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ABSTRACT

Genome-scale microarray experiments for com-
parative analysis of gene expressions produce
massive amounts of information. Traditional
statistical approaches fail to achieve the required
accuracy in sensitivity and specificity of the
analysis. Since the problem can be resolved
neither by increasing the number of replicates nor
by manipulating thresholds, one needs a novel
approach to the analysis. This article describes
methods to improve the power of microarray
analyses by defining internal standards to
characterize features of the biological system
being studied and the technological processes
underlying the microarray experiments. Applying
these methods, internal standards are identified
and then the obtained parameters are used to
define (i) genes that are distinct in their expression
from background; (ii) genes that are differentially
expressed; and finally (iii) genes that have similar
dynamical behavior.

INTRODUCTION

Microarray technology provides a genome-wide screening
and monitoring of expression levels for thousands of genes
simultaneously, and has been extensively applied to a
broad range of biological and medical problems in order
to identify changes in expression between different
biological states. The immense amount of information
that can be obtained from microarray studies enables us
to address a variety of different research aims but still
presents a challenge for data analysis, especially in terms
of mutually exclusive parameters such as sensitivity and
specificity. Many excellent reviews have been written
on this subject (1–4). Our intention is, rather than
providing an overview of available approaches, to offer
a presentation of our methodological approaches
with the main emphasis of using internal standards
as means of robust evaluation strategy. Some of the

methods have been published at least in part, others are
completely new.
Methods based on conventional t-tests estimate the

probability (P) that a difference in gene expression
occurred by chance. If the threshold for probability
chosen as significant in the context of a small sized
experiment is applied in another microarray experiment,
it can have a high false positive rate. For example, if the
P threshold is 0.01, then even a set of random data
satisfying the null hypothesis will result in one false
positive per every 100 genes tested. A microarray
containing tens of thousands of genes will generate
hundreds of false positive results.
Two of the most popular approaches to address this

problem are to make adjustment of thresholds or to use
various combinatory calculations in order to improve
the power (sensitivity) and specificity of the statistical
conclusions. Due to its simplicity, the Bonferroni
adjustment was used frequently despite its well-known
conservativeness. The correction of P threshold by
dividing the desired significance by the total number of
statistical tests performed, ensures the achievement of a
desired false positive rate over the entire set of genes,
but conversely sets a criterion that can be too strict for
each individual gene. Specificity is gained at the expense of
sensitivity. Thus, the method does not reject hypotheses as
often as it should and therefore it lacks power. This is
of course a paradoxical situation, since the statistical
significance for each individual measurement apparently
depends on the total number of unrelated measurements.
None of the various attempts to improve Bonferroni

adjustments has helped to resolve the problem. The
most popular of such adjustments, the so called false
discovery rate (FDR) control (5,6) that has been
introduced into microarray analysis by Benjamini and
Hochberg (7) enables to estimate the measure of the
proportion of rejected null hypotheses. All genes are
ranked according to their P-values and tested against
individualized thresholds: the smallest observed P-value
is tested against the strictest threshold, and the remaining
P-values against successively more relaxed thresholds.
In other tests, e.g. in the popular significance analysis
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of microarrays (SAM) method (8,9), the use of indivi-
dualized thresholds improves the conservativeness of the
Bonferroni test, though the improvement is only partial
and often minor.
The relative difference in gene expressions computed

from replicated hybridizations provides a control for
random fluctuations, the power of which depends
essentially on the number of replicates. To improve
statistical significance of biological variation without
increasing the number of replicates, additional controls
are needed. In the aforementioned methods, like SAM,
‘instead of performing more experiments’, which are
expensive and labor intensive, Tusher et al. (8) generated
a large number of controls using re-sampling methods
such as bootstrap or permutation to estimate the
underlying distribution from the observed data.
However, generation of larger number of controls by
using combinatory approaches instead of performing
more experiments is somewhat illusory in that it does
not truly increase the amount of information being
analyzed.
Fortunately, there exists an adequate resource to

increase the power of statistical tests by using the
massive quantity of information inherently obtainable in
each microarray experiment. We introduce here an
approach in which the paired comparison of gene
expression in two different situations is accompanied by
the associative test—checking the hypothesis that each
given gene in the experimental group has common
features and can be associated with an internal standard.
Internal standard in this context is considered as a large
family of genes sharing some useful features for analysis,
which in turn are neither dependent on the particular gene
sequence nor on the level of expression, and are also not
dependent on the coordinate position in the chip.
The methodology of the evaluation described in this

communication will serve us as a stepping stone to our
further effort of using internal standards for analysis in
a statistically robust manner, functional associations
through clustering and networking genes having similar
dynamical behavior. These methods are equally applicable
to time course dynamics initiated by various treatments
and to natural variations of genes involved in essential
dynamical processes in biological systems as well.
This we intend to describe in the follow-up article
(in preparation).
Early variants of some procedures described here were

first included in the Matlab toolbox for microarray data
analysis MDAT described in Knowlton et al. (10), while
the improved and modified version exists now and is
available on request.

MATERIALS AND METHODS

Gene expression datasets

This work uses a wide spectrum of experimental data that
were only partially published.
The expression datasets were obtained with the use

different sources of mRNA and different microarray
technologies. They include Mouse Atlas 1.2 membranes

and Mouse plastic 5K arrays Human Cancer Atlas 1.2
membranes (Clontech, Palo Alto, CA). Most data were
obtained with the use of high-density microarrays.

Custom microarrays were prepared at the Oklahoma
Medical Research Foundation Microarray Core Facility
using commercially available libraries of oligonucleotides:
Human Genome Oligo Ser Version 2.0 and mouse genome
set, version 2.0 (Qiagen, Valencia, CA).

All data of recent years were obtained with the use of
Affimetrix U133 Plus 2.0 and U95 GeneChips (Human)
and Mouse genome 430 2.0 arrays, and the BedArray
technology—Illumina Sentrix� Expression BeadChip
microarrays.

Microarray data analysis

Our methods of data normalization and analysis are based
on the use of internal standards that characterize some
aspects of system behavior such as technical variability.
In general, an internal standard is constructed by
identifying a large family of similarly behaving genes.
These internal standards are used to estimate in a robust
manner those parameters that describe some state of the
experimental system such as the identification of genes
expressed distinctly from background, differentially
expressed genes and genes having similar dynamical
behavior. This will be elaborated in detail in the Results
section.

Résumé of calculations steps

Upon providing in the Result section, detailed explana-
tions and arguments about the chosen path of calcula-
tions, procedures summarizing the calculation steps are
presented in six sequential step-by-step résumés.

Step-by-step Résumé 1: individual normalization of the
microarray data to background.

