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Abstract

Current methods to quantify T-cell clonal expansion only account for variance due to ran-

dom sampling from a highly diverse repertoire space. We propose a beta-binomial model to

incorporate time-dependent variance into the assessment of differentially abundant T-cell

clones, identified by unique T Cell Receptor (TCR) β-chain rearrangements, and show that

this model improves specificity for detecting clinically relevant clonal expansion. Using blood

samples from ten healthy donors, we modeled the variance of T-cell clones within each sub-

ject over time and calibrated the dispersion parameters of the beta distribution to fit this vari-

ance. As a validation, we compared pre- versus post-treatment blood samples from

urothelial cancer patients treated with atezolizumab, where clonal expansion (quantified by

the earlier binomial model) was previously reported to correlate with benefit. The beta-bino-

mial model significantly reduced the false-positive rate for detecting differentially abundant

clones over time compared to the earlier binomial method. In the urothelial cancer cohort,

the beta-binomial model enriched for tumor infiltrating lymphocytes among the clones

detected as expanding in the peripheral blood in response to therapy compared to the bino-

mial model and improved the overall correlation with clinical benefit. Incorporating time-

dependent variance into the statistical framework for measuring differentially abundant T-

cell clones improves the model’s specificity for T-cells that correlate more strongly with the

disease and treatment setting of-interest. Reducing background-level clonal expansion,

therefore, improves the quality of clonal expansion as a biomarker for assessing the T cell

immune response and correlations with clinical measures.

Introduction

High-throughput next-generation sequencing of the T cell receptor (TCR) repertoire, i.e.,

immunosequencing, enables precise molecular identification and tracking of tens to hundreds

of thousands of T-cell clones in a single subject [1]. A key component of the adaptive immune
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system is the clonal expansion of activated T cells. With immunosequencing, clonally

expanded T cells can be identified by comparing the frequency of each T-cell clone at one time

point versus another. One challenge with immunosequencing data is developing a systematic

framework to determine if the increase in T-cell clone frequency meets the criteria for clonal

expansion. Here, we describe a statistical framework that accounts for sampling and time-

dependent repertoire variability to detect T-cell clones that are differentially abundant in an

unbiased and quantitative manner.

In previous work by DeWitt et al, detection of clonally expanded T-cell clones was shown

to correlate with an immune response to the yellow fever vaccine [2]. This earlier method was

based on a Fisher’s exact test, which can also be implemented as a binomial test comparing

two proportions. Although the binomial model only accounts for random sampling variance

around clone frequency, clonal expansion detected using this method was still found to corre-

late with pharmacodynamic activity and clinical response across a wide range of studies in the

immuno-oncology setting [3–7]. Given that the T-cell repertoire is a highly dynamic system

that evolves over time, we hypothesized that incorporating time-dependent variability into the

differential abundance assessment would improve specificity for clinically relevant clonal

expansion by reducing the identification of T-cell clones whose frequencies are changing

within the range of normal physiology.

The approach presented here uses a beta-binomial model to incorporate time-dependent

variance in addition to the previously-captured sampling variance. We measured the variance

in T-cell repertoires between technical replicates as well as blood samples drawn 2 and 4 weeks

apart from ten healthy subjects. Variance between technical replicates did not contribute to

the identification of differentially abundant clones, but time-dependent variance indeed

affected this measure, resulting in tens of clones identified. We used the measured repertoire

variance over a two-week interval from these healthy donors to calibrate the allowable range of

time-dependent dispersion for the beta-binomial model. We then applied the calibrated beta-

binomial model to a urothelial cancer cohort to measure T-cell clonal expansion in the blood

after administration of an anti-PD-L1 immunotherapy. In these patients, we found that T-cell

clones identified as expanded in blood by the beta-binomial model were more likely to also

reside in the tumor microenvironment than clones identified with the binomial model. This

enrichment for tumor infiltrating lymphocytes (TILs) among expanded T-cell clones in the

peripheral repertoire also improved the overall correlation with clinical benefit.

