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Abstract:
Physical activity has become a first-line treatment in rehabilitation settings for individuals with chronic pain. However, research has
only recently begun to elucidate the mechanisms of exercise-induced analgesia. Through the study of animal models, exercise has
been shown to induce changes in the brain, spinal cord, immune system, and at the site of injury to prevent and reduce pain. Animal
models have also explored beneficial effects of exercise through different modes of exercise including running, swimming, and
resistance training. This review will discuss the central and peripheral mechanisms of exercise-induced analgesia through different
modes, intensity, and duration of exercise as well as clinical applications of exercise with suggestions for future research directions.
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1. Introduction

Physical inactivity has become a major health concern due to its
role in increasing all-cause mortality and promoting conditions
such as obesity, cardiovascular disease, diabetes, cancer,
dementia, and depression.9,54,87,119,122,129,155,161 Physical in-
activity also increases the risk of developing chronic pain, with
individuals with lower amounts of physical activity reporting more
incidence of musculoskeletal pain.88,89 Furthermore, evidence-
based practice guidelines recommend exercise with moderate to
strong evidence for a variety of chronic pain conditions such low
back pain, osteoarthritis, and fibromyalgia.8,17,18,20,21,126 It is
recognized that an acute bout of physical activity or exercise can
increase pain in individuals with chronic pain.43,90 Animal models
have been developed to model these phenomena, showmultiple
underlying mechanisms, and have been reviewed else-
where.92,140 Thus, although an acute bout of exercise can
increase pain in individuals with chronic pain and animal models,
regular physical activity and exercise can both prevent and
alleviate chronic pain.

Although exercise is one of the main treatment approaches for
these chronic pain conditions, there are still many questions
surrounding exercise that need to be resolved. Specifically,
questions still exist regarding appropriate prescription of exercise
type, duration, intensity, and volume for chronic pain populations.
Similarly, although exercise is typically prescribed for treatment of
chronic pain, we do not fully understand the underlying
mechanisms of exercise-induced pain relief. Thus, there has
been a push to understand the underlying mechanisms of
exercise-induced analgesia through use of animal models of
exercise, which allow for a better understanding of exercise’s
effects on the brain, spinal cord, immune system, and periphery
to produce analgesia. Elucidating these mechanisms could aid in
more effective prescription and dosing of exercise for chronic
pain, as well as development of new pharmacological targets for
pain relief. The purpose of this review is to explore the
mechanisms of exercise-induced analgesia in animal models
for both pain prevention and alleviation.

2. Models of exercise-induced analgesia

Exercise can be performed aerobically or anaerobically and can
be used with shortening (concentric), lengthening (eccentric) or
static (isometric) contractions. Eccentric exercises produce
muscle damage and have been used to model acute muscle
pain in animals,4,61,114,151,152 whereas concentric-based exer-
cises do not produce muscle damage or pain.74,116,153 The most
commonly studied form of exercise in animal models is aerobic
conditioning exercises such as treadmill running, swimming, or
running wheel activity. Only one group has studied resistance
training effects on pain and uses a single bout of concentric
exercise.56,58 Thus, the majority of studies in animal models use
aerobic exercise to examine mechanisms of analgesia.

Exercise-induced analgesia has been studied in multiple ways
using animal models. One approach examined effects in animals
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by testing changes in response to painful stimuli immediately after
a single exercise bout, which is comparable to studies in human
subjects examining exercise-induced hypoalgesia to a single
bout of exercise. This paradigm generally results in a short-lasting
analgesic response (,30 minutes).127 More commonly, animal
studies examine the effects of repeated exercise bouts over a
longer period and are comparable to clinical treatment of
individuals with chronic pain with a regular exercise pro-
gram.59,88,89 These animal studies apply the repetitive exercise
program either before or after a painful insult known to produce
long-lasting hyperalgesia. Training sessions conducted before a
painful insult explore the ability of exercise to prevent the onset of
long-lasting pain, whereas training after onset of hyperalgesia will
study exercises ability to alleviate pain.

The earliest work that demonstrated exercise-induced anal-
gesia in animals was seen after short bouts of a forced cold-water
swim. These studies demonstrated that swimming for as little as 3
minutes reduced pain related behaviors in response to tail shock
and thermal tail-flick tests.13–15,24,37,62,105,120,160 Although these
early studies demonstrated exercise-induced analgesia, it is hard
to tease out analgesic effects due to the exercise paradigm as
opposed to stress-induced analgesia by the cold water.22 Thus,
current research has moved away from cold-water swim tests
and towards less stressful exercise models. Currently, exercise
models for animals use forced treadmill running, forced swim-
ming, forced resistance training, and voluntary running wheels
placed in cages. Forced treadmill running and swimming are the
most commonly used exercise paradigms because they allow for
control over intensity and duration of physical activity. However,
these exercise models have demonstrated the ability to increase
biomarkers of stress.36 Again, stress itself can produce analgesia
through activation of opioid and serotonergic systems thus
confounding results from these studies.25,37,164 A way to avoid
this is through the use of voluntary running wheels placed in
cages, which allows the animal to exercise without a stressful
component. With that being said, the majority of exercise models
show analgesia in pain-free animals and prevent or reverse
hyperalgesia in animal models of neuropathic, inflammatory, and
noninflammatory muscle pain.

Neuropathic pain models use numerous methods to induce
hyperalgesia. These models produce injury to peripheral nerves
or spinal cord, or is induced by diabetes. These pain models
produce both mechanical and thermal paw hyperalgesia, which
last for weeks to months. Exercise protocols that start either after
or before the induction of neuropathic pain show a reduction in
hyperalgesia when compared to sedentary animals (Tables 1
and 2). For example, repetitive swimming protocols showed that
50, 60, or 90 minutes of swimming 5 days a week reversed both
mechanical and thermal hyperalgesia after onset of training
compared to sedentary animals in animal models of peripheral
nerve injury.3,28,86,150 Similar reductions in mechanical and
thermal hyperalgesia in animal models of neuropathic pain are
seen in animal studies using treadmills for exercise after induction
of neuropathic pain. Treadmill protocols using repeated bouts of
10, 20, 30, or 60 minutes ranging from 3 to 7 days a week
have been shown to reduce hyperalgesia if started before or
after the induction of nerve injury5,10–12,26–29,31,34,35,50,63,72,
73,80,81,85,96,97,101,102,131,135,149,154,156,162,165 (Fig. 1A). Further-
more, initiation of exercise either 1 week or 3 weeks after nerve
injury produced analgesia 2 weeks after initiation of training,149

suggesting exercise is effective regardless of when the injury
occurs (Fig. 1B). Greater intensity of treadmill training (10 m/min
vs 16 m/min) produced greater analgesia, whereas differences in
frequency of training (3 d/wk vs 5 d/wk) did not alter analgesic

effects149 (Fig. 1B). By contrast, treadmill training 2 weeks before
injury combined with 2 weeks after injury produced the greatest
analgesic effects compared with solely training either before or
after injury.11 Interestingly, treadmill training to exhaustion during
each session blocked the long-term analgesic effects of exercise
and resulted in hyperalgesia that wasmore severe than sedentary
nerve-injured animals.35 This suggests that intensity and volume
of exercise could be a key factor in production of analgesia with
higher intensity and volume producing more analgesic effects
while too much intensity could prove detrimental. Finally, in
exercisemodelswhere animals are trained solely before induction
of neuropathic pain mixed results are seen with voluntary wheel
running for 6 weeks and treadmill training for 2 weeks blunting the
development of mechanical hyperalgesia,11,65 whereas other
studies with treadmill training for 2 or 3weeks before injury sawno
effect.131,156 Interestingly, in experimental models where animals
are given access to running wheels after induction of neuropathic
pain, some studies show positive analgesic effects,65,67,124,163

whereas others fail to show any pain relief.137,159 Overall, the
majority of research illustrates that various exercise models and
paradigms have proven successful in preventing and alleviating
neuropathic pain.