Step-by-step Résumé 2: determination of parameters and
adjustment of the normalized profiles.

Step-by-step Résumé 3: two-sample data adjustment.
Step-by-step Résumé 4: multi- sample data adjustment.
Step-by-step Résumé 5: reference group of equally

expressed genes.
Step-by-step Résumé 6: gene expression analysis.

RESULTS

Statistical monitoring of weak spots

Among the most controversial aspects of the treatment
of data that are related to low-intensity signals, is the
procedure that enables to distinguish between true
(specific) hybridization signals and technological noise.
In this context, we consider the genes either as ‘expressed’
or ‘non-expressed’ though this discrimination is not based
on biological but rather on technological difference.
Depending on the sensitivity of the used technology and
on technical quality of experiments, the same low-
expression level genes could be treated in high-quality
experiments as being expressed (distinctively from
nonspecific noise), while in ‘soiled’ experiments (with
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high level of non-specific hybridizations and/or
background noise) they would fall in the category of
non-expressed genes. The importance of discrimination
of these genes is related to their different information
content for subsequent analytical procedures.

Ratio of expressed to non-expressed genes is not a
meaningful term. Ratio analysis is commonly employed
to determine expression differences between two samples.
However, any procedure that uses raw intensities to
infer relative expression is imperfect due to the fact
that accuracy is signal-level-dependent, with variations
increasing dramatically for low intensity signals
(9,11,12). Besides, only those ratios that are based on
expressed genes are meaningful. The best demonstration
of this statement could be obtained with array consisting
of duplicated spots for each gene (13). Figure 1 presents
results of such an analysis with the use of data from
Clontech membrane array (analogous results were
obtained also with Perkin-Elmer Micromax cDNA
arrays of 2400 human genes spotted in duplicates—not
shown). The histogram for the distribution of all spots
on the array is presented in Figure 1A. Ratios of
duplicated spots that should be equal to 1 with some
systematic variations are depicted in Figure 1B.
However, this appeared to be the case only for genes
expressed above certain threshold level (in this particular
set, the threshold being 3). Below this threshold, the ratios
are highly variable, demonstrating the absence of any
agreement with the duplicate expressions. It follows that
the removal of the background level spots should precede
any microarray data analysis based on the use of
expression ratios.

Technologically non-expressed genes represent non-
correlated noise. The distribution of the ratios similar to
that presented in Figure 1B could also be obtained with
expression profiles of samples from a homogenous group,
where one expects equal expression of the vast majority of
genes. Drastically distorted ratios below a certain level
of expression suggest that low levels of gene expression
lack any correlation (Figure 1C). A sharp border that
discriminates correlated expressions from non-correlated
noise is obtained when ‘sliding window’ approach for
comparison of the ratio variations (Figure 2) is used. In
the presented comparison one set is sorted, while keeping
gene association with the second set. Thereafter, an F-test
is performed for the standard deviation (SD) of ratios of
genes in the ‘window’ (the 10th lowest one is sample one)
compared with the SD of ratios of all remaining genes
with highest expression. When the window moves like a
stencil along the data stream, one obtains comparative
characteristics of ratio variability depending upon
expression level. There is a sharp border for the P-value
(probability for identity of SD in F-test) in this
dependence as shown in Figure 2B. Above this threshold,
there are all possible levels of P-values from 0 to 1 (10
sequential genes could have very similar levels of
expression when the majority of genes in homogenous
group of samples are equally expressed), however there
are no exclusions for low-expression levels, i.e. all

P-values here are close to zero indicating absence of any
correlation in the noise level expressions. The border
obtained for background noise appears to be in good
agreement with the method for obtaining the zone of
normally distributed background noise through iterative
procedure described below.

Normally distributed additive noise is a convenient internal
standard for ‘non-expressed genes’. Several methods have
been developed to select ‘non-expressed genes’ and hence
to diminish the influence of background noise. One such
solution is to ignore genes that yield low total abundance
transcripts, another one is to exclude weak spots
arbitrarily [in the work of Kooperberg et al. (11)] an
intensity cutoff was chosen such that the relative error in
ratios was <25%) and still other one is to compare spot
expressions with local background level (see Dozmorov
et al., 2004 (13) for review). Those procedures for
flagging and excluding weak spots that are not based on
robust statistical criterion remain problematic since
potentially valuable data might be discarded. This issue
is compounded by the fact that in biological systems a
number of key regulators might be expressed at low
levels presumably to ensure a tight control of the
expression of regulatory entities (14,15).
The work of Churchill et al. (14) is the first example of

solving the problem efficiently with the use of an internal
standard. The two main sources of heterogeneity in gene
expression variations are indicated in Rocke and Durbin
(16) by including the ‘additive component’, prominent at
low-expression levels, and the ‘multiplicative component’,
prominent at high-expression levels. The intensity
measurement yi, j for gene I2 I= {i1, . . . ,in} in sample
j2 J= { j1, . . . , jm} is modeled by the equation
yi,j= ai,j+(mi,j e

h+ei, j), where ai, j is the normal
background, mij is the expression level in arbitrary units,
ei, j, is the additive error term within a spot, and h is the
second error term, which represents the multiplicative
component. Gene expression data obtained with the
standard procedure of local background subtraction will
not exclude spot intensities ei, j, which present additive
noise above background levels. The distribution of the
spots with ei, j, as predominant member of intensity
depends on the array technology used and on the quality
of data. Atlas arrays (Clontech) are a good example of
high-quality membrane-based arrays exemplifying high
specificity and low levels of background. Background
spots comprise up to 50% of all spots on the array. The
nearly normal distribution of this noise can be seen in a
histogram of all intensity values (Figure 3A and B).
Parameters of this distribution were estimated with the
use of the multi-step iterative procedure.
First—the expressed genes are excluded one by one as

their values exceed the mean� 2SD of the core of non-
discarded genes. This procedure is repeated in an iterative
manner until no additional spot is excluded and the
resulting non-discarded values represent the set of non-
expressed genes (Figure 3C).
Second—the parameters of the additive noise are

estimated by non-linear fitting of a normal distribution
function to the core of non-expressed values. The
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parameters of this distribution [average (Av), SD and the
number of members] completely characterize this internal
standard of ‘absence of expression’. After that data
normalization proceeds by assigning to each experimental
value, a normalized score S using the formula S’= (S –
Av)/SD. As a result, the internal standard of the ‘absence
of expression’ has a mean of zero and SD=1 and all gene
expressions on array are presented in the SD units of this
internal standard.