Results

Comparison of the binomial model in technical replicates and time-course

blood samples

To characterize the performance of the binomial model (Eq 1) and illustrate the importance of

accounting for time-dependent biological variance, we analyzed T-cell clone frequencies in

technical replicates as well as samples collected at 2-week and 4-week intervals. Fig 1A shows

clone frequencies in a pair of technical replicates, which were sequenced on two aliquots from

the same gDNA pool. Application of the binomial model returned an average of 1.2 differen-

tially abundant clones across six comparisons performed between four technical replicates,

resulting in a false-positive-rate of 2.6E-4 (Fig 1A). In contrast, an average of 16.4 differentially

abundant clones at a false-positive-rate of 0.0028 were identified over a 2-week interval (Fig

1B) and an average of 19 differentially abundant clones at a false-positive-rate of 0.0031 were

identified over a 4-week interval (Fig 1C). Furthermore, the false discovery rate was higher for

clones above 0.1% using the binomial model due to increased power for detecting small

changes in clone frequency.
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Fig 1. Differential abundance analysis in technical replicates and samples collected over 2-week and 4-week intervals. Scatter plots of T-cell

clone frequencies (from the whole blood of a single donor) in technical replicates as well as samples collected every two weeks over a 4-week

period, with differentially abundant clones annotated in orange or cyan as determined by the binomial model (A–C) or the beta-binomial model

(D–F). For each time interval, T-cell clones with were tested for differential abundance (dark grey, orange, and cyan) and the remaining clones

(light grey) were excluded. Summary of the differential abundance analysis results comparing the performance of the binomial and beta-

binomial model in detecting differentially abundant clones (G) and the overall false-positive rate (H). Statistical significance was assessed in G

and H by Wilcoxon Rank Sum tests.

https://doi.org/10.1371/journal.pone.0213684.g001
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In order to account for this time-dependent variability in T-cell clone frequency, we first

characterized the observed variance in T cell counts between a given clone over a two-week

interval across all 10 subjects, defined as |kiA−kiB|. A linear mixed-effects model on log10-trans-

formed data found that the variance in T-cell counts across all subjects significantly increased

with the total T cell count, ki(A+B) (p< 0.001; Fig 2A). The residual variance, calculated by sub-

tracting the expected binomial variance from the observed variance, accordingly increased for

larger values of ki(A+B) and fit the modeled form, v = (b�log(ki(A+B))+a)2 (R2 = 0.60, p<<

0.001; Fig 2B). This approach permitted clone frequency and total T-cell count to define the

beta probability density and ultimately the additional variance incorporated by the beta-bino-

mial model in Eq 2. Consequently, normal biological time-dependent variance in T-cell clone

frequencies could be accounted for when assessing statistical changes in clone frequency

between two samples (Fig 1D–1F). Compared to the previous results with binomial model, we

found that the beta-binomial model significantly reduced the number of clones detected as dif-

ferentially abundant as well as the subsequent false-positive rate (Wilcoxon Rank Sum Test,

p< 0.05) across all time intervals (Fig 1G and 1H).

Characterization of statistical power

Statistical power to identify differentially abundant clones was estimated as a function of initial

clone frequency and frequency fold-change using a dilution experiment in which repertoires

from two different individuals were mixed at a range of specified ratios. These fixed ratios

allow us to control the expected fold-change in clone frequency when comparing two different

mixtures. Fig 3 shows the estimate of statistical power versus clone frequency and frequency

fold-change, ranging from 2-fold up to 20-fold. As expected, we have greater statistical power

to identify a clone as differentially abundant if its initial frequency is higher and/or the fold-

change in its frequency between the two samples is greater.

Fig 2. Dispersion parameter as a function of clone frequency in 10 healthy donors at week 2 and at week 4. (A) The

observed variance of |kiA−kiB| plotted for each nt across all ten subjects; blue lines are LOESS curves representing the data

trends of each subject. (B) Fit of the modeled residual variance (orange line), defined as (b�log(ki(A+B))+a)2, to the observed

residual variance (gray points) in T-cell counts between two samples from one blood donor; observed residual variance was

calculated as the absolute difference between the observed variance of |kiA−kiB| and the expected variance due to binomial

sampling, which follows the form np(1−p), where n is equal to kiA and p is the frequency of observing a given pair of kiA and

kiB for each value of ki(A+B).

https://doi.org/10.1371/journal.pone.0213684.g002
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Evidence for enrichment of TIL clones

We re-analyzed a previously published urothelial cancer cohort from Snyder et al (Complete/

Partial Responders: n = 14; Stable/Progressive Disease: n = 22) to compare the detection of

TILs expanded in the peripheral repertoire with the beta-binomial and binomial models [3].