In models of noninflammatory muscle pain, hyperalgesia is
induced through a dual stimulus model of acid injections into the
gastrocnemiusmuscle, which are administered 5 days apart. This
pain model results in long-lasting widespread hyperalgesia
without tissue damage.111,141 In this model, exercise produces
analgesia when performed as a preventative tool before muscle
insult or as a therapeutic tool when started after the muscle insult
(Tables 1 and 2). Development of mechanical hyperalgesia
measured at the paw, ie, secondary hyperalgesia, is completely
blocked in animals granted access to runningwheels for 5 days or
8 weeks before induction of model.93,130,142 Further blockade of
muscle hyperalgesia, ie, primary hyperalgesia, is only seen in
animals granted access to running wheels for 8 weeks before
induction of the model suggesting longer duration of training is
needed to block primary hyperalgesia than secondary hyper-
algesia16,91,130 (Fig. 1C). It is worth noting that distance run by
animals with free access to running wheels is variable ranging
between 0.2 and 5 km/d; yet, there is no correlation between
distance run and degree of analgesia.65,91,142 These data
suggest that there is a minimal threshold of activity necessary
to protect against development of hyperalgesia. Similarly,
treadmill training starting after induction of muscle pain caused
a transient reversal of muscle pain immediately after the training
session, whereas 3 weeks of training resulted in a complete
reversal of the hyperalgesia.6,136 Thus, exercise can be effective
for producing analgesic effects in models of noninflammatory
muscle pain.

Exercise has also shown to be beneficial for pain relief in less
widely studied pain models including osteoarthritis,1,38 inci-
sional pain model,29,30 inflammatory pain model,45,76,86,125

complex regional pain syndrome,106 intervertebral disk de-
generation (IDD),101 immobilization-induced pain,33,112

chronic stress-induced pain,132 ischemia and reperfusion,128

glutamate-induced pain,107 and experimental autoimmune
encephalomyelitis7,110 (Tables 1 and 2). Although behavioral
data are important for demonstrating the analgesic effects of
exercise, understanding the mechanisms through which
physical activity is producing these effects will be beneficial
for future development of therapeutic targets for pain re-
duction. Consequently, the rest of this review covers the
central, peripheral, and neuroimmune changes that occur to
produce exercise-induced analgesia.
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Table 1

Therapeutic effects of exercise.

Reference Pain model Animals Exercise type Pretraining exercise Initiation of exercise Exercise duration 1 Intensity Effective for pain

Allen et al.1 OA—MIA Male rats Treadmill N/A PID 10 12–16 m/min for 30 , 4 d/wk for 5 wks Yes for mechanical sensitivity,
weightbearing symmetry, and ongoing
pain

Almeida et al.3 Neuropathic—PSNL Male mice Swimming 1 min for 5 d PID 7 10 min on days 1–3, duration
increased by 10 min every 3 sessions
till 50 min reached, 5 d/wk for 5 wks

Yes for mechanical and thermal
sensitivity

Arbat-Plana et al.5 Neuropathic—SNSR Female rats Treadmill N/A PID 3 18 m/min for 60 min, 5 d/wk for 2 wks Yes for mechanical

Bement et al.6 Muscle -acidic saline Male rats Treadmill 3.05 m/min for 5 min for 3 d PID 0 6.1 m/min for 15 min on days 1–2, 30
min on days 3–5

Yes for muscle and mechanical
sensitivity

Benson et al.7 EAE Female mice VWR 60 min access daily for 1 wk PID 1 60 min access daily for 3 wks Yes for mechanical sensitivity

Bobinski et al.10 Neuropathic—SC Male mice Treadmill 10 m/min for 10 min for 6 d PID 3 10 m/min for 30 min, 5 d/wk for 2 wks Yes for mechanical sensitivity

Bobinski et al.11 Neuropathic—SC Male mice Treadmill 10 m/min for 10 min for 6 d PID 3 10 m/min for 30 min, 5 d/wk for 2 wks Yes for mechanical and thermal
sensitivity

Bobinski et al.12 Neuropathic—SC Male mice Treadmill 10 m/min for 10 min for 6 d PID 3 5 d/wk for 2 wk, 30 min at 10 m/min Yes for mechanical sensitivity

Chen et al.28 Neuropathic—CCI Male rats Treadmill or swimming Treadmill: 20 m/min for 15 min,
for 3 d swimming: N/A

1 day before injury Graded exercise protocols, 5 d/wk for
6 wk

Both exercise protocols effective for
mechanical and thermal sensitivity

Chen et al.27 Diabetic neuropathy Male rats Treadmill N/A Not stated 20 m/min for 60 min, 7 d/wk for 8 wks Yes for mechanical and thermal
sensitivity

Chen et al.29 Incision Male rats Treadmill 18 m/min for 15 min for 3 d PID 8 18 m/min for 55 min, 5 d/wk for 4 wks Yes for mechanical sensitivity

Chen et al.30 Incision Male rats Treadmill 12 m/min for 15 min for 2 d PID 8 18m/min for 55 min, 5 d/wk for 4 wks, Yes for mechanical sensitivity

Chen et al.26 Diabetic neuropathy Male rats Treadmill 10 m/min for 15 min for 3 d PID 3 Wk 1–2: 20 m/min for 30 min, wk
3–4: 25 m/min for 60 min, 7 d/wk for
4 wks

Yes for mechanical and thermal
sensitivity

Chhaya et al.31 Neuropathic—SCI Female rats Treadmill N/A PID 5 Started at 5 m/min and increased
speed till 14 m/min for 20 min, 5 d/wk
for 4 wks

Yes for mechanical sensitivity

Chuganji et al.33 Cast Male rats Treadmill N/A PID 1 15 m/min for 30 min, 5 d/wk for 8 wks Yes for mechanical sensitivity

Cobianchi et al.35 Neuropathic—CCI Male mice Treadmill 21 m/min till exhaustion or 60
min, 5 d/wk for 2 wks

PID 3 21 m/min till exhaustion or 60 min, 5d
or 5 d/wk for 7 wks

Yes for mechanical sensitivity after 5
d of training, no for .5 d of training

Cobianchi et al.34 Neuropathic—SNSR Female rats Treadmill N/A PID 3 19 m/min for 60 min for 5 d Yes for mechanical sensitivity