The iterative procedure described above for discarding
the gene expression that alters the normality of the
background noise is efficient only with array technology
that yields a major gap between the value range of this
noise distribution and the set of values of the expressed
genes. This was the case with the data obtained with high-
quality Clontech membrane array using very sensitive
radioactive probes and ensuring that for the probe
synthesis only gene-specific primers are used. With these
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Figure 1. Ratio of the duplicated spots in the area of background noise is meaningless. (A) Localization of the normally distributed background
noise in the histogram of all microarray gene expressions using iterative exclusion procedure (see Figure 2 and explanations in text). (B) Ratio of the
expression levels of the duplicated spots demonstrates increased variability in the area of low-intensity expressions. Fragment of array with duplicated
spotting is shown in the right-upper corner. (C) Lack of correlation between the intensities of duplicated spots of low intensities. The axes present
intensities of the duplicated spots.

6326 Nucleic Acids Research, 2009, Vol. 37, No. 19



measures, the distance between normally distributed
additive noise and majority of low-expressed genes in
the histogram is promoted (Figure 3A).

This is not always the case when oligo or random
primers are employed. Even in high-quality fluorescently
labeled oligonucleotide microarrays (Affimetrix), the
distribution of low-intensity noise spots might turn out
to be unsatisfactory. The right side of the distribution is
often skewed by the abundance of low-expressed genes.
This skewness of the distribution can be present even in
the histogram obtained upon application of the iterative
procedure as shown in Figure 2A. For this case, only the
left side of the histogram is used for the estimation of the
parameters of the noise distribution. A new histogram is

created substituting the right portion of the background
distribution with the mirror image of the left portion.
Curve fitting is then applied to the new histogram in
order to obtain parameters of the noise distribution
for subsequent normalization of the array data. This
approach to the characterization of the noise distribution
seems to be more adequate than attempts to approximate
the distorted distribution with artificial combination of
overlapping distributions (17,18).
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Figure 3. Procedure of normalization of the gene expression profile.
(A) The histogram of overall gene expressions fits poorly to a normal
distribution, with noticeably extended left and right tails. Values at the
left tail results from the background correction procedure, while values
at the right tail correspond to genes expressed above background.
(B) Normal probability plot demonstrates deviations from normality
in the tails of the A-distribution. (C) The results of iterative removal
of residual background spots demonstrate a good fit to normal
distribution. This histogram is used for the estimation of the parameter
of normal distribution through the non-linear least-squares curve fitting
procedure. Once the parameters of the normally distributed back-
ground noise are determined, all expression data are transformed,
yielding mean=0, SD=1 for background distribution. All gene
expressions are presented now in the SD units of the background
distribution.

Figure 2. Selection of the normally distributed background noise in the
presence of low expressed genes. (A) Histogram of the low-spot
distribution after iterative cutting off the expressed genes (see details
in text). The presence of low-expressed genes causes in some instances
skewing the right side of the background distribution even in high-
quality microarrays. For this case, only the left-portion residual after
trimming is not distorted by the presence of expressed genes. For
estimation of the parameters of the noise distribution, a new histogram
is created by substituting the right portion of the background
distribution with the mirror image of the left portion. The parameters
of the noise distribution are estimated by non-linear fitting of a normal
distribution function to this histogram. (B) The sliding window method
for estimation of the changes in correlation between gene expressions
depending on the level of expression. The F-test is performed for SD of
ratios of genes in the ‘window’ (for 10 genes with lowest expression in
sample one) compared with SD of ratios of all remaining genes with
highest expression. The appearance of the sharp decrease of the
P-values (probability for identity of SD in F-test) evidences about the
existance of the area of low expression whose variations exceeded
significantly the variations of the majority of the rest gene expressions.
The position of the sharp decrease of the P-values shows the border for
the non-correlated background noise.
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Microarray profiles with relatively low content of non-
expressed genes generate another type of problem for
localization of the background distribution. The
background level spots represent only a relatively small
portion of all spots (<30%) in these arrays, thus their
distribution is not as prominent as in the previous
examples when viewed in a histogram of all spots. The
automated iterative procedure for selection of background
described above will not locate the background
distribution. Therefore, it is necessary to perform a
special preliminary step intended to increase the area of
the background distribution and focus the iteration
procedure onto this area—initial selection of the lowest
30th percentile of data. Then, the new sub-set is
trimmed and subsequently curve fitted (see above).

Statistical significance of gene expression—signal/noise
discrimination. As we demonstrated earlier (13) the
additive noise distribution is quite homogenous over the
whole chip after the background correction procedure that
makes it possible to use weak spots from the entire chip
for estimation parameters of its distribution and use them
as a united internal standard for non-expressed genes.
Discrimination of ‘expressed’ from ‘non-expressed genes’
is based upon the use of recognized statistical criteria
instead of subjective cutoff rules. The power of this
statistical criterion is determined by the content of
the internal standard—normally several thousand
members—and this enables to use relatively high-
statistical thresholds without loss of the sensitivity of the
selection.
In a replicated experiment, genes that are expressed

distinctively above the background noise are readily
identified by paired analysis. As it is demonstrated
below, data from a replicated experiment upon proper
normalization can be used for statistical discrimination
of even very weakly expressed genes from the normally
distributed noise. Genes with low-level signals—even
within background area—could also be identified
distinctively from the background due to their higher
stability (low SD in replicate measurements).
Step-by-step Résumé 1: individual normalization of the

microarray data to background.
The mean and SD are calculated. Using these as a

starting point, data beyond +2SD above the mean are
cut and discarded. The mean and SD are recalculated
and data beyond �2SD below the mean are cut and
discarded. This trimming of outlier values above and
below is continued, further refining the SD estimate,
until no additional cuts can be made.
The rest of data are used for creation of the 10 bar

histogram of expression distribution.
Interactive curve fitting for the trimmed data is

performed. Using final trimmed data mean and SD are
estimated. Theoretical normal distribution is established
with estimated mean and SD. Using the theoretical
estimate, a non-linear least square curve fitting procedure
is performed in order to improve the SD estimate. The
quality of fitting is determined visually. If there is some
visual distortion of the right tail (proposed presence of
weak gene expression) the procedure is repeated using a

new user-defined mean (Histogram bars 1–5) and
estimating the new distribution on the bars to the left of
the chosen one.

In case of low-quality arrays with the abundance of
weak expressions distributed too close to background
noise the initial choice of the lowest 30th percentile of
data is selected to eliminate highly expressed values.
Then, the new sub-set is trimmed and subsequently
curve is fitted as described above.

Once an appropriate fit is achieved and parameters
of the normally distributed background noise is deter-
mined as m and s then all the data is Z-transformed
Z ¼ ððx� �Þ=�Þ yielding Mean=0, SD=1 for
background distribution. All gene expressions are pre-
sented now in the SD units of the background
distribution.

