, maximal 
deflection width 

[46]  (correct classification level: 
90.5% ) 

Prony modeling Parameters of the Prony model [46, 27] (correct classification 
level: 63.89%) 

Autoregressive coefficients [1, 64] 
Wavelet transform Wavelet scale [46, 27] (correct classification 

level: 93.9%) 
Wavelet transform fractal dimension based [14, 46] 
Wavelet transform stationary – non stationary  [27] 

Fuzzy rule-based system – 
FST-NST 

27 fuzzy rules [46] 

Artificial neural networks Autoregressive coefficients, wavelet coefficients, crackle 
parameters 

[46, 27] 

Empirical mode 
decomposition 

Intrinsic mode function: local zero mean oscillating 
waves obtained by sifting process 

[27] 

FST-NST: stationary-non-stationary fuzzy-based filter. 

 
Respiratory cycle detection 
In order to provide exploitable results, 

information must always be considered in the context of a 
respiratory cycle [28] It is thus useful to automatically 
detect inspiration/expiration phases. Benedetto et al. 
described another characteristic of the pulmonary signal: 
the spectral power of pulmonary sounds during inspiration 
is higher than those during expiration [24]. This 
characteristic can be used alone to enable stage 
detection. Likewise, Chuah and Moussavi [4] processed 
the average value of the spectral power to qualify the 
respiratory cycle. Their analysis was completed by 
processing the average value of tracheal spectral power 
to determine the beginning of respiration. 

Moussari et al. [59] used the average power 
spectrum of the breath signal and the difference between 
the average tracheal power spectrum and chest signal to 
detect the respiratory phase. Their results accurately 
classified the phase between 31 and 69% of the time. 
Also, the average power spectrum difference between 
inspiration and expiration in a frequency range of 150-450 
Hz was maximum 10 dB. While this method is adequate 
for artificial sounds, however, it does not enable real 
auscultation sounds to be classified. Finally, Leng Y et al. 
proposed measuring sound while using a fractal 

dimension and a parameter called “variance fractal 
dimension” [60]. 

Contrary to crackle or wheeze detection, the 
main methods of respiratory phase detection use artificial 
intelligence algorithms. Guler et al. [61], for example, 
used a six-phase classification: beginning, middle and 
end inspiration, along with beginning, middle, and end 
expiration. This method depends on the use of multistage 
classification. The extracted features are autoregressive 
parameters and cepstral coefficients.  

The development of this type of tool is subject to 
two major difficulties: 

 Respiratory signals are not stationary 
because lung volume constantly changes; 

 Respiratory sounds present great variability 
depending on age, mass, and pathology. 

Guler et al. based their study on a multilayer 
perceptron (MLP) [51]. On individual segments, it 
provides approximately 60% accurate recognition in the 
expert phase. 

Carlos and Verbandt [62] used two artificial 
independent neural networks (ANN): their algorithm is 
based on two neural networks: inspiration ANN and 
expiration ANN. First, pre-processing is performed, which 
normalizes the signal in amplitude (between 0 and 1). The 
next stage consists of the ANN with one hidden layer. The 
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parameters are obtained by means of a learning algorithm 
using a back-propagation technique. Following this, post-
processing is applied, consisting in removing the 
uncertain “1” situated between at least five “0” and 
inversely. 

Other auscultation methods 

Coin test 

This test is particularly useful in cases of 

pneumothorax, large bulla, and hydro-pneumothorax [1, 

11]. With patients sitting or standing, a metallic coin is 

placed flat against the chest just below the mid-clavicle 

and struck with the edge of another coin with the help of 

an assistant. The stethoscope diaphragm is positioned to 

listen at the same point on back of the chest. The coin 

test is positive if high-pitched, metallic, bell-like sounds 

are heard. 

 

Scratch sign test 

This test is rarely used, yet also useful for 

diagnosing pneumothorax [1, 11]. The patient is sitting or 

supine. The physician places the stethoscope diaphragm 

to listen at the midpoint of the sternum and surface of the 

chest wall and equidistant points on the left and right of 

the instrument are scratched with the fingers. When the 

site of pneumothorax is scratched, the sound heard is 

louder. 

 

The “99” test 

Many have experienced this without necessarily 

knowing the rationale behind it. During the doctor’s 

auscultation, the patient is asked to say “99” (or “33” if you 

are in France) [1, 5]. This is not at all to check the 

patient’s pronunciation! Nor is it to make any kind of 

calculation; it is for a medical purpose. When this number 

is said, the low-pitched sound causes vibrations at the 

level of the larynx. Using a stethoscope, the physician 

listens to the air flowing in the lungs at the same time. The 

waves generated by saying “99” propagate all throughout 

the chest, differing only in areas affected by 

pneumothorax (sound is absent) or atelectasis (compact 

area where sound is better transmitted). 