Cormier et al.38 OA—MIA Male rats VWR 7 or 21 d PID 1 24 hr access 7 d/wk for 3 wks Yes for weightbearing symmetry with
21 days prior but not 7

de Azambuja et al.46 Glutamate-induced pain Male rats Swimming 15–20 min for 6 d PID1 30 min for 5 d No for muscle sensitivity

Detloff et al.50 Neuropathic—SCI Female rats FWR N/A PID 5 14 m/min for 20 min, 5 d/wk for 5 wks Yes for mechanical, no for thermal
sensitivity

Detloff et al.50 Neuropathic—SCI Female rats FWR N/A PID 14 or 28 14 m/min for 20 min, 5 d/wk for 5 wks No for mechanical sensitivity

Gong et al.63 Neuropathic—SNI Male rat pups Treadmill N/A PID 11 Days 1–3: 5 m/min for 10 min, days
4–6: 8 m/min for 20 min, days 8–13:
10 m/min for 30 min, days: 15–20 15
m/min for 30 min, 6 d/wk for 3 wks

Yes for mechanical sensitivity

(continued on next page)
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Table 1 (continued)

Therapeutic effects of exercise.

Reference Pain model Animals Exercise type Pretraining exercise Initiation of exercise Exercise duration 1 Intensity Effective for pain

Grace et al.65 Neuropathic—CCI Male rats VWR N/A PID 1 or 14 24 hr access 7 d/wk for 6 or 11 wks Yes for mechanical sensitivity; PID 15
PID 14

Groover et al.67 Diabetic neuropathy Male mice VWR N/A PID 1 24 hr access 7 d/wk for 12 wk Yes for mechanical and visceral
sensitivity

Huang et al.72 Neuropathic—CCI Male rats Treadmill N/A PID 8 14–16m/min at 8% incline for 30 min,
7 d/wk for 3 wks

Yes for mechanical and thermal
sensitivity

Hutchinson et al.73 Neuropathic—SCI Female rats Treadmill 12 m/min for 1 wk PID 4 11–13 m/min for 20–25 min, 5 d/wk
for 7 wks

Yes for mechanical sensitivity

Ishikawa et al.76 Inflammatory—kaolin 1
carrageenan injection

Male rats Stimulated quad
contractions

N/A PID 1 20 min for 6 d Yes for knee pressure pain thresholds
and paw mechanical sensitivity

Kami et al.80 Neuropathic—CCI Male mice Treadmill Wk 1: 5 d, 7 m/min for 10 min wk
2: 5 d, 7 m/min for 20–60 min

PID 2 7 m/min for 60 min for 5 d Yes for mechanical and thermal
sensitivity

Kami et al.81 Neuropathic—CCI Male mice Treadmill Wk 1: 5 d, 7 m/min for 10 min wk
2: 5 d, 7 m/min for 20–60 min

PID 2 7 m/min for 60 min for 5 d Yes for mechanical and thermal
sensitivity

Korb et al.85 Neuropathic—SNSR Male rats Treadmill N/A PID 7 Wk 1: 9 m/min for 20–50 min, wk
2–4: 9 m/min for 60 min, 5 d/wk for 4
wks

Yes for mechanical sensitivity

Kuphal et al.86 Neuropathic—PSNL Male rats and mice Swimming Rats: 90 min for 13 d mice: 30min
for 5 d

PID 1 Rats: 90 min for 25 d mice: 30 min for
6 d

Yes for thermal sensitivity for both rats
and mice

Lopez-Alvarez
et al.96

Neuropathic—SNSR Female rats Treadmill 19 m/min for 60 min for 1 d PID 3 19 m/min for 60 min, 5 d/wk for 1 or 2
wks

Yes for mechanical and thermal
sensitivity, 1 wk 5 2 wk of training

Lopez-Alvarez
et al.97

Neuropathic—SNSR Female rats Treadmill 19 m/min for 60 min for 1 d PID 3 19 m/min for 60 min for 12 d Yes for mechanical and thermal
sensitivity

Luan et al.101 IDD Male rats Treadmill N/A PID 14 Wk 1: 9 m/min for 20 min, Wk 2: 11
m/min for 30 min, Wk 3–8: 13 m/min
for 40 min, 7 d/wk for 1–8 wks

Yes for mechanical sensitivity

Ma et al.103 Diabetic neuropathy Male rats Treadmill N/A PID 1 Wk 1–2: 5 m/min at 10% incline for 10
min, wk 3–5: 10 m/min at 10% incline
for 10 min, 4 d/wk for 5 wks

Yes for mechanical sensitivity

Ma et al.102 Diabetic neuropathy Male rats Treadmill N/A PID 1 Wk 1–2: 5 m/min at 10% incline for 10
min, wk 3–5: 10 m/min at 10% incline
for 10 min, 4 d/wk for 5 wks

Yes for mechanical sensitivity

Martins et al.106 CRPS Male mice Swimming N/A PID 7 30 min for 5 d Yes for mechanical sensitivity

Mifflin et al.110 EAE Male and female
mice

VWR 1 hr access for 3d PID 4 1 hr access 7 d/wk until disease onset Yes for mechanical sensitivity in
females but not males

Morimoto et al.112 Cast Male rats Treadmill 12 m/min for 30 min for 3 d PID 3 12 m/min for 30 min, 3 d/wk for 2 wks Yes for mechanical sensitivity

Parent-Vachon
et al.124

Neuropathic—SNI Female mice VWR N/A PID 14 24 hr access 7 d/wk for 6 wks Yes for mechanical sensitivity

Pitcher et al.125 Inflammatory—CFA Male rats VWR N/A PID 3 2 hr/d access 4 d/wk for 3 wks Yes for weightbearing asymmetry and
thermal sensitivity

(continued on next page)
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Table 1 (continued)

Therapeutic effects of exercise.

Reference Pain model Animals Exercise type Pretraining exercise Initiation of exercise Exercise duration 1 Intensity Effective for pain

Ross et al.128 I/R Male mice Treadmill N/A PID 0 13 m/min for 45 min for 1 d No for mechanical sensitivity

Safakhah et al.131 Neuropathic—CCI Male rats Treadmill 10 m/min for 10 min for 5 d PID 5 16 m/min for 30 min, 5 d/wk for 3 wks Yes for mechanical and thermal
sensitivity

Sanford et al.132 Chronic stress Female rats VWR N/A PID 1 24 hr access 6 d/wk for 3 wks Yes for visceral sensitivity

Shankarappa
et al.135

Diabetic neuropathy Male rats Treadmill 18 m/min for 60 min for 5 d PID 1 18 m/min for 60 min, 5 d/wk for 10
wks

Yes for mechanical sensitivity

Sharma et al.136 Muscle -acidic saline Female mice Treadmill 13 m/min for 3d (no duration
given)

PID 5 Wk 1: 13 m/min for 30 min, Wk 2: 14
m/min for 40 min, Wk 3: 15–16m/min
for 45 min, 5 d/wk for 3 wks

Yes for muscle and mechanical
sensitivity

Sheahan et al.137 Neuropathic—SNI Male mice VWR N/A PID 8–10 2 or 12 hr access, 5-6 d/wk 2 wks No for mechanical sensitivity