Finally, the data are log-transformed in such a manner
that the negative values are substituted with the log of the
minimum positive value.

The follow-up is given in the Step-by-step Résumé 2.

Data adjustment

Individual normalization of data from each chip to their
background is not sufficient for making their profiles
comparable, because first—backgrounds are often
different in different experiments, and second—there
might be several additional reasons for systemic differences
in the expression profiles that can be compensated only by
two-parametric regression procedure. This procedure is
described in details in the next section and the important
feature of it is that this procedure is based on the
comparison of potentially equivalent gene expression
correlated in compared profiles. The background non-
correlated noise could be a serious obstacle for such
procedure as it is shown in Figure 1. Knowledge of the
background distribution parameters enables to remove
the non-correlated noise from correlation adjustments.
The threshold 3SD above the mean of background
excluded the noise with excess before the final adjustment
is made.

The observed variations of the intensity of spots result
from biological changes in gene expressions and also due
to stochastic and systemic variations that occur in every
microarray experiment. In order to accurately and
precisely measure gene expression changes, it is important
to minimize systemic variations and to estimate the
contribution of stochastic variations. Systemic variations
appear due to differences in experimental conditions and
come from many sources such as procedures of sample
handling, methods of cell cultures, methods for mRNA
isolation, extraction and amplification, hybridization
conditions and labeling efficiencies, as well as due to
contamination by genomic DNA [major sources of
fluctuations in microarray experiments were listed and
discussed in several publications (19)]. The purpose of
normalization is to minimize systematic variations in the
measured gene expression levels of replicative experiment.
Once this is achieved, estimation of the parameters of the
stochastic variations the biological differences can be more
readily accomplished.
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In several excellent reviews, there were proposed
different methods of normalization that relieve us from
the necessity to discuss them in details (1–3,20). We will
note only that the two independent sources of systemic
variability in microarray data (additive and multiplicative)
need normalization procedures.

Two sample data adjustment

The regression analysis of duplicates from the same array
(Figure 1C) presents an excellent example of data having
only stochastic variations. Neither multiplicative
variations due to differences in hybridization or due to
labeling conditions nor additive variations due to non-
compensated background noise occur. Both these
sources of systemic variations are equal for duplicated
spots at the same chip. After exclusion of the area of

common non-correlated noise and log-transformation of
the data, gene pairs are presented in the scatter plot as
dots close to the straight line intercepting the origin with
slope 1. The log-transformation is the simplest one making
individual gene spots deviating from regression line
independently on the level of gene expression and which
is normally distributed. The normality can be proven
graphically (normal probability plot) or analytically—
applying Kolmogorov–Smirnov criteria.
A scatter plot of data from two independent arrays will

demonstrate additional systemic variations: ‘additive’—
due to differences in background (leading to the deviation
of the regression line from the coordinate origin; position
of the initial regression line is shown as blue straight line in
Figure 4C) and ‘multiplicative’—due to the overall
difference in the spot densities (leading to the change of
the slope of regression line)—Figure 4C. Transformation
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Figure 4. Two-sample data adjustment. (A) Histograms for the spots in two arrays. (B) Histograms for normalized to background and log-
transformed data. Normal distribution curves fitted to the truncated histograms (as in Figure 3) are shown in green. (C) Profiles of control pool
(y-axis) and patient pool (x-axis) adjusted to each other through linear regression with excluded background noise (black spots) and potential
outliers. Blue line, position of the regression line before adjustment; green line, position after adjustment. (D) Data of the plot presented in the
transformed coordinates. Right side shows the nearly normal distribution of the deviations from equity of expression. The use of the majority of
equally expressed genes as an internal standard presents opportunity to select differentially expressed genes as outliers from this standard beyond of
some statistical thresholds. These genes are shown as open circles.
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of one of these datasets will minimize this differences and
make the scatter plot similar to the one obtained for
duplicated spots where additional multiplicative and
additive differences are absent (compare Figures 1C
and 4C).
An array of gene expression profiles may be con-

ceptualized as a vector of outcomes in the scatter plot of
data. Let Yk= (Y1k,Y1k, . . . ,YJk) denote the array, where
Yjk denotes the expression of the j-th gene in the k-th
sample (j=1, 2, . . . , J; k=1, 2, . . . ,K).

Yjk ¼ @k þ �k aj þ bjxk
� �

þ "jk,

in which (aj, bj) are gene-specific additive andmultiplicative
factors, ð@k,�kÞ are the sample-specific regression
coefficients, and "jk, is used to depict variations due to all
unknown sources. Estimated regression factors are used
for overall adjustment of the expression levels in one
sample to another as ðYjk � @̂kÞ=�̂: After these adjustment
relations of the expressions in two samples presented as
Yjk=aj+bjxk are obtained where aj presents the
difference in local background and bj—multiplicative
factor. For data acquisition with local background
subtraction the aj are minimized or even disappear and a
log-transformation produces expressions differing by the
additive close to normal distribution noise log(bj) that is
an unified measure variation in gene expression essentially
unrelated to the influence of level of expression.
The described adjustment leads to maximal similarity of

expression of all genes in two arrays. This procedure,
however, will be incorrect in the presence of differentially
expressed genes, because it will aspire to make them
equally expressed also. It means that the presence of
differentially expressed genes can seriously impede the
adjustment procedure. Generally, their influence could
be minimal if they are distributed more or less
symmetrically around regression line. However, the
presence of not compensated outliers might influence the
bias adjustment drastically, especially when such
unbalanced outliers are present in the area of very high
expressions—usually area less populated with spots. These
outliers violate the assumption of normally distributed
residuals in least squares regression. They tend to pull
the least squares fit too much in their direction by
getting considerably more ‘weight’ than they deserve.
Various methods were proposed to diminish the

distorting influence of differentially expressed genes.
They were based mainly on arbitrary estimations of
permissible distances from equity line. The procedure of
revealing and down weighting could be produced on the
strong statistical basis using another internal standard—
family of equally expressed genes. Fortunately, in any
normal experiment, the majority of genes are equally
expressed, and their variations around regression line
have prominent distribution that can be elicited by the
iteration procedure described earlier for background
data analysis. Such stochastic distribution of the
deviations of gene positions looks very similar to the
distribution obtained for duplicated spots in Figure 1C.
A histogram of these deviations (Figure 4D) includes the
normal distribution with tails distorted by the presence of

differentially expressed genes that could be selected and
excluded once the parameters of the normal distribution
are determined.