 

The seismic test 

The name of this test comes from the tests 

performed to detect the presence of petroleum. Vibrating 

waves are propagated through the mouth of the patient [1, 

11] while the doctor listens to the sound emanating from 

the chest. Distortion of the sound is linked to the amount 

of water crossed by the audible wave. 

 

Percussion 

With the patient sitting or standing, the 

practitioner taps on the front of the chest and listens at the 

back with a stethoscope. The emitted note is louder in 

cases of pleural effusion. 

Respiratory sound classification  

In lung medicine, there is no universal pattern or 
parameter threshold indicating the presence or absence 
of a pathology. Therefore, Zheng et al. [63] proposed the 
establishment of a personalized pattern, combining sound 
information and other patient measurements. They sought 
to recognize a pattern of pulmonary sounds. The method 
applied can be divided into two stages: characterizing the 
variables that can be extracted from the waveform of 
pulmonary sound, and recognizing the changes in these 
variables that will provide information concerning pattern 
variations. 

Guler et al. [61] focused on artificial intelligence 
techniques. They combined a neural network and genetic 
algorithm to analyze respiratory sounds. First, they 
selected complete respiratory cycles, on which a PSD 
(power spectrum density) of 256 was applied. Then, an 
MLP neural network was employed in order to detect the 
presence or absence of adventitious sounds (wheezes 
and crackles). The search for optimal parameters was 
performed using a learning method. Each sound was 
associated with several characteristics and a diagnosis. A 
total of 129 specific characteristics were verified (PSD0 - 
PSD128). Following this, different learning rules were 
used in order to associate characteristics and diagnosis. 

Kahya et al. made a comparison between k-NN 
(k-nearest neighbor) and ANNs. They used different 
features extracted from the respiratory signal, with each 
cycle divided into six segments comprising three features: 
autoregressive coefficient, wavelet coefficient and crackle 
parameters [64]. 

Moreover, the performance of the classifiers was 
measured using the following statistical parameters: 

 Sensitivity: the number of pathological 
subjects correctly classified /total number of 
pathological subjects; 

 Specificity: the number of healthy subjects 
correctly classified /total number of healthy 
subjects; 

 Accuracy: the number of subjects correctly 
classified/total number of subjects. 

Then, they added crackle parameters to the 
observed features in order to increase the performance of 
classification [65]. As before, K-NN and multinomial 
classifiers were used. They observed that adding crackle 
parameters to feature vectors and fusing phase decisions 
improved classification results. 

The study by Yeginer et al. [66] focuses on four 
pathologies: asthma, bronchiectasis, COPD, and 
pneumonia. The sound is divided into six subphases: 
early (30%), mid (40%) and late (30%) of both inspiration 
and expiration. Classification experiments were applied to 
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each subphase. Neural classifiers (MLP with a hidden 
layer with ten nodes) were used with the following 
parameters: autoregressive parameters, error prediction, 
and expiration/inspiration duration ratio. The weight and 
biases of the MLP were updated using the Levenberg-
Marquardt optimization algorithm, which is one of the 
fastest. After that, they classified the results in three 
stages: healthy/pathological classification, 
restrictive/obstructive classification, and pathology-
specific classification (e.g., asthma and bronchiectasis). 
The classification accuracy was calculated by the “global 
number of segments correctly classified/global number of 
segments”, recorded as approximately 70-80%.  

The study by Pittner and Kamarthi [67] sought to 

describe a preprocessing method to reduce the entry 

pattern size in neural networks and increase the 

performance of estimation or classification. The results 

indicate that wavelet expansions are significant signal 

sensors and allow important features to be extracted. 

Several authors have performed the 

classification of normal and adventitious sounds in two 

stages: linear prediction of coefficients (LCP) and features 

of the energy envelope [68, 69]. Seven types of 

respiratory sounds were thus classified, including the 

following four normal sounds: vesicular breath sounds (V), 

bronchial breath sounds (B), bronchovesicular breath 

sounds (BV) and tracheal breath sounds (T). The 

extracted features were: FFT, PDS estimation by means 

of LCP. Nevertheless, in this study, a manual decision of 

the inspiration/expiration periods was realized. The 

primary objectives were: to quantitatively characterize 

several respiratory sounds and to provide an automatic 

classification method of these types of sounds. Finally, 

the diagnosis was established by a physician, based on 

the sound analysis associated with other diagnostic 

values. Out of their 105 experiments, only five generated 

errors.  