Smith et al.146 Overuse muscle injury Female rats Treadmill N/A Initiated during wk 5
of overuse injury model

23 m/min for 60 min, 5 d/wk for 6 wks No for mechanical sensitivity

Stagg et al.149 Neuropathic—SNL Male rats Treadmill 18 m/min for 10 min, 2 d/wk for 2
wks

PID 7 or 21 14–16 m/min for 30 min, 3 or 5 d/wk
for 5 wks; OR 10 or 16 m/min for 30
min, 5 d/wk for 5 wks

Yes for mechanical and thermal
sensitivity; PID 75 21; 3 d/wk5 5 d/
wk; 16 m/min: yes, 10 m/min: no

Sun et al.150 TNT Male rats Swimming N/A PID 7 Wk 1: 10–50 min, Wk 2–5: 60 min, 5
d/wk for 5 wks,

Yes for mechanical sensitivity

Tsai et al.154 Neuropathic—CCI Male rats Treadmill N/A PID 6 14–16 m/min for 30 min at 0 or 8%
incline, 7 d/wk for 3 wks

Yes for mechanical and thermal
sensitivity 8% . 0% incline

Wakaizumi et al.156 Neuropathic—PSNL Male mice Treadmill None or 6 or 12 m/min for 60 min
5 d/wk for 2 wks

PID 1 6 or 12 m/min for 60 min 5 d/wk for 1
or 2 wks,

Yes for mechanical and thermal
sensitivity (6 m/min . 12 m/min)

Whitehead et al.159 Neuropathic—CCI Male rats VWR 60 min access for 1 wk PID 2–3 60 min access for 7 or 18 d No for mechanical sensitivity

Yamaoka et al.162 Neuropathic—PSNL Female rats Treadmill N/A PID 1 20 m/min at 10˚ incline for 10 min, 5
d/wk 6 wks

Yes for mechanical and thermal
sensitivity

Ye et al.163 Neuropathic—ART Male mice VWR N/A PID 0 2 hr access 5 d/wk for 13 wks Yes for mechanical and thermal
sensitivity

Yoon et al.165 Diabetic neuropathy Male rats Treadmill 5 m/min for 20 min for 2 d PID 7 10 m/min for 60 min 5 d/wk for 6 wks Yes for mechanical sensitivity

Table for effects of exercise on pain when exercise is initiated after induction of pain model.

ART, antiretroviral therapy; CCI, chronic constriction injury; CFA, complete Freund’s adjuvant; CPRS, complex regional pain syndrome; EAE, experimental autoimmune encephalomyelitis; FWR, forced wheel running; I/R, ischemia and reperfusion; IDD, intervertebral disk degeneration; m/min, meters per min;

MIA, monosodium iodoacetate; N/A, not applicable; OA, osteoarthritis; PID, postinjury day; PSNL, peripheral sciatic nerve ligation; SC, sciatic crush; SCI, spinal cord injury; SNI, spared nerve injury; SNSR, sciatic nerve resection and repair; TNT, tibial neuroma transposition; VWR, voluntary wheel running.
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3. Central mechanism of exercise-induced analgesia

3.1. Endogenous opioids

One of the most widely studied central mechanisms of exercise-
induced analgesia is the role of endogenous opioids in producing
the analgesic effects. Early work showed that in healthy animals,
systemic administration of naloxone, an opioid receptor antag-
onist, blocks the acute analgesic effects of short bouts of
swimming.13,24,62,120,137,160 More recently, these behavioral
effects have been replicated in exercise models of treadmill
running, voluntary wheel running and resistance training as
well as in pain models of noninflammatory muscle pain,
neuropathic pain, arthritic pain, and glutamate-induced
pain.1,6,16,47,58,93,106,107,147 Specifically, 8 weeks of voluntary
running wheel activity blocked the production of hyperalgesia in a
model of noninflammatory muscle pain. Naloxone administered
systemically or directly into the periaqueductal gray (PAG) or the
rostral ventral medial medulla (RVM), 2 brain locations important
in endogenous opioid system, blocked these analgesic effects,
whereas systemic injection of naloxonemethiodide, a peripherally
acting opioid antagonist, had no effect suggesting the central but
not peripheral effects of exercise on mediating the endogenous
opioid system16 (Fig. 2A). Similarly, the analgesic effects of
treadmill running for neuropathic pain were reversed with either
subcutaneous or intracerebroventricular injection of naloxone but
not naloxone methiodide.149 Also, treadmill training after in-
duction of knee osteoarthritis caused decrease in
tactile sensitivity, improvement in weightbearing symmetry, and

reduction of ongoing pain, and these analgesic exercise effects
were reversed with systemic naloxone.1 Finally, 5 days of
voluntary running wheel activity prevented the development of
hyperalgesia in an activity-induced muscle pain model in wild-
type but not mu-opioid receptor knockout mice demonstrating
exercise produces its analgesic effects through activation of mu-
opioid receptors.93

Studies have also shown changes in the endogenous opioid
system due to exercise in several locations. Increases in beta-
endorphin and met-enkephalin, 2 endogenous opioid peptides,
were found in both the PAG and RVM after 5 weeks of treadmill
running and in the PAG and hypothalamus after 8 weeks of
treadmill training, whereas increases in beta-endorphin in
cerebrospinal fluid were found to be elevated for up to 48 hours
after a single exercise bout33,70,149 (Fig. 2B). Also, increased
opioid peptides met-enkephalin, leu-enkephalin, and beta-
endorphin were found in frontal cortex of female rats given
access to running wheels for 4 weeks after nerve injury.124

Similarly, increases in enkephalin were found in lumbar dorsal
root ganglia (DRG) after 6 weeks of treadmill training.165 Finally,
both forced and voluntary running activity for 7 days increased
mu-opioid receptor expression in the hippocampus. Interestingly,
when animals were subjected to forced or voluntary running
activity for 45 sessions over a 9-week span, the increases in mu-
opioid receptor were absent.47 This suggests that repeated
activation of the opioid system by exercise can produce a
compensatory downregulation of opioid receptor expression,
similar to that seen in chronic administration of exogenous

Table 2

Preventative effects of exercise.