The stochastic distribution of the random variations is
typically unknown. In our practice of making hundreds of
analyses using different technological platforms, we were
never confronted with a violation of the normality
assumption, nevertheless, if hypothetically the assum-
ptions of normality are violated, some non-parametric
criteria will be more reliable for making statistical
inferences—as. For example, Thomas et al. (21)
proposed to use Z-scores that is closely connected with
Wilcoxon rank sum statistics (22). Z-scores do not
require any distributional assumptions or homogeneity
of deviations. In practice, Z-scores are expected to be
similar to t-test statistics, when the distribution of
expression levels can be approximated by the normal
distribution. When these assumptions are violated,
Z-scores will differ from t-statistics and will be more
reliable for making statistical inferences.

Step-by-step Résumé 2: determination of parameters
and adjustment of the normalized profiles.

The first step is the determination of the parameters of
the background of the array—Av and SD of normally
distributed low-level expressions in array with subsequent
normalization of all expressions in array. A normalized
score, ‘S’, is obtained [S= (PV – Av)/SD], where PV is
the original pixel value for the spot, and Av and SD are
the mean and SD of the set of background spots. The
distribution of S has mean of zero and SD=1 over the
set of background genes in the normalized array. We
accept S=3SD above the mean background level as the
preliminary criterion for distinguishing expressed from
non-expressed genes. Only genes expressed above
background are used for the second step ‘adjustment’ as
described below.

The second step is the adjustment of the normalized
profiles to each other by robust regression analysis of
genes expressed above the background. This procedure
is based on the selection of equally expressed genes as a
homogenous family of genes with normally distributed
residuals defined as deviations from regression line.
The parameters of this distribution are obtained by
iterative procedures similar to the one used before for
the selection of the kernel part of normally distributed
background noise. Outliers are thereafter determined as
having deviations not associated with this internal
standard of equity in expression including thousands of
members (Figure 4D).

The follow-up is given in the Step-by-step Résumé 3.

Nonlinear regression. Linear regression analysis will be
valid only if (i) the hybridization signal is linearly
related to target concentration and (ii) the majority of
the genes expressed in both samples are expressed
equally. Bias adjustment transforms the dependence
between two samples into a simple multiplicative model
(see above). Sometimes, however such a model is
inadequate. Such cases can be identified on the scatter
plot when a straight line fits the data poorly and instead
a curved shape results. The use of straight line for
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normalization can lead to a high rate of false positive
results. A variety of approaches to normalize such gene
expression data have been proposed, including a cubic
spline transformation (23,24), and locally weighted linear
regression [Lowess; see for review Do et al. (2006) (2),
Bolstad et al. (2003) (20) and Wu (2001) (25)].

Remarkably, the assumption that non-linear transfor-
mation is always beneficial for tests for differentially
expressed genes has never been properly tested. Making
the choice in favor of the non-linear normalization
procedures, it is necessary to keep in mind that serious
problems might occur in cases where the non-linearity is
the result of non-homogenous distribution of differentially
expressed genes of opposite directions. From this pers-
pective, the non-linear transformation can be beneficial
for the adjustment of profiles of samples from a
homogenous group. However in a comparative analysis,
this method bears a definite danger of losing sensitivity of
discrimination of the differences in gene expression.

The examination of examples of non-linear distribution
of gene expression in the regression plot indicates that in
most cases essential non-linearity is present in the area of
low-gene expressions. The exclusion of the background
area and of the closely associated low-expressed genes
is able to diminish considerably the influence of such
non-linearity.

The residual essential non-linearity is an evidence of
the low quality of the technological procedure and the
best way to correct it is to avoid it in the first place.
Examination of the quality of the data from high-
throughput platforms ‘prior to interpretative analysis’ is
a critical step that will help researchers to avoid
contaminating their otherwise well-conducted study with
samples harmful to overall analysis and interpretation.

Step-by-step Résumé 3: two-sample data adjustment.

. Regression analysis of two-sample data gives residuals
(deviations from regression line) for each gene
expressed >3 (=0.477 after log-transformation) in
both samples.

. The mean and SD of all residuals are calculated. Using
these values as a starting point for data trimming as
described above, the parameters of the normal
distribution of the majority of residuals are obtained.

. The probability of belonging to the normal distribu-
tion of the majority of residuals (for equally expressed
genes) is estimated for each gene (each residual).

. Genes having probability less than 1/N (N—number of
all genes expressed >3 in both samples) are excluded
and the regression analysis for the rest of them is used
for estimation and exclusion of additive and
multiplicative factors.

. The result of adjustment can be presented in trans-
formed coordinates with indicated borders� (1/N) for
differentially expressed genes (Figure 4D).

The follow-up is given in the Step-by-step Résumé 4.

Multiple-sample data adjustment

Many of the issues that we discussed in the two-sample
case, such as bias correction, remain important for

replicate experiments, although we will not discuss them
further. Often the two-sample methods can be generalized
to handle replicate experiments. For example, we can
extend the methods for bias correction by normalizing
across a series of N samples, rather than one sample
against another. In this case, the solution involves fitting
a normalization curve in an N-dimensional space.
However, in practice, we successfully use different iterative
procedures of normalization to common averaged profile
as detailed in Figure 5. In this multi-step procedure, we
use averaged profile for bias adjustment of each individual
profile with subsequent recalculation of the averaged
profile and repetitive adjustment.
Step-by-step Résumé 4: Multi-sample data adjustment.

. Averaged profile is calculated and each sample is
adjusted to the averaged profile using robust
regression procedure described earlier for two-sample
adjustment.

. New averaged profile is calculated from transformed
profiles of the samples and the adjustment procedure is
repeated.

. Several subsequent adjustment may be necessary
for the best result, however for the data initially
normalized to background two steps of adjustment
are usually enough.

. The result of the adjustment can be presented in
transformed coordinates in form of Mean+SD of
multiplicated residuals for each gene (Figure 6A).

The follow-up is given in the Step-by-step Résumé 5.