Dokur and Olmez [70] used wavelet transform, 

selecting the best samples for analysis by dynamic 

programming, then using a Grow and Learn neural 

network for classification. The decision process was made 

up of three stages: process normalization, feature 

extraction, and artificial neural network by classification.  

MLP is frequently used in biomedical signal 

processing, yet it does present three main drawbacks:  

 Backpropagation algorithms take too long 

during the learning phase; 

 The number of nodes in the hidden layers 

must be defined before the learning phase. 

The structure is not automatically determined 

by the training algorithm; 

 Backpropagation algorithms may be 

impacted by local minima, decreasing 

network performances. 

Factors influencing the measurement 

Several factors can interfere with auscultation 
signal analysis [3], modifying results and rendering the 
comparison between research centers more difficult [71]: 

 Age and corpulence of the patient; 

 Air volume changing in the lungs; 

 Location of sound capturing; 

 Breathing flow; 

 Position of the patient; 

 Characteristics of the measurement 
equipment. 

Environmental conditions also have an influence 
on the results, since they can generate artifacts and bias. 
These will be discussed below. 

 
Age and corpulence 
Differences due to age are the most visible in 

infants. Elphick et al. [50] noted that stethoscope 
evaluation is not very accurate for wheeze and crackle 
detection in this population [28], and audible respiratory 
sounds in early childhood are known to present acoustic 
characteristics distinct from those generally heard in 
adults. 

Therefore, Mazic et al. [20] proposed using more 
objective methods to automatically detect wheeze in 
asthmatic infants during forced breathing. 

 
Subject conditions 
For testing lung auscultation, several academic 

societies and authors have published guidelines that are 
helpful, even for short-term recording [5, 72]. These 
include body position, the location of the microphones and 
respiratory maneuvers. 

Body position: it is recommended that the patient 
is sitting down, with hands on the thighs to avoid the arms 
interfering with the axillary areas where the microphones 
are located. 

As a large number of sites were adopted (>50) 
by the investigators, there is a need to anatomically define 
the microphone locations that have proved to be most 
relevant: trachea (on the sternal notch); chest (posterior, 
anterior, lateral). Sovijarvi et al. provide a list of standard 
positions [10, 12, 14].  

 
Non-stationary signals linked to lung air 
volume variations 
The static characterization of the process 

evolves during the respiratory cycle [1, 39]. Respiratory 
sounds are non-stationary, particularly due to the 
changing lung volume [1, 72]. Thus, in order to correctly 
interpret the results, it is recommended to bring back the 
pulmonary air volume. 

 
Respiratory maneuvers 
The airflow and volume have a strong influence 

on the collected sounds [72]. In particular, wheeze and 
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crackle characteristics and amount are related to the air 
volume as well as the disease. For instance, crackles 
have been shown to appear early in inspiration in patients 
with COPD and late in inspiration in patients with fibrosing 
alveolitis. Recording when crackles occur during the 
breathing cycles and calculating the number and position 
of crackles is thus helpful for establishing a diagnosis. 

This can only be achieved with the help of 

automatic tools [1]. The automatic tool that we developed 

during the “Analysis of Auscultatory and Pathological 

Sounds” (ASAP) project, developed by the French 

National Agency for Research (ANR 2006 - TLOG 21 04) 

[27], includes wheeze and crackle detection, as well as 

positioning them during the breathing cycle. 

 

Environmental conditions 

Noise not related to the relevant breathing signal 

is generated by the body of the patient or by external 

sources. Standardization of noise conditions is addressed 

in references [1, 9, 72]. 

External sources can produce continuous and 

transient noise [27]. Continuous noises are those 

generated for example by motors, hard disks, air-

conditioning ducts, fluorescent light bulbs, transformers, 

fans in electronic equipment and computers. These 

noises usually generate 50 Hz or 60 Hz harmonics and 

can therefore be very easily filtered. Traffic in the street is 

also a continuous noise, yet it does not produce 

harmonics. Transient noises include speech, music, noise 

from airplanes, trains, cars, slamming doors, furniture 

squeaks, phone ringtones, and alarms from monitors or 

other electronic devices. 

