
sensors

Article

Ultrasound Assessment of Honey Using Fast Fourier Transform

Montaña Rufo 1,2 , Antonio Jiménez 1,2,* , Jesús M. Paniagua 1,2 and Alberto González-Mohíno 2,3

����������
�������

Citation: Rufo, M.; Jiménez, A.;

Paniagua, J.M.; González-Mohíno, A.

Ultrasound Assessment of Honey

Using Fast Fourier Transform. Sensors

2021, 21, 6748. https://doi.org/

10.3390/s21206748

Academic Editors: Angelos Filippatos

and Maik Gude

Received: 14 September 2021

Accepted: 8 October 2021

Published: 11 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Physics, School of Technology, University of Extremadura,
Avenida de la Universidad s/n, 10003 Cáceres, Spain; mmrufo@unex.es (M.R.); paniagua@unex.es (J.M.P.)

2 Research Institute of Meat and Meat Product, University of Extremadura, Avenida de la Universidad s/n,
10003 Cáceres, Spain; albertogj@unex.es

3 Department of Food Technology, Faculty of Veterinary, University of Extremadura, Avenida de la Universidad s/n,
10003 Cáceres, Spain

* Correspondence: ajimenez@unex.es

Abstract: Ultrasound inspection permits the characteristics of some foodstuffs to be determined
easily and cheaply. This experimental study included the determination of various ultrasound
parameters provided by the fast Fourier transform (FFT) which had not previously been considered
in testing the physical properties of different varieties of honey. These parameters are practically
independent of the criteria adopted for their calculation, unlike other ultrasound variables such as
pulse velocity or attenuation whose determination can vary depending on those criteria. The study
was carried out on four varieties of honey (Eucalyptus, Heather, Thyme, and Thousand Flowers)
using 500-kHz transducers. A simultaneously performed honey texture analysis (Texture Profile
Analysis-TPA) showed significant linear correlations between the ultrasound variables provided by
FFT and the texture parameters. The FFT parameters distinguished between each of the four honey
varieties studied.

Keywords: non-destructive ultrasound; honey; fast Fourier transform (FFT); texture profile analysis (TPA)

1. Introduction

Honey is a food made by the bee Apis mellifera transforming the nectar of the flowers
and specific substances of their own. It is traditionally used as a sweetener and for thera-
peutic applications. Honey is a very complex product whose nutritional composition is
mainly of monosaccharides which include a mixture of glucose and fructose, besides water
and other minor components such as proteins, enzymes, amino acids, phenolic compounds,
minerals, vitamins, and organic acids [1]. Interest in different types of honey has increased
due to their different nutritional, sensorial and possible therapeutic characteristics [2].
Of the two varieties of honey—multifloral and monofloral—the latter is more valued by
consumers [3].

The flavor, aroma, and phenolics content of honeys is strongly associated with their
pollen, nectar, resin, oil, botanical source, geographical area, environmental storage con-
ditions, and the bee subspecies involved in their production. Consequently, honeys with
different floral origins present distinct bioactive properties [4], so that an ability to differen-
tiate between varieties of honey, characterizing them and determining their quality, would
be of acute importance for consumers. In recent years, various efforts have been made to
address the authenticity [5], traceability [6], and intrinsic quality of honeys by applying
techniques such as chromatography, nuclear magnetic resonance (NMR), and isotope-ratio
mass spectrometry (IRMS) [7]. Most of these techniques, however, are destructive, and
others, such as microscopic analysis, are not valid for all types of honey varieties [8].

Several new non-destructive techniques (X-ray, NIR spectroscopy, ultrasound, etc.)
have been adapted for the measurement of a wide range of quality parameters during food
processing [9]. Examples of ultrasound inspection in particular can be found in various
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studies in the recent literature—monitoring the pork loin cooking process [10], character-
izing edible oils [11], and monitoring coagulation in cheesemaking [12,13]. Some studies
have used ultrasound parameters to characterize honey. For instance, Singh et al. [14] were
able to prove adulterations of honey using the speed of ultrasound passing through honey
samples. These kinds of parameters have also been used recently to distinguish honeys at
different temperatures [15,16]. González-Mohino et al. [17] used ultrasound attenuation to
characterize different varieties of honey.