Reference Pain model Animals Exercise
type

Exercise Duration 1 Intensity Duration of
pretraining

Effective for pain

Bobinski
et al.11

Neuropathic –SC Male mice Treadmill 10 m/min for 30 min, 5 d/wk 2 wk Yes for mechanical, no for thermal
sensitivity

Brito et al.16 Muscle -acidic saline Male and
female mice

VWR 24 hr access 7 d/wk 8 wk Yes for muscle and mechanical
sensitivity

de Azambaja
et al.45

Inflammatory-carrageenan Male rats Swimming 40 min, 5 d/wk, 4% BW attached to
animals’ body

10 wk Yes for muscle sensitivity

Grace et al.65 Neuropathic—CCI Male rats VWR 24 hr access 7 d/wk 6 wk Yes for mechanical sensitivity

Kuphal
et al.86

Inflammatory-formalin Male rats Swimming 90 min 9 d No for phase 1 pain response, yes
for phase 2 pain response

Leung et al.91 Muscle—activity-induced Male and
female mice

VWR 24 hr access 7 d/wk 8 wk Yes for muscle and mechanical
sensitivity

Lima et al.92 Muscle—activity-induced Male and
female mice

VWR 24 hr access 5 d Yes for mechanical, no for muscle
sensitivity

Martins
et al.107

Glutamate-induced pain Male mice Swimming 30 min, 5 d/wk 1–2 wk Yes for mechanical sensitivity 2 wk
. 1 wk

Ross et al.128 Muscle—I/R Male mice VWR 24 hr access 2 d Yes for mechanical sensitivity

Sabharwal
et al.130

Muscle—activity-induced Male and
female mice

VWR 24 hr access 7 d/wk 5 d or 8 wk 5 d: yes for mechanical, no for
muscle sensitivity; 8 wk: yes for
mechanical and muscle sensitivity

Safakhah
et al.131

Neuropathic—CCI Male rats Treadmill 16 m/min for 30 min 5 d/wk 3 wk No for mechanical and thermal
sensitivity

Sheahan
et al.137

Inflammatory-formalin Male mice VWR 2 or 12 hr/d access, 5–6 d/wk 1–4 wk No for nocifensive behaviors

Sluka et al.142 Muscle—acidic saline or
activity-induced

Male mice VWR 24 hr access 7 d/wk 5 d or 8 wk 5 d: yes for mechanical, no for
muscle sensitivity; 8 wk: yes for
mechanical and muscle sensitivity

Wakaizumi
et al.156

Neuropathic—PSNL Male mice Treadmill 6 or 12 m/min for 60 min, 5 d/wk 2 wk No for mechanical or thermal
sensitivity

Table for effects of exercise on pain when exercise is performed before induction of pain model.

CCI, chronic constriction injury; I/R, ischemia and reperfusion; m/min, meters per min; PSNL, peripheral sciatic nerve ligation; SC, sciatic crush; VWR, voluntary wheel running.
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opioids such asmorphine.2 In parallel, behavior studies show that
chronic, but not acute, running wheel exposure in uninjured
animals decreases analgesic effects of morphine, a mu-opioid
agonist, and U50,488H, a kappa opioid agonist, and increases in
withdrawal-like symptoms after administration of opioid receptor
antagonists.40,82,143 Thus, current research suggests that
exercise-induced analgesia is mediated by endogenous opioid
activity.

3.2. Serotonergic system

The serotonergic system has been widely studied for its role in
both the development and alleviation of chronic pain. Not
surprisingly, exercise has been shown to produce its analgesic
effects throughmodulation of the serotonergic system. Serotonin
(5-HT) is elevated in the brainstem after a single 60-minute bout of
swimming exercise and in the dorsal horn of the lumbar spinal
cord after 15 minutes of treadmill running in pain-free rats.51,60

When rats swam6days aweek for 4weeks, increased levels of 5-
HT were found in both the brainstem and parieto-occipital cortex

and these increased levels were still significantly higher than
sedentary controls one week after cessation of exercise.51

Similarly, in pain-free animals, increased levels of 5-HT were
found in the cerebellum and midbrain after 8 weeks of treadmill
training, whereas increased levels of 5-HT immunoreactivity were
found in RVM after 4 weeks of treadmill training.19,85 Interestingly,
after peripheral nerve injury, increased levels of 5-HT immuno-
reactivity were found bilaterally in the lumbosacral ventral horn of
the spinal cord after 4 weeks of treadmill training but not in
animals that underwent sham nerve injury.85 Also, animals with
the peripheral nerve injury did not see increases in 5-HT
immunoreactivity in the RVM, suggesting exercise could poten-
tially produce different central nervous system effects depending
on injury state of animal.85

In the RVM, increases in serotonin are analgesic with
extracellular levels of serotonin controlled by the serotonin
transporter (SERT).75,95 The SERT is increased, whereas 5-HT
is decreased, in the RVM and brainstem after induction of
neuropathic pain.10 Two weeks of treadmill training after in-
duction of neuropathic pain reversed the increases in SERT and

Figure 1. Exercise-induced analgesia. (A) Treadmill exercise after peripheral nerve injury (PNI) results in decreased mechanical hypersensitivity in as little as 2
training sessions. Filled circles represent PNI/Sedentary group and half-filled triangles represent PNI/Exercised group. Reproduced with permission from 12.
(B) Exercise training resulted in reductions in hypersensitivity 2 weeks after induction of training regardless if 1 or 3 weeks passed between injury and initiation of
training. Higher intensity of treadmill training resulted in a greater analgesic effect. However, no effect seen on degree of analgesia when treadmill training was
conducted either 3 or 5 days aweek. Reproducedwith permission from 142 (C) Eight weeks of physical activity resulted in prevention of hyperalgesia both atmuscle
and paw after induction of noninflammatory muscle pain. Reproduced with permission from 149.
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decreases in 5-HT with a corresponding reduction in mechanical
hyperalgesia10 (Fig. 2C). Animals pretreated with r-chlorophe-
nylalanine, a 5-HT synthesis inhibitor, blocked brainstem
increases of 5-HT and prevented the analgesic effect of treadmill
exercise in animals with neuropathic pain, repeated stimulated
muscle contractions in pain-free animals, and 5 days of
swimming exercise before acetic acid pain.10,69,107 Similar to
the neuropathic pain model, there are increases in SERT in the
RVM after induction of a noninflammatory muscle pain model,
which is prevented by 8 weeks of prior voluntary running wheel
activity.16 Finally, after induction of the noninflammatory pain
model, blockade of SERT in the RVM, by microinjection of the
selective serotonin reuptake inhibitor fluoxetine, reversed hyper-
algesia showing modulation of SERT alters pain behaviors.16,93

Together, these data suggest that exercise-induced release of
serotonin as well as changes in central serotonergic system is
critical to the analgesic effects of regular exercise.

Recent evidence has also suggested an interactive role
between the opioid and serotonergic systems to produce
exercise-induced analgesia. Serotonin neurons in the RVM
receive inputs from PAG opioid neurons and blockade of
serotonin receptors in the PAG or spinal cord reduces the
analgesic effects of morphine.25,83,134 Increases in SERT occur in
the RVM after induction of an activity-induced pain model and 5

days of voluntary wheel running before induction of themodel can
block the SERT increases.93 However, physically active animals
pretreated with systemic naloxone show greater SERT immuno-
reactivity in the RVM compared with physically active animals
receiving vehicle. Similarly, physically active mu-opioid receptor
knockoutmice showed increased SERT immunoreactivity in RVM
compared with physically active wild-type animals. Together,
these data suggest that activation of opioid receptors during
exercise is crucial for reducing expression of SERT in the
brainstem to promote exercise-induced analgesia.