Reference group—an internal standard for replicate
experiment

One of the problems in performing a reliable t-test from
microarray data is to obtain accurate estimates of the SDs
of individual gene measurements based on only a few
measurements. It has been, however, observed that an
overall reciprocal relationship exists between variance
and gene expression levels, and that genes expressed at
similar levels exhibit similar variance (26). Beside that,
there were obtained transformations depriving variance
dependence on the gene expression levels (27). Log-
transformation is one of the simplest examples of such
transformation. Therefore, it is possible to use this prior
knowledge to obtain more robust estimates of variance for
any gene by examining the expression levels of other genes
within a single experiment.
After normalization, the residuals from the calibration

data are used to provide prior information on variance
components in the analysis of comparative experiments.
After adjustment of the each array profile to the averaged
profile for the control group, we obtain two new standards
joined by the common name ‘reference group’.
First, all genes are represented here by their residuals

(relatively averaged profile) that after normalization and
log-transformation loose their sample dependent and
expression level dependent individualities (Figure 6A and
C). As soon as absolute majority of genes in homogenous
group are equally expressed, their residuals demonstrate
very similar to normal distribution (Figure 6E).
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Second, the residuals of these genes in the replicated
experiment could be presented as mean� SD. For the
majority of genes, their replicate variations are relatively
small and homogenous following to the standard
F-distribution. The small portion of genes having
enormously high (statistically distinctive from the rest)
variation present so called hypervariable genes (HV-
genes), whose nature was discussed elsewhere (28,29). To
get the internal standard for gene variability, HV-genes
should be excluded by iterative procedure similar to
described above (for normally distributed background
events and for normally distributed residuals of equally
expressed genes). The only difference is that in this
procedure, the F-test is used as a criterion for the exclusion
of outliers. To perform the F-test, we compare two
estimates of variance, one from the variability of
expression levels of the entire group, and the other from
the variability of the expression level of every given gene.
If the gene variability estimate is much higher than the
total-group estimate, we have evidence that the given
gene does not share the same stability as a majority of
genes and should be excluded from the reference group.

The procedure continues until no more genes could be
excluded in this manner. The result of all these exclusions
is a new internal standard—the reference group, composed
of genes expressed above background in control samples
with normal low variability of expression (as determined
by an F-test) and whose residuals approximate a normal
distribution.

Very similar standards for equity of expression and
stable variability were introduced earlier by Rocke and
Durbin (16). However, none of them were cleaned from
HV-gene contamination, with the consequence that the
standards were biased, thus decreasing significantly the
sensitivity of the criteria.

Step-by-step Résumé 5: reference group of equally
expressed genes.

In course of normalization with bias adjustment

(i) residuals as differences between final normalized
expression and the average before last adjustment
are calculated;

(ii) SD of all residuals taken together are calculated;
(iii) SD for all genes individually are calculated;
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(iv) F-test is performed on every gene to determine if
the variability is higher than that of all genes;

(v) all genes whose SD is higher than in step (ii) and/or
fail F-test are excluded;

(vi) SD for all remaining genes are recalculated;
(vii) steps (iv)–(vi) are repeated until no further genes

can be excluded

The follow-up is given in the Step-by-step Résumé 6.

Associative analysis—identification of differentially
expressed genes

The use of the reference group created in the previous
section, as an internal standard enables to carry out
differential gene expression analysis, and what is of
utmost importance, it solves the problem of mutually
exclusive characteristics of sensitivity and specificity. For
this purpose, we use an associative t-test (30) developed as
a modification of the ‘General Error Model’ (16) in which

the replicated residuals for each gene of the experimental
group are compared with the entire set of residuals from
the reference group. The null hypothesis is checked to
determine if gene expression in the experimental group is
associated with the reference group. The significance
threshold is corrected to make the appearance of false
positive determinations improbable.
Selecting differentially expressed genes relies on five

statistical steps.

. Assume Group 1 has n samples and k genes and
Group 2 has m samples and k genes. A Student’s
t-test is performed, with (n+m� 2) degrees of
freedom, in order to determine if the genes are
equally expressed.

. Then an associative t-test is performed, with
(m+k� 2) degrees of freedom to see if the gene
belongs to the group of equally expressed genes
with stabile variability. Selections passing through
both tests have high sensitivity (Student’s t-test
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Figure 6. Reference group—the main internal standard for Associative Analysis of differentially expressed genes. The reference group (B) is created
from initial distribution of the residuals (A) after trimming of hyper-variably expressed genes (HVE genes) with use F-test. (C and D) Reference
group as an internal standard for equity in expression [normally distributed deviations in the left part (E)] and for stability of expression
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with normal low threshold P< 0.05) and high
specificity (subsequent associative t-test with corrected
threshold P< 1/k excludes all false positive deter-
minations).

. Another two Student’s t-tests are used to establish the
distinction from technical noise—discrimination of
‘expressed’ from ‘non-expressed’ genes.

. Finally, the ratio of gene expressions in Groups 2 and
1 is used to help exclude statistically significant but not
biologically significant changes.

Clearly, simple discriminations based on ‘fold changes’
or ratios are insufficient for drawing proper conclusions.
But, we use foldness restrictions as an addition to the
statistical analysis of differentially expressed genes to
concentrate attention on the most prominent differences
first of all.
The t-test assumes that the replicate data have an

underlying normal distribution. This assumption is
reasonable, especially if the replicate samples are relatively
homogeneous. Note that the assumption of normality is
different in these two subsequent steps of the analysis. In
the first step—paired comparison—in most cases, we have
relatively few replicate samples and it is difficult to test for
normality having only a few data points. Therefore, we
often adopt the assumption of normality because it is hard
to prove otherwise. In the second step—associative
analysis—we use the reference group as an internal
standard and proved that after log-transformation and
exclusion of outliers with iterative procedure the rest of
residuals has a distribution whose normality is confirmed
by statistical and graphical criterions.
The two step procedure allows the use of traditional

low-level significance cutoffs (P< 0.05) at the first step
without the risk of including false positive selections.
These false positives are excluded in subsequent second
step—associative analysis having extreme statistical
power enabling to use the significance cutoff corrected to
the number of comparisons without risk to loose
sensitivity. The use of the reference group enables to
receive all benefits of the thousands replicates of technical
variations—deviations from equity—to increase statistical
power of the comparative analysis. This analysis is based
on an idea, which is opposite to the commonly held view
that large-scale array experiments suffer from
compensatory tradeoffs in sensitivity and specificity. In
fact, the procedures presented herein demonstrate that
large scale datasets are extraordinary information-rich
and provide means for discrimination of common
technical variation from individual biological variability.
More evidence of this is presented in a power analysis
(Figure 7).
Step-by-step Résumé 6: in this step, gene expression

analysis is described.

. Selection with a Student’s t-test for replicates using the
commonly accepted significance threshold of P< 0.05.
It keeps the commonly accepted sensitivity level,
however a significant proportion of genes identified
at this threshold level as differentially expressed will
be false positive determinations.

. An associative t-test in which the replicated residuals
for each gene of the experimental group are compared
with the entire set of residuals from the reference
group defined above. Ho hypothesis is checked if
gene expression in experimental group presented as
replicated residuals (deviations from averaged control
group profile) is associated with highly representative
(several hundreds members) normally distributed set of
residuals of gene expressions in the reference group.
The significance threshold is corrected to make the
appearance of false positive determinations impro-
bable. Only genes that passed through both tests
were presented in the result tables.