The objective of the present study was to use different ultrasound parameters extracted
by the fast Fourier transform (FFT) technique to characterize and distinguish different
types of honey (Eucalyptus, Heather, Thyme, and Thousand Flowers). This transform
gives a frequency domain representation of the amplitude and phase of a continuous signal
acquired in the time domain, speeding up the process in comparison with the calculation
of discrete Fourier transform (DFT) which would be computationally very intensive. Thus,
the procedure used to calculate and plot the FFT identifies the frequency range covering the
received ultrasound pulse signal, particularly the 25th, 50th, and 75th percentile frequencies
corresponding to the cumulative frequency periodogram and the center frequency (that of
maximum amplitude) for each sample. In addition, these parameters were correlated with
the data of a textural study that had been carried out in samples of these kinds of honey [17].
To the best of our knowledge, there have been no previous studies in the scientific literature
that correlate data from these two techniques. The study is thus intended to contribute to
knowledge about the use of the FFT in honey characterization, obtaining parameters that
have not previously been considered for this kind of product. In addition, the determination
of the aforementioned FFT parameters is practically independent of the criteria adopted by
the analyst for their calculation. This is unlike the case with other ultrasound parameters
such as velocity or attenuation whose determination can vary depending on the criteria
adopted [18]. We believe that the information obtained in this work is a first step towards
implementing effective and rapid methods that can be used to verify the authenticity of
a product as highly valued as honey. It provides objective tools to control the quality of
different varieties of honey, based on the determination of non-destructive parameters
in them. The existence of mathematical relationships between some of the studied non-
destructive parameters and other destructive ones, indicators of the quality of honey, will
specify the benefits that the new techniques should offer so that they can totally or partially
replace conventional ones. We must add that ultrasounds do not physically, chemically, or
biologically alter the product. In this way, the thematic scope of this paper has a vast field
of applications, is innovative and, of course, has a great potential impact, thus contributing
to the food safety and quality needs.

2. Materials and Methods

Four varieties of honey were analyzed—three of them monofloral, Eucalyptus, heather,
and, Thyme and one multifloral, Thousand Flowers. They all belong to a brand “Sabores
del Guijo” with a Designation of Origin and are produced in Guijo de Santa Bárbara,
Cáceres (Spain). The honey was heated up to 45 ◦C and ultrasonic inspection was carried
out at different temperatures, 45 ◦C, 40 ◦C, 35 ◦C, 30 ◦C, and 25 ◦C while the samples were
cooled. Two samples of every varieties of honey were analyzed.

To determine the ultrasound parameters, two Olympus Panametrics-NDT Model
V318-SU (Olympus NDT Inc, Waltham, MA, USA), piezoelectric transducers (frequency
500 kHz, 19 mm in diameter, 61.93% at 6 dB bandwidth) were used to transmit the signals
in through-transmission (T-T) mode. It is known that this and the pulse-echo mode yield
very similar results [13], so that one can say that using one or the other is of little relevance.
Figure 1 shows the experimental set-up. At the back of the apparatus, the metal structure
designed to arrange the two transducers in such a way as to ensure their perfect face-to-face
alignment can be seen, with the sample placed in the middle. In this case, the receiver
transducer was placed in the upper part of the jar slightly submerged in the honey sample,
and the emitter was always placed against the bottom glass of the jar. Near-field length
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(N = 2.12 cm) and beam spread angle (ϕ = 15.84◦) have also been studied considering an
ultrasound pulse velocity of 2125 m/s. The transducers were connected to an Olympus
Model 5077PR (Olympus NDT Inc, Waltham, MA, USA) Pulser–Receiver shown at the left
of Figure 1, which emitted and received the signal from the transducers. On this signal’s
reception, the InfiniiVision DSO-X 3032A oscilloscope (Keysight Technologies Malaysia Sdn
Bhd, Penang, Malaysia) shown was responsible for its acquisition and digitalization. More
methodological details can be consulted in González-Mohino et al. [17]. The separation
between transducers was 8.5 cm, ensuring measurements in the far field.
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Figure 1. Photograph of the measurement set-up for the determination of ultrasound parameters.

2.1. Ultrasound Parameters

Ultrasound parameters were determined from the fast Fourier transform (FFT) of the
A-scan. In particular, these parameters were the central frequency of the FFT, and its 25th,
50th, and 75th percentile frequencies.

By way of example, Figure 2 shows an A-scan obtained from the ultrasound testing of
a Eucalyptus honey sample, in which consecutive echoes caused by reflections between
the transducers can be seen. The FFT technique used to calculate the aforementioned
parameters is an algorithm that speeds up the process of determining the amplitude and
phase in the frequency domain of a continuous signal acquired in the time domain. The FFT
obtained from the aforementioned A-scan is shown in Figure 3. The plot of the amplitude
of the signal in the frequency domain allows one to visualize the frequency range of the
received signal, and the different contributions of each frequency to the signal obtained
after it has passed through the sample. In this representation, the central frequency is that
with maximum amplitude. From this spectrum, one can derive certain properties of the
sample under study.
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Figure 3. Fast Fourier transform of the signal shown in Figure 2.