T-cell clones identified as expanded in the blood by each model were annotated as TILs based

on their presence in pre-treatment tumor samples. As shown in Fig 4A, the beta-binomial not

only increases the statistical resolution between responders (CR/PR) and non-responders

(SD/PD) over the binomial model (p = 0.01 vs p = 0.13) but also increases the proportion of

expanded clones identified as TILs for patients responding to therapy (p = 0.08). The enhanced

specificity for the peripheral expansion of TILs with the beta-binomial is largely due to fewer

clones being identified as expanded rather than an increase in TIL clones, with mean differ-

ences of approximately -40% and 0% relative to the binomial model, respectively (Fig 4B).

Fig 3. Estimated statistical power to detect significantly expanded clones as a function of pre-treatment clone

frequency. Comparing T-cell repertoires created from mixtures of samples enabled identification of T-cell clones with

expected changes in frequencies relative to a baseline sample. Power, defined as the probability of detecting a clone as

significantly greater in frequency in sample B, is plotted versus baseline frequency (Sample A, x-axis) and the expected

fold change based on the mixtures being compared. The dashed line indicates the frequency bin at which the model

requires a minimum total template count of 5 between sample A and B, which reduces the number of T-cell clone

frequencies being tested for significance.

https://doi.org/10.1371/journal.pone.0213684.g003
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Discussion

In healthy individuals, we found that the number of T-cell clones detected as expanded

increases as the time interval between Sample A and B increases. This time-dependence high-

lights the importance of establishing a prior on typical biological variance within the T-cell

repertoire, especially over weekly and monthly time intervals commonly used for collecting

Fig 4. Comparison of the binomial and beta-binomial models of differential abundance and their ability to enrich

for expanded TILs in the peripheral repertoire of responders to IO treatment. (A) Percentage of expanded clones in

the peripheral repertoire also found in the pre-treatment tumor repertoire, i.e., TILs, for a cohort of urothelial patients

treated with atezolizumab (n = 26). Patients were categorized by RECIST outcomes as responders (CR/PR) or non-

responders (SD/PD). (B) Percent change in the number of peripheral repertoire clones identified as expanded and the

subset of circulating TIL clones expanded with the beta-binomial model relative to the binomial model. Error bars

represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0213684.g004

Improved specificity for clinically-relevant T cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0213684 March 14, 2019 6 / 10

https://doi.org/10.1371/journal.pone.0213684.g004
https://doi.org/10.1371/journal.pone.0213684


clinical trial patient samples. We expect that the biological variance may further increase if

much larger time intervals were used, e.g., months to years. By training a new beta-binomial

model with data from healthy individuals, identification of differentially abundant T-cell

clones now accounts for both random sampling from a diverse repertoire and normal time-

dependent biological variability. In effect, the clonal expansion measured by the beta-binomial

differential abundance model should display reduced biological noise and subsequently enrich

for clones responding to the pharmacologic or pathologic setting-of-interest.

In a cohort of urothelial cancer patients treated with atezolizumab, expansion of TILs in the

peripheral repertoire was previously reported to correlate with RECIST assessment [3]. Other stud-

ies have similarly analyzed the overlap between TILs and the peripheral repertoire and found cor-

relations between patient outcomes or drug activity and expansion of T-cell clones [6,8–10]. The

association of peripherally expanded TILs with treatment outcomes has identified them as putative

therapeutic effectors and as valuable biomarkers of clinical efficacy. The re-analysis presented here

of the urothelial cancer cohort demonstrated that the beta-binomial model, by accounting for bio-

logical variability over time, reduces the total number of clones identified as expanding without

affecting the number of TIL clones detected. Consequently, this model enriches for TIL clones

within the expanded T-cell population in the blood compared to the binomial model and strength-

ens the association between expanded clones and clinical benefit. This strengthened association

with clinical outcomes suggests that the statistical framework presented here a) represents an

improvement over existing methods to quantify clonal expansion and b) may be similarly applica-

ble as a biomarker for assessing pharmacodynamic activity and patient response to therapy.

However, tumor samples are not always available for sequencing. We, and others, have also

found that assessment of clonal expansion from longitudinal blood samples alone can be lever-

aged for optimizing therapeutic dosing and timing regimens as well as the assessment of novel

drug combinations [5,7,11]. In addition, companion diagnostics are now increasingly com-

mon to identify patients for which there is an a priori expectation of benefit. Hence, early mea-

sures or predictors of therapeutic response, such as clonal expansion, have broad clinical value.