. Genes expressed distinctively from background were
determined by analysis of the association of each
replicated gene expression with normally distributed
background having Av=0 and SD=1. Genes
expressed distinctively from background in one group
and not distinctive from background in another group
are given as further example of differentially expressed
genes.

Data filtration and error exclusion procedures

Selection of ‘bad’ samples. The local errors in the data
acquisitions will be able to produce significant increase

Figure 7. Power analysis. Estimation of the number of microarray
experiments required to obtain reliable results from a comparison of
data from patients and controls. The sample size was estimated using
PASS 2005 (Keysville, Utah). Our experience with different array
technologies (including ‘Illumina’, which is used here) indicates that a
coefficient of variation between 0.25 and 0.5 is typical among expressed
genes. The left portion of graph demonstrates the dependence of the
power of analysis on the number of replicates for a paired T-test with a
statistical threshold of �=0.05. On the right portion of the graph,
power analysis results from an associative analysis are estimated. An
associative analysis with threshold of �=0.0001 has power comparable
with a paired T-test using a threshold of �=0.05. Results of this
analysis will be used for estimating the number of replicate experiments
required for selection of differentially expressed genes. For example 2-
to 3-fold difference can be observed with power 1� �=0.8 with a
6-replicate experiment.
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of the SD for given gene in replicated experiment. It
is possible to use the F-test for selection of such errors,
however the problem of the sensitivity/specificity alterna-
tive will prevent from accurate estimation of outliers.
At the same time, the summary estimation of such
outliers in every given sample will enable to characterize
overall quality of the array data in every chip. We propose
a simple program for the chip quality estimation. In a
homogenous group of samples for each gene in the
array, we estimate the changes in its variability by
comparing the SD of the total set of expressions with
the SD obtained after exclusion of one replicate after
another. If the F-test results in probability for no
difference being <0.05 then this gene expression in the
given sample is considered as an outlier. Finally, the
resulting outliers estimated for every sample are consi-
dered as of bad quality and are excluded from analysis.
The use of non-corrected low threshold P< 0.05 produces
massive presence of false positive selections. The sum of
these false selections should be comparable for all good
quality samples presenting internal standard of good
quality sample that can be used for statistical selection
of bad samples with significantly elevated number of
outliers. The program EFILTER produces the histogram
of the numbers of outliers in samples for the visual
inspection of the group quality.

Ranking of selections. Another method of data filtration
is based on the comparison of the results of many
differential expression analyses produced with sequential
exclusion of samples one by one to determine the
dependence of the conclusion about any selection on
the exact group’s content. This method determines the
robustness of the differential gene expression selections
and deliberates them from the influence of singular
experimental errors.

The analysis uses standard Associative Analysis
algorithms (30). The ‘leave-one-out’ approach excludes
one sample from the group—one by one until all
possible singular exclusions are produced—with
estimation of the frequency of positive selection for
every gene. This approach produces accurate ranking
estimation of the robustness for most selections.
However, it is not safe from the effect of singular errors
of measurements, because the presence of one such outlier
within any of the replicate is able to mask its difference of
expression and diminishes the rank of otherwise ideal
selection. The next modification of the procedure makes
it defended from this effect of singular errors. Note that
the exclusion of the ‘bad’ replicate and re-estimation of the
robustness of the given selection will produce results
devoid of the outlier influence. The new algorithm can
be named as ‘leave-two-out’, because includes preliminary
step—exclusion of one sample—with subsequent
application ‘leave-one-out’ procedure for the rest of the
samples in consideration. For an experiment having
total number of samples equal n (sum of samples in
both compared groups), this algorithm will produce a
set of n ranks for each excluded sample and highest of
them will be the one most independent on the worse
replicate. Compared with previous EFILTER procedure,

the TWOEX algorithm provides the opportunity to
benefit even from a relatively bad sample, incorporating
only expressions and excluding erroneous measurements.
Based on the use of standard program for associative
analysis, this algorithm enables to produce ranking
estimation with selected restriction on the minimal
expression and foldness being an adequate addition to
the standard associative analysis.

Estimation of the quality of differential expression
analyses

For the estimation of quality, we use ‘artificial’ data with
controlled differences in gene expressions. The presumably
homogenous group of samples was divided into two sub-
groups. One of them was used as a control, whereas in
another sub-group (experimental) artificial changes in
gene expressions were introduced. Towards this aim,
all data were sorted according to the averaged gene
expression in experimental group. The entire data set
was split into 1000 gene blocks, and thereafter controlled
balanced (�) changes were introduced into 20% of data of
experimental group. Within each block (1000 genes) 100
genes received positive changes—multiplied by ‘foldness’,
and 100 genes received negative changes—divided by
‘foldness’). One such block is presented in Figure 8.
After applying the analysis procedure, the resulting
number of selections is compared with true selections for
determination of the ‘Sensitivity’ and ‘Specificity’ of the
given analysis as it is shown in Figure 8.
The presented system enables to compare different

methods of data normalization, and it enables also to
estimate the role of restrictions made in course of
differential gene expression analysis. The following
designations were used in this analysis.

. Fd—‘foldness’ of controlled changes in the data;

. Fa—minimal ‘foldness’ of Associative Analysis;

. Em—minimal expression for genes selected as being
expressed distinctly from background in Associative
Analysis.

Results using data obtained with mRNA collected from
peripheral blood mononuclear cells from healthy donors
with the use of ‘Illumina microarray’ technology are
presented in Figure 9. Quality of analysis is estimated
here by the two parameters: sensitivity is determined as
a proportion of true positive selections within all
introduced changes, and specificity determined as
1—portion of false positive selections among all not
changed expressions (31).
Figure 9A demonstrates the dependence of sensitivity

and specificity in terms of the relationship between Fa
and Fd. When Fa<Fd, the Associative Analysis of
normalized data selects more that 80% of changes.
Sensitivity drops down sharp when the Fa becomes
comparable or even higher than the ‘foldness’ of
introduced changes Fd.
The number of replicates is the most essential parameter

form the output quality. Figure 9B shows a sharp decrease
of the sensitivity of analysis for the number of replicates
<4. Five to six replicates could be recommended as
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minimal size of the groups, whereas the usually used four
replicated experiments might loose up to 20% of true
differences. These numbers could vary in different
microarray technologies and with the use samples from
different sources. This result could be used as an
alternative of the standard methods for the estimation of
the power of analysis and the number of replicates
necessary to achieve desired quality of analysis. The
advantage of this approach is in the use of real data
with practically not distorted infrastructure (variations
and their distributions over expression levels) for
estimation of the quality of the future analysis.
The method presented here enables the comparison of

the quality of different types of analysis and influence of
different normalization methods. In Figure 9C, we
compared results of associative analysis with use different
methods of normalization. It appeared that the use of
our two-step normalization procedure and two popular
methods Quantile (Q) and Lowess (L) (32) produced
very comparable results except the area of highly
expressed genes (first, thousand genes with highest
expression) where quality of analysis based on the use
Q- and L-normalizations significantly worse compared

with two-step normalization presented here as it is
shown in Figure 9C. Quite obvious that the same
difference in quality was presented in comparison of our
Associative Analysis based on the use two-step
normalization and SAM analysis that used Quantile and
Loess normalizations (32; Figure 9D).