One sees in Figure 3 that the central frequency is approximately 265 kHz, a frequency
clearly lower than the 500 kHz central frequency of the transducers. This fact was the case in
all the inspections carried out. Furthermore, unlike what might have been expected a priori,
the FFT plot is far from approaching a Gaussian shape. This is why it was considered more
useful to compute the cumulative periodogram for each sample, and take as references
the values corresponding to the 25th, 50th, and 75th percentiles of the received signal.
The interpretation is that, if the 25th percentile of the cumulative frequency is at x kHz
for a particular inspection, this means that 25% of the received signals had frequencies
below x kHz. As an example, Figure 4 shows the cumulative frequency periodogram
corresponding to the FFT of Figure 3. For each A-scan and subsequent FFT and frequency
periodogram, the values of the different percentiles of the signals received are denoted as
FFT25, FFT50, and FFT75. By way of example, the values of these percentiles of the signals
received and shown in Figure 4 were 286 kHz for FFT25, 359 kHz for FFT50, and 427 kHz
for FFT75.



Sensors 2021, 21, 6748 5 of 10Sensors 2021, 21, 6748 5 of 11 
 

 

 
Figure 4. Cumulative frequency periodogram of the fast Fourier transform shown in Figure 3. The 
25th, 50th, and 75th percentiles of the frequencies are indicated. 

2.2. Texture Analysis 
The texture analysis was carried out using the procedure described in a previous pa-

per [17]. The parameters measured were: adhesiveness (Nxs), chewiness (N), hardness, 
and gumminess (N). The study was carried out in triplicate at three temperatures; 25 °C, 
30 °C, and 35 °C, which are usually the storage temperatures of honey [17]. 

3. Results and Discussion 
3.1. Fast Fourier Transform 

Figure 5 shows the cumulative frequency periodograms corresponding to the honey 
samples at 40 °C. As can be observed, the samples presented quite different behaviors, 
with that of a Thousand Flowers being particularly distinguishable. In overall terms, the 
Thousand Flowers variety favors the transmission of higher frequency ultrasound waves 
than those allowed by the other varieties. For example, 70% of the Thousand Flowers va-
riety’s frequency components are below 500 kHz, while this proportion is clearly greater 
in the other three varieties. 

Figure 4. Cumulative frequency periodogram of the fast Fourier transform shown in Figure 3. The
25th, 50th, and 75th percentiles of the frequencies are indicated.

2.2. Texture Analysis

The texture analysis was carried out using the procedure described in a previous
paper [17]. The parameters measured were: adhesiveness (Nxs), chewiness (N), hardness,
and gumminess (N). The study was carried out in triplicate at three temperatures; 25 ◦C,
30 ◦C, and 35 ◦C, which are usually the storage temperatures of honey [17].

3. Results and Discussion
3.1. Fast Fourier Transform

Figure 5 shows the cumulative frequency periodograms corresponding to the honey
samples at 40 ◦C. As can be observed, the samples presented quite different behaviors,
with that of a Thousand Flowers being particularly distinguishable. In overall terms, the
Thousand Flowers variety favors the transmission of higher frequency ultrasound waves
than those allowed by the other varieties. For example, 70% of the Thousand Flowers
variety’s frequency components are below 500 kHz, while this proportion is clearly greater
in the other three varieties.

Table 1 lists the results for the FFT central frequency and the 25th, 50th, and 75th
percentiles for each variety and batch of honey. As can be seen, the central frequency is
lower than the nominal frequency of the transducers for all the samples. Indeed, FFT50
is lower than 500 kHz in most cases. Unfortunately, we could find no published data
with which to contrast the present results. One observes in the data of the table that, at
temperatures of 35 ◦C and above, the separation of the Thousand Flowers honey frequency
values from those of the other varieties is clear, while these other varieties (Eucalyptus,
Heather, and Thyme) differ very little from each other.
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Figure 5. The cumulative frequency periodograms corresponding to the honey samples at 40 ◦C.
(H = Heather, Eu = Eucalyptus, Tf = Thousand Flower, and T = Thyme).

Table 1. The mean 25th, 50th, and 75th percentile and central fast Fourier transform (FFT) frequencies (in kHz) of the
received signal, and the error (eFFT). (H = Heather, Eu = Eucalyptus, Tf = Thousand Flower, T = Thyme).