Body sounds can either be those related to 

breathing (chest motion, muscle sounds, skin friction, 

sounds induced by airflow in devices, and tubes and 

valves for monitoring of airflow and volume) or not (heart 

sounds and murmurs, vascular sounds, swallowing, 

burping, bowel sounds, joint crackles, speech or other 

noises made by the patient) [5, 27]. 

External sounds can easily be filtered with the 

use of an additional sound capture that will record and 

subtract environmental noise. A project has even been 

proposed by the US army using auscultation inside 

helicopters, filtering external noise. However, the noise 

generated by the body itself cannot be detected by an 

additional microphone. 

 

Standardization of the measurement protocol 

In order to overcome these limitations, The 

European Community financed a BIOMED 1 Concerted 

Action project entitled “Computerized Respiratory Sound 

Analysis” (CORSA) that proposed to define a semiology 

adapted to collect and analyze respiratory sounds. These 

works concluded with a proposition of standardization that 

was proposed in the European project CORSA [33]. 

CORSA described auscultation points, type of sensors, 

filtering, sampling frequency, FFT technique, definition of 

a spectrogram average and use of standard flows. 

Automated respiratory sound analysis 
devices 

Pramono et al. [49] provided a short list of 
available automated respiratory sound devices. These 
tools aim to overcome the limitations of conventional 
auscultation, which cannot provide continuous monitoring 
and needs to be performed by a specialist with prolonged 
experience, also involving the well-known limitations of 
the human ear that increase with ageing and are thus 
antonymic with experience [5, 27]. In addition, noises 
might disturb the auscultation process. Automatic tools 
are expected to overcome these drawbacks. 

The National Institute for Health Research 
provides a list of already available commercial systems 
[73], such as: the Wheezometer [74], the Wholter [75], the 
VRI [76], the LSA-2000 [77], the LEOSound [78], and the 
multichannel STG [79] and STG for PC [80] or handheld 
STG [81]. The Wheezometer and Wholter were 
developed by Karmelsonix®. The Wheezometer uses a 
sensor that needs to be placed over the trachea to detect 
wheezes and evaluates the percentage of time over which 
wheezes were detected in the breathing signal [74]. The 
Wholter is intended for home monitoring [75]. The LSA-
2000 has up to four sensors to attach on the chest to 
detect interstitial pneumonia [77]. The LEOSound uses 
three sensors to collect, analyze and store data for 
wheeze and cough detection [78]. STG tools were 
developed by Dr R. Murphy [80, 81]. The multichannel 
STG has 14 sensors placed at the level of the lungs, heart 
and trachea. It aims to identify wheezes, crackles, and 
rhonchi. Smaller devices have also been developed to be 
connected either to a PC or a handheld device. The 
above-mentioned devices do not yet have portable, easy-
to-use versions. 

Conclusions/Future works  

We are currently testing and studying different 
algorithms in the ASAP project [5, 27]. The next stage will 
consist in exploiting all the richness of the sound. This 
augmentation of the spectrum studied, linking it to signal 
analysis techniques, will enable the definition of new 
characteristic markers. Previous studies have 
demonstrated the need for an exhaustive scientific 
approach that accounts for both the definition of a 
semiology, the consolidation of definitions of known 
characteristics markers, the definition of common or even 
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universal semantics, and the development of determining 
tools that enable the detection of these markers [1, 5, 11, 
27]. This was precisely the aim of an ambitious study 
commenced in collaboration with LaenneXT® in the 
“ASAP” project. This study is conducted by 
multidisciplinary teams, including medical experts from 
the University Hospital of Strasbourg (Strasbourg, 
France), “Institut Régional des Cancers de l’Appareil 
Digestif” (IRCAD) (https: / / fr.wikipedia.org / wiki / 
Institut_de_recherche_contre_les_cancers_de_l%27appa
reil_digestif), with support from the Alcatel-Lucent® 
research teams [27]. Among the best-identified outcomes 
of the project, its strength lies in creating an auscultation 
school within the University of Strasbourg (Strasbourg, 
France) [5]. 

In this context, a recent meta-analysis from 
Gurung et al. [82] demonstrates that computerized 

analysis of recorded respiratory sounds could be a 
promising adjunct to chest auscultation as a diagnostic 
aid in both clinical and research settings. In this meta-
analysis, Gurung et al. [82] found that computerized 
respiratory sound analysis offered a relatively high level of 
sensitivity and specificity in a small number of studies. 
The overall sensitivity for the detection of abnormal 
respiratory sounds using computerized lung sound 
analysis was 80% and overall specificity was 85%. 
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