3.3. Endocannabinoids

Activation of the endocannabinoid system has also been
attributed to the analgesic effects of exercise. Endocannabinoid
receptors are located in the PAG, RVM, and dorsal horn of the
spinal cord, all of which are locations known to be important for
pain modulation.71,109,157 There are 2 naturally occurring ligands,
anandamide (AEA) and 2-arachidonylglycerol (2-AG), that bind to
the endocannabinoid CB1 and CB2 receptors to produce
analgesic effects. In both human and animal studies, acute bouts
of exercise increase circulating levels of endocannabinoids,
which contributes to the feeling of “runner’s high” associ-
ated with exercise.39,55–57,84,148 Endocannabinoid-mediated

Figure 2. Central mechanisms of exercise-induced analgesia. (A) Systemic naloxone but not naloxone methiodide reversed analgesic effects of exercise. Naloxone
delivered directly into periaqueductal gray (PAG) or rostroventromedialmedulla (RVM) also reversed the analgesic effects of exercise. Reproducedwith permission from 16.
(B) Treadmill training for 5 weeks resulted in increases in beta endorphin and met-enkephalin in PAG. Reproduced with permission from 149. (C) Two weeks of treadmill
training reversed the increases in SERT in RVMseen after neuropathic injury. Reproducedwith permission from 10. (D) Eightweeks of physical activity blocked increases in
p-NR1 in RVM after induction of noninflammatory muscle pain. Reproduced with permission from 142. (E) Swimming reduced neuropathic injury increases in NGF and
BDNF in lumbar DRG. Reproduced with permission from 3. BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor.
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exercise-induced analgesia has been found after exercise in both
healthy animals and animals subjected to glutamate-induced
pain.56,57,107 In healthy animals, a single bout of treadmill training
or resistance training increased nociceptive threshold to me-
chanical stimuli, which was blocked by pretreatment with
systemic, intrathecal, or intracerebroventricular injections of
CB1 and CB2 inverse agonists, AM251 and AM630, suggesting
the endocannabinoid system is working at multiple locations to
produce exercise-induced analgesia.56,57 Also, the antinocicep-
tive response could be prolonged through systemic, intrathecal,
or intracerebroventricular pretreatment with endocannabinoid
metabolizing enzyme inhibitors. Similarly, 30 minutes of swim-
ming for 1 week before intraplantar glutamate injection produced
an antinociceptive effect, which was blocked by pretreatment
with intrathecal, but not intraplantar, administration of a CB1

antagonist (AM281).107 Finally, increased expression of CB1

receptors were found in the dorsolateral and ventrolateral PAG
after a single bout of treadmill training or resistance training and
injection of AM251 into the PAG before exercise reduced this
upregulation.56,57 Interestingly, similar to the serotonin-opioid
interaction for producing analgesia, evidence has suggested a
similar relationship between the endocannabinoid and opioid
systems23,39,115; however, this relationship has not been studied
in animal models of exercise-induced analgesia. Thus, evidence
suggests there are supraspinal and spinal actions of exercise-
induced analgesia involving the endocannabinoid system.

3.4. NDMA receptor alterations

The N-methyl-D-aspartate (NMDA) receptor is an excitatory
glutamate receptor which has been implicated in the develop-
ment of hyperalgesia. Increases in phosphorylation of the NR1
subunit (p-NR1) of the NMDA receptor in the RVM are crucial for
the development of chronic muscle hyperalgesia. In models of
noninflammatory and activity-induced muscle pain, there is
increased p-NR1 expression in the RVM, and downregulation
or pharmacological blockade of NR1 in the RVM prevents
development of hyperalgesia41,42,139 showing a role for NMDA
receptors in chronic muscle pain. More recent work shows that
physical activity blocks the increases in p-NR1 in the RVM after
muscle injury142 (Fig. 2D). Similarly, an hour of running daily for a
week prevented increases in p-NR1 expression in the superficial
dorsal horn in a model of experimental autoimmune encephalo-
myelitis.7 Finally, treadmill training was able to reduce increased
NR1 expression in the lumbar spinal cord resulting from an
incisional pain model.29 This suggests that exercise reduces
excitatory transmission by preventing phosphorylation of the
NMDA receptors in the central nervous system.

3.5. Noradrenergic system

The noradrenergic system also plays a role in the analgesic
effects of exercise. Receptors for catecholamines (a1, a2, b2-
adrenergic receptors) are found in locations known to mediate
pain such as the PAG, locus coeruleus, dorsal raphe and spinal
cord DRG.117 The noradrenergic system is activated during
exercise to increase release of catecholamines.52 Early studies
show that short bouts of swimming produced analgesia is
potentiated by systemic pretreatment with norepinephrine,
clonidine (a2-adrenergic agonist), or desipramine (norepineph-
rine reuptake inhibitor) when compared to swimming alone,
whereas systemic or intracerebroventricular pretreatment with
a1-or a2-adrenergic receptor antagonists prevented the swim-
induced analgesia.14,15,121 Similarly, systemic pretreatment with

a2, a2-A, or a2-C adrenergic receptor antagonists blocked
exercise-induced analgesia from a single bout of either treadmill
training or resistance training; there was no effect when
administered intrathecally or intracerebroventricularly.48 Further-
more, in a2-A/C adrenergic receptor knockout mice, treadmill
training failed to produce any antinociceptive effects to swimming
or treadmill training.48 Finally, after induction of a neuropathic pain
model, regular treadmill training prevented the downregulation a1
and b2 receptors in the dorsal horn of the spinal cord. Exercise
was also shown to upregulate a1 and b2 receptors in the locus
coeruleus and dorsal raphe. Systemic inhibition of the b2
receptors with butoxamine before exercise training completely
blocked the analgesic effects of exercise. Furthermore, neuro-
pathic injury-induced increases in activated microglia in the locus
coeruleus were reduced with exercise; however, this effect was
blocked by butoxamine treatment.97 This work demonstrates the
role of the noradrenergic system in producing exercises’
analgesic effects. Future work will need to be done to further
determine location of action of the noradrenergic system in the
production of exercise-induced analgesia.

3.6. Role of adenosine receptors

There has been a small amount of research into the role of
adenosine and its receptor subtypes, A1 and A2A, in the role of
exercise-induced analgesia. One study found swimming exercise
for one week before intraplantar glutamate injection prevented
glutamate-induced nociception.107 When these animals were
pretreated with an A1 adenosine receptor antagonist, 1,3-
dipropyl-8-cyclopentylxanthine (DPCPX), either intrathecally or
intraplantarly, the antinociception effects of the swimming
exercise was prevented. Similarly, swimming exercise mitigated
mechanical hyperalgesia in an animal model of complex regional
pain syndrome, but systemic pretreatment with caffeine (aden-
osine receptor antagonist) or an A1 receptor antagonist (DPCPX),
but not an A2A receptor antagonist (ZM241385), blocked these
analgesic effects.106 Furthermore, systemic pretreatment with an
adenosine degradation inhibitor (erythro-9-(2-hydroxy-3nonyl)
adenine; EHNA) potentiated exercise-induced analgesia. To-
gether, these data suggest that exercise produces analgesia
through A1 adenosine receptors both centrally and peripherally.