To estimate the stability of the obtained estimations,
we modified the quality analysis by using several
variants of arbitrary splitting of the total dataset to two
equal sub-groups (column permutation with subsequent
splitting). The averaged result of five permutations
presented in Figures 9A and B demonstrates relative
stability of these estimations.

DISCUSSION

Current statistical methods do not adequately address
mutually exclusive characteristics of sensitivity and
specificity in microarray experiments monitoring the
expression levels of thousands genes simultaneously. The
common practice to use low-significance thresholds
(P< 0.05) will result in a large number of false positive
selections. Attempts to increase stringency by raising the
threshold of significance above this value will cause a
compensatory decrease in sensitivity and a resultant
increase in false negative selections.

In measurements of gene expressions, the biological
component is accompanied with variations of non-
biological origin coming from a number of different
sources. Normalization reduces systemic variations,
while not affecting random variations. Common practice
is to obtain information about random variation from
replicated measurements. The number of replicates is
critical for the accuracy of estimation of random variation
and biological component as well. The use of large
numbers of replicates is able to improve the situation in
microarray experiments as well (33,34), although it can be
rather expensive and labor intensive. Fortunately, there is
a real resource to increase the power of statistical tests by
using the enormous mass of information coming from
each microarray experiments. We introduce here an
approach based on the use of internal standards—large
families of genes sharing some important features, while
not being dependent on any particular gene sequence, level
of expression, or coordinate position on the chip. Here
were discussed standards for equity in gene expression,
stability, standard for expressions below the sensitivity
of the system (standard for ‘non-expressed’ genes).
Deprived with dependence on the level of expression
elements such standards bear information about
experimental variation replicated thousands times by the
count of the elements in the standard. This is an
alternative to replications for increasing the power of
statistical criterions. The increase of the power from
such huge ‘replication’ should be tremendous.

The two main problems should be resolved before using
this approach. Is the distribution of the elements of the
internal standard normal and how to determine
parameters of this distribution? Usually, each internal
standard is contaminated with outliers. For example,
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Figure 8. Test system for determination of the sensitivity and
specificity of the differential gene expression analyses. The presumingly
homogeneous group of samples was divided to two equal sub-groups
one of which not changed used as a control and another one used as a
experimental group with introduced changes. Here is shown a fragment
of these experimental dataset with introduced positive (red) and
negative (blue) changes in the 20% portion of gene expression—left
part. Right part presents differences selected by the differential gene
expression analysis (left of the vertical axis) with indication on the
right side from the axis which of this selection is true (co-incidenting
with the artificially made selections) and which are false. The sensitivity
of selections is determined here as a proportion of true positive
selections within all produced changes, whereas a specificity determined
as a proportion of true negative selections. The fragments with artificial
changes presented here are evenly distributed along all experimental
group.
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majority of genes are equally expressed in any homo-
genous group and have a relatively small variability,
however there are always some genes that does not share
these features. Reduction of the influence of outliers is a
critical step in the analyses based on the use of internal
standards. Fortunately, this contamination with outliers is
always relatively small and can be selected and removed
with simple procedures.

The problem of normality is solved for this standard in
several different ways. The selection of the normally
distributed additive noise (background) is solved by
using only the left portion of the non-distorted part of
distribution for fitting to normal distribution. Standard
of equity of expression and standard of the stability
(reference group) appeared to have normal distribution
after exclusion of outliers in the simple iterative
procedure. It means that the rest of the distribution
obtained after sequential truncation steps was always
satisfactory fitted to the normal distribution. Even if
there is some contamination with not normally distributed
members, it is not essential and does not interfere with the
normality of the rest.

Procedures similar to associative analysis have been
previously proposed by Newton et al. (35); Rocke and

Durbin (16); Tseng et al. (36). However, there are
critical differences between these methods and ours. For
example, in Rocke and Durbin (16), all genes were used as
a reference group without exclusion of HV-genes. The
presence of HV-genes increases the SD of the residuals
in the reference group, thus reducing the power of the
associative analysis.
There were versatile assumptions about the distribution

of the background level signals and additive error term in
the literature. Rocke and Durbin (16) were the first to
suggest the use of iterative procedure for estimation
of background parameters similar to the procedure
presented here. Our approach goes one step further and
demonstrates that the apparent deviation of the additive
noise distribution from normality is produced by the
presence of the weak signals overlapping with the noise.
These results enable the skewed distribution presented in
Figure 2 to be treated as a normally distributed additive
noise distorted on its right side by the presence of low gene
expressions.
The estimation of the performance of microarray

data analysis demonstrated an advantage of the
proposed here normalization and analysis methods over
the popular normalization (Quantile, Loess) and analysis
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Figure 9. Sensitivity/specificity (Sn/Sp) characteristics of the normalization and analyses procedures. (A) Dependence of the analysis quality of the
foldness of changes in gene expression: along ordinates Fd-foldness of controlled changes of data/Fa-minimal foldness accepted for results of
differential gene expression analysis/Em=20-minimal expression above background. (B) Dependence of the analysis quality of the number of
replicates. Fd/Fa/Em=2/1.5/20. (C) Comparison of normalization methods: two-step analysis (presented above) versus Quantile normalization
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normalization. Abscise—sensitivity and specificity of the analysis as described in text.

Nucleic Acids Research, 2009, Vol. 37, No. 19 6337



(SAM) procedures. The application of the methods
presented here to various biological and clinical problems
demonstrated their ability to reveal essential features
of the systems under investigations [see for example
(28–30,37–43)], confirmed by the subsequent analysis of
signaling pathways involved, transcription factor
analysis and comparison with other publications. In
some applications, the parallel use of different approaches
to the analysis of the same data demonstrated advantage
of the internal standard based methods over others in the
selection of the gene sets reasonably associated with the
studied phenomenon [see for example Dozmorov and
Centola (2003) (30)].
Internal standard-based analysis enables to improve the

power of microarray analysis at several levels. In the next
part, we will demonstrate that the knowledge of the
parameters governed by internal standards can be used
for analysis in a statistically robust manner also for
functional associations through clustering and networking
genes having similar dynamical behavior.
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