Parameter
Measurement
Temperature

Honey Types

H1 H2 Eu1 Eu2 Tf1 Tf2 T1 T2

FFT25

45 ◦C 347 373 348 341 431 468 331 357
40 ◦C 330 345 326 300 391 408 313 330
35 ◦C 313 333 304 270 351 356 295 291
30 ◦C 300 286 288 262 287 295 273 279
25 ◦C 278 273 249 259 251 258 247 249

FFT50

45 ◦C 414 430 382 408 473 537 413 423
40 ◦C 401 410 359 371 440 458 395 406
35 ◦C 388 393 337 352 408 413 378 381
30 ◦C 372 366 320 339 353 374 357 370
25 ◦C 346 340 308 317 297 304 303 313

FFT75

45 ◦C 473 483 469 467 523 641 492 479
40 ◦C 461 463 436 438 491 513 450 462
35 ◦C 449 446 419 418 458 477 436 441
30 ◦C 431 423 415 410 416 431 419 437
25 ◦C 408 406 385 381 351 363 387 392

FFTcentral

45 ◦C 405 434 465 404 438 477 423 440
40 ◦C 351 427 365 308 433 431 400 403
35 ◦C 296 416 265 226 427 427 377 409
30 ◦C 357 274 270 273 276 410 268 414
25 ◦C 286 270 272 278 282 275 271 272

eFFT

45 ◦C 4 4 3 4 6 4 3 3
40 ◦C 3 6 3 4 4 5 2 3
35 ◦C 3 6 3 3 4 7 2 3
30 ◦C 2 4 3 3 4 7 2 3
25 ◦C 3 4 4 3 4 6 4 3
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Figure 6 shows the evolution of the FFT50 during the aforementioned cooling process
for both batches of the four varieties of honey. The trend of higher ultrasound frequencies
is more poorly transmitted as the honey cools can be clearly seen. While this trend is true
for all four varieties studied, there are differences depending on the variety. This pattern
for FFT50 is repeated for FFT25 and FFT75, and may be related to less presence of solids
(crystals) in the samples at the warmer temperatures, thus allowing higher frequencies to
pass through more easily [19]. Table 2 lists the linear correlations parameters (slope, m;
intercept, n; correlation coefficient, r) between the FFT25, FFT50, FFT75, FFTcentral, and
the temperature of the honey. As can be seen in the table, all of these correlations are
strong. As was to be expected due to the aforementioned non-Gaussian behavior, the
correlations related to FFTcentral are weaker than those of the rest of the FFT parameters.
The correlation parameters allow one to distinguish between different types of honey. In
particular, the slope, m, distinguishes Thousand Flowers from the other three honeys for
every FFT percentile, e.g., for FFT25, m is 10 for Thousand Flowers but around 4 for the
others (Thyme, Eucalyptus, and Heather). A close examination of the intercept, n, lets one
discriminate among the other three honeys. In particular, the intercept, n, for FFT25, FFT50
and FFT75 is able to distinguish Heather from Thyme, being greater for the former in all
three cases. Its FFT50 and FFT75 values allow Eucalyptus and Heather to be differentiated,
with it again being greater for Heather. Hence, ultrasound frequency percentiles stand out
as being parameters with which to discern differences between some types of honey in the
temperature range studied.
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FFTcentral and the temperature of the honeys (H = Heather, Eu = Eucalyptus, Tf = Thousand Flowers, T = Thyme).

Honey
FFT25 FFT50 FFT75 FFTcentral

m n r m n r m n r m n r

H 4.3 ± 0.5 168 ± 16 0.957 3.9 ± 0.3 250 ± 10 0.980 3.54 ± 0.18 320 ± 6 0.990 7.1 ± 1.9 100 ± 70 0.801
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3.2. Correlation Study

An exhaustive analysis of the behavior of honey texture parameters has been reported
in a previous work [17]. In this subsection, therefore, we shall describe the results of the
linear correlation analysis between the texture parameters and the FFT parameters measured
at different temperatures (Table 3). The ultrasound parameters that presented significant
correlations with texture parameters were FFT50 and FFT75, although there was a dependence
on temperature. FFT50 was negatively correlated with hardness, gumminess, and chewiness,
and positively with adhesiveness at 30 ◦C. FFT75 showed the same pattern of correlations, but
now at 25 ◦C as well as 30 ◦C. While FFT25 exhibited the same type of behavior, it was with
much lower significance. The correlations for FFTcentral were not only less significant, but even
in some cases contradictory to the trends shown by the other