3.7. Changes in spinal cord and dorsal root ganglia

There have beenmultiple studies that have examined a number of
different neurotransmitters, intracellular messengers, transcrip-
tion factors, and growth factors in the spinal cord or DRG in a
variety of animal models of exercise-induced analgesia. Neuro-
pathic injury increases the intracellular messenger PLCg-1 and
the transcription factor CREB in the dorsal horn of the spinal cord,
and increases both nerve growth factor (NGF) and brain-derived
neurotrophic factor in spinal cord and DRG.3 Regular swimming
(5 days/wk for 5 weeks) or 2 weeks of treadmill running not only
prevented the development of hyperalgesia, but also returned all
these measures (PLCg-1, CREB, NGF, and brain-derived
neurotrophic factor) to normal uninjured levels3,12 (Fig. 2E).
Similarly, 2 weeks of swimming prevented the increased in-
tracellular messenger phosphorylated-PKA in the lumbar spinal
cord after intraplantar glutamate injection,107 a single bout of
treadmill training blocked the increase in c-FOS expression in the
spinal cord after intraplantar formalin injection,94 and 3 weeks of
treadmill training before induction of paw incisional pain model
reduced the amount of phosphorylated-p38 in the spinal cord.64

Also, in a model of knee osteoarthritis there was an increase in
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calcitonin gene-related peptide in the dorsal horn of the lumbar
spinal cord in laminae I–VI. Six days of electrically stimulated
quadriceps contractions starting at onset of knee osteoarthritis
completely blocked this increase.76 In addition, in models of
diabetic neuropathy, there are increases in TRPV1 channels,
phosphorylated-p38, phosphorylated m-TOR and its down-
stream signals S6K1 and 4E-BP1, and inflammatory cytokines
IL-1b, IL-6, and TNFa in lumbar DRG.102,165 Regular treadmill
training starting at the onset of diabetes was able to block the
increases in TRPV1 channels, intracellular messengers, and
inflammatory cytokines. Finally, neuropathic injury decreases the
inhibitory neurotransmitter gamma-aminobutyric acid (GABA)
and glutamic acid decarboxylase (which converts glutamate to
GABA) in the dorsal horn of the spinal cord, which is prevented by
regular treadmill running 60 minutes per day 5 days a week.80

Thus, this research suggests that exercise works to reverse
increases in pronociceptive intracellular messengers, transcrip-
tion factors, and growth factors while restoring antinociceptive
mediators in the spinal cord.

Electrophysiology studies have found increased excitability of
spinal cord dorsal horn neurons after injection of NGF into the
multifidusmuscles over 5 days. Swimming for 5 days between NGF
injections blocked increases in measures of neuronal excitability in
the spinal cord.46 Namely, the exercise blocked increases in the
number of neurons responding to deep tissue stimulation, the
receptive field size, and the resting activity compared to sedentary
animals. There are also increases in DRG neurons excitability after
induction of neuropathic pain with increased resting membrane
potential, promoted spike frequency and spike counts, and
decreased threshold potential in lumbar DRG.163 Voluntary running
wheel activity for 2 hours a day, 5 days a week, during model
induction completely blocked all increases in DRG excitability
measures. Finally, in a painmodel of diabetic peripheral neuropathy,
treadmill training for 60minutes, 5 days aweek, delayed the onset of
mechanical hypersensitivity. In sedentary animals, a .2.5 increase
in calcium channel current density was measured at lumbar
DRG.135 In animals that exercised, this increase in calcium channel
current density was completely blocked. This research suggests
that exercise is also working at the level of the spinal cord and DRG
to produce its analgesic effects through altering electrophysiological
changes that occur due to injury.

4. Neuroimmune mechanisms of exercise-
induced analgesia

Alterations in the immune system by exercise have been studied
both in the central nervous system and locally at the site of injury.
Centrally, immune responses are modulated through activity of
microglial cells and astrocytes, which can alter their morphology
resulting in production of different levels of pro-inflammatory and
anti-inflammatory cytokines. Specifically, microglia and astro-
cytes in the spinal cord will transform into a hypertrophic state
after sciatic nerve injury resulting in an activated state that will
increase pro-inflammatory cytokine production.3,7,12,31,35,63,65,81

In parallel, increases in pro-inflammatory cytokines TNF-a, IL-1b,
and IL-6 and decreases in anti-inflammatory cytokines IL-4, IL-5,
and IL-1ra have been reported in the RVM, spinal cord, and DRG
after induction of sciatic nerve injury.10–12,63,65,165 Spinal cord
increases in hyperactive microglia and astrocytes are blocked by
treadmill running or swimming both before and after sciatic nerve
injury3,7,12,31,35,65,81 (Fig. 3A). Furthermore, animals that exer-
cised had reduced expression of pro-inflammatory cytokines
(TNF-a, IL-1b, and IL-6) and increases in anti-inflammatory
cytokines (IL-4, IL-1ra, IL-5, and IL-10)10–12,63,65,165 (Fig. 3B).

Finally, in IL-4 knockout mice or mice given an IL-4 antibody
during treadmill training, exercise-induced analgesia in response
to a sciatic nerve injury was completely blocked, suggesting that
the increases in anti-inflammatory cytokines are part of the
mechanism through which exercise protects and reverses the
development of hyperalgesia.12

Exercise alsomodulates the immune response in the periphery
at the site of injury. Amodel of knee osteoarthritis found increased
total number of macrophages in the synovium of the arthritic
knee. The increase in macrophages was attenuated by electri-
cally stimulated quadriceps contractions starting at the onset of
knee osteoarthritis.76 Also, treadmill training blocked the
increases in pro-inflammatory cytokines (TNF-a, IL-1b, and IL-
6), increases in chemokine CCL2,65 and decreases in anti-
inflammatory cytokines (IL-4, IL1ra, and IL-10) that are found in
the sciatic nerve after induction of neuropathic
pain.11,12,26,28,72,154 Furthermore, sciatic nerve injury was found
to alter macrophage distribution in the sciatic nerve. Macro-
phages are immune cells that have different phenotypes depend-
ing on their cytokine release profile: M1 macrophages release
pro-inflammatory cytokines, whereas M2 macrophages release
anti-inflammatory cytokines.113 There is an increased proportion
of M1 to M2 macrophages in the sciatic nerve after injury.12,65

Regular treadmill training before or after injury increased the
number of M2 vs M1 macrophages, increased serum IL-10, and
decreased IL-1b andCCL2 in the serum and sciatic nerve.12,65,72

Similarly, physically active, uninjured mice show an increased
proportion of M2 macrophages in the muscle91 (Fig. 3C). In a
noninflammatory muscle pain model, the analgesia produced by
8 weeks of running wheel activity is prevented by systemic or
intramuscular blockade of IL-10 receptors, whereas administra-
tion of IL-10 systemically or into the muscle mimicked the
analgesic effects similar to exercise91 (Fig. 3D). Also, in an
ischemic model of muscle pain, there was an increase in IL-1b
levels in the muscle which was blocked with prior exercise.128

Furthermore, blockade of IL-1 receptors prevented the exercise-
induced analgesia, whereas treatment with IL-1 resulted in
decreases in pain behaviors.128 Finally, in a pain model of IDD,
there was an increase in IL-1b, TNFa, and leptin in the multifidus
muscle, all of which were decreased by voluntary running wheel
activity.77 Thus, this research suggests that exercise can alter
macrophage phenotype distribution and subsequent pro-
inflammatory and anti-inflammatory cytokine profiles in the
periphery at the site of injury to promote analgesia.

5. Peripheral mechanisms of exercise-
induced analgesia

There have been a few studies on exercise-induced changes in
the periphery that can lead to exercise’s analgesic effects. In the
paw, after sciatic nerve injury, there are increases in nerve fiber
sprouting from adjacent areas into the denervated areas resulting
in mechanical hyperalgesia both at the medial and lateral test
sites of the paw.96 Treadmill running for 60 minutes a day
decreased the amount of nerve sprouting and reinnervation of
plantar skin from the medial paw into the denervated lateral paw
resulting in decreased responses to mechanical stimuli. Also,
tibial nerve injury resulted in increasing plasma levels of leptin and
decreased levels of adiponectin with a subsequent mechanical
hyperalgesia.150 Swimming exercise 5 days a week reversed
mechanical hyperalgesia and normalized circulating leptin and
adiponectin levels. Systemic administration of leptin after
swimming sessions blocked the analgesic effects of exercise,
whereas administration of adiponectin alone was able to
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decreasemechanical hyperalgesia. Finally, a model of IDD results
in degenerative changes in the nucleus pulposus and anulus
fibrosus. Daily treadmill training initiated after onset of the IDD
model resulted in increased cell counts in the nucleus pulposus
and anulus fibrosus, as well as increased markers of cell
proliferation in the intervertebral disk and the adjacent epiphyseal
cartilage when compared to sedentary controls.101 Thus, these
data suggest that alterations in the periphery at or away from the
site of injury can also impact pain behaviors and exercise can help
to mitigate any pronociceptive changes at these sites.

6. Clinical implications

From a clinical standpoint, this research on animal models of
exercise-induced analgesia could provide the basis for new
clinical studies to improve exercise prescription guidelines for
humans. First, exercise works to both prevent onset of pain
and resolve pain after injury. Currently, 58/64 (90%) articles
published on the topic of exercise-induced analgesia demon-
strate positive effects of exercise in as little as one bout of
activity. Also, this research demonstrates that specificity of
exercise might not be as important as the act of exercise itself.

Exercise-induced analgesia is demonstrated in exercise
models of running, swimming, and resistance training.
Similarly, in human studies, different types of exercise
programs have been applied to chronic pain patients with no
difference in outcomes seen between the different exercise
programs.68,79,133 Also, both aerobic and resistance training
exercise programs are listed as exercise recommendations for
low back pain, osteoarthritis, and fibromyalgia.8,17,18,20,21,126

This lack of specificity of exercise is possibly a result of the
multitude of mechanisms through which exercise can reduce
pain. Therefore, exercise prescription should be dependent
upon patient preferences, therapist training, available equip-
ment, cost, and safety.133 Furthermore, there is evidence to
suggest that duration and intensity of exercise can impact the
degree of exercise-induced analgesia. Higher amounts of
duration and intensity resulted in a greater degree of analgesia;
however, too much intensity was found to have detrimental
effects, suggesting a possible inverted U-shaped curve when it
comes to exercise intensity and pain relief.35,94,149 Thus,
dosing of exercise needs to be done appropriately to maximize
pain relief while limiting negative side effects. Finally, as
previously noted individuals with chronic pain may fail to

Figure 3. Immune system mechanisms of exercise-induced analgesia. (A) Treadmill training for 2 weeks after neuropathic injury reduced hyperactive astrocytes
(GFAP) andmicroglia (Iba-1) in lumbar spinal cord dorsal horns. Reproduced with permission from 12. (B) Treadmill training after sciatic nerve injury increased anti-
inflammatory cytokines in spinal cord and sciatic nerve. Reproduced with permission from 12. (C) Physical activity increased percentage of M2 macrophages in
gastrocnemius muscle (F4/80 macrophage stain, CD206 M2 macrophage stain, CD11c M1 macrophage stain). Reproduced with permission from 91. (D)
Pretreatment with IL-10 blocked hyperalgesia in response to noninflammatory muscle pain. Reproduced with permission from 91.
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receive pain relief from an acute bout of exercise or may suffer
from exercise-induced pain.127 This increase in pain with an
acute bout exercise could be a barrier to exercise adherence.
This can be managed through appropriate dosing of exercise
to decrease exercise-induced symptom flares, or through
treatments that reduce activity-induced pain. Our recent
clinical trial shows that transcutaneous electrical nerve
stimulation (TENS) significantly reduces activity-induced pain
when compared to placebo or no-TENS in women with
fibromyalgia,44 suggesting TENS could be an effective
treatment to manage activity-induced pain. Another approach
could be to use psychological and educational interventions to
decrease fear-avoidance behavior surrounding activity and
catastrophic thinking regarding exercise-induced
hyperalgesia.104,118,127

7. Future directions

Although work has repeatedly shown the analgesic effects of
exercise, the underlying mechanism for this analgesia has only
recently begun to be elucidated. Continued research into the
mechanisms through which exercise can prevent and reduce pain
will help develop intervention targets for treating chronic pain.
Specifically, research into themechanisms throughwhich exercise
prevents pain vs reduces pain could reveal different mechanisms.
Also, we do not know if the neurological and immune response to
exercise is the same in pain-free animals as compared to animals
after injury. Human studies have suggested that overweight
individuals see greater increases in pro-inflammatory cytokines
(IL-6, IL-8, and TNFa) compared with lean individuals after acute
bouts of exercise.32 Thus, futurework needs to study the impact of
comorbidity factors on the analgesic mechanisms of exercise.
Although studies have shown that all modes of exercise are
beneficial, a majority of the research in animal models has been on
aerobic-based exercise (running and swimming) as opposed to
strength training which is typically performed in rehabilitation
settings. Although all exercise modes have beneficial effects, we
do not know if aerobic and resistance training-based exercise
programs are producing analgesia through the same mecha-
nisms. Similarly, we do not know the adequate amount of dose or
minimal effective dose for these exercise programs. Thus, further
research needs to be conducted on other forms of exercise aswell
as on different dosing of exercise to improve exercise prescription
in chronic pain patients. Finally, nearly all exercise-induced
analgesia research has been conducted in populations
using only male animals. Recent research has called for inclusion
of female animals in all experiments due to sexual
differences found in hyperalgesia mechanisms and pain
phenotypes.66,78,98–100,123,145–147,158 Becausemechanistic differ-
ences in pain development havebeen seenbetween the sexes,we
cannot assume the samemechanistic effects of exercise-induced
analgesia between males and females. Of the research that has
usedboth sexeswhile studying exercise-inducedanalgesia,mixed
results have been found, with some finding sexual differences in
exercise-induced analgesia110, whereas others have not.93,139

Therefore, future studies need to include both sexes in their
experiments to determine if there are possible sex differences in
themechanisms of exercise-induced analgesia. The incorporation
of females into animal studies is also crucial because chronic pain
conditions are more prevalent in women.53 By only including male
animals, the generalizability to the population of individuals who
suffer from chronic pain conditions is limited. All of this research
would help improve utilization, adherence, and prescription of
exercise for chronic pain patients.
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