Methods

Training cohort

Whole blood samples collected from 10 healthy donors at three time points with 2-week inter-

vals between collections were purchased from AllCells, LLC (Emeryville, CA). Among the 10

donors, there were 3 females and 7 males with ages ranging from 29 to 64 with an average age

of 43. No immune events such as infections were documented for these donors over the course

of collection. Genomic DNA was extracted at Adaptive Biotechnologies (Seattle, WA) for sub-

sequent immunosequencing.

Immunosequencing

Immunosequencing of the CDR3 regions of human TCRβ chains was performed using the

immunoSEQ Assay (Adaptive Biotechnologies, Seattle, WA). Extracted genomic DNA was

amplified in a bias-controlled multiplex PCR, followed by high-throughput sequencing.

Sequences were collapsed and filtered in order to identify and quantitate the absolute abun-

dance of each unique TCRβ CDR3 region for further analysis as previously described [1].

Statistical method for identification of expanded T cell clones in blood

DeWitt et al previously reported a method for identifying differentially abundant T-cell clones

between two samples [2]. The method employed Fisher’s exact test to compute a p-value for
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each T-cell clone, identified by a unique TCRβ rearrangement, against the null hypothesis that

the T-cell clone frequency was the same in both Sample A and Sample B. In practice, this pro-

cedure can also be implemented in terms of the binomial distribution to estimate the probabil-

ity (θi) for each T-cell clone i of counting ki templates given n total T cells in a sample

according to Eq 1:

P kijyi; nð Þ ¼
n!

ki!ðn � kiÞ!
y
ki
i ð1 � yiÞ

n� ki ð1Þ

Eq 1 permits testing against the null hypothesis that θA = θB = θ, where θ can be estimated

from (kiA+kiB)/(nA+nB), where subscript A denotes Sample A and B denotes Sample B; in

other words, this binomial implementation is testing the null hypothesis that the frequency in

Sample B, compared to the average frequency between the two samples, is within the binomial

variance expected from sampling n T cells in Sample B.

In Eq 1, variance in observed clone frequencies is expected to arise from sampling a diverse

pool of T cells and driven solely by actual clone frequency and the number of T cells analyzed.

To incorporate additional variance into the model with the goal of modeling natural, time-

dependent variation of T-cell clone frequencies, we incorporated the beta distribution as a

prior for the binomial parameter θ in a beta-binomial model. The beta distribution yields a

probability density function for each clone frequency, parameterized by two shape parameters

β1 and β2. Thus, incorporating the beta probability density into Eq 1 permits additional vari-

ance around the clone frequency θ and estimates the probability of observing a given fre-

quency in Eq 2 [12,13]:

Pðyjki; n; b1; b2Þ / y
kiþb1 � 1

ð1 � yÞ
n� kiþb2 � 1

ð2Þ

In implementing the posterior distribution of Eq 2, we reparametrized the shape coeffi-

cients with mean frequency, μ, and variance, v, by β1 = μv and β2 = (1−μ)v [12]. Using this

reparametrized implementation, we trained and modeled coefficients β1 and β2 as a function

of the total template counts observed for a T-cell clone in Sample A and Sample B. The training

method involves determining the mean frequency of all observations at given total template

count, ki(A+B) = kiA+kiB, and modeling variance as v = (b�log(ki(A+B))+a)2, where kiA is the tem-

plate count in sample A and kiB is the templates count in sample B. To apply the implementa-

tion of Eq 2 after training, the mean frequency is estimated from ki(A+B)/n(A+B) and the

variance is determined from the modeled variance with total template counts in Sample A and

B, kiA+kiB, as input parameters to determine β1 and β2 for that clone frequency. The python

script implementing both the binomial and beta-binomial models and associated data is avail-

able at: https://github.com/jrytlewski/beta_binomial_paper.

To determine p-values, we calculate and sum the exponent of the log-likelihood of the beta-

binomial model (Eq 1 with the Eq 2 posterior) for each template count ranging from 0 to kiA
for a one-sided test. For a two-sided test, we repeat the summation for all template counts

yielding a point estimate probability value greater than and less than the count observed. To

control for multiple testing, we excluded T-cell clones where ki(A+B)<5 and employ the Benja-

mini-Hochberg (BH) correction. We considered T-cell clones with a BH-adjusted false discov-

ery rate (FDR) less than 0.01 significant and differentially abundant and identified these

rearrangements as expanded or contracted clones based on the direction of their frequency

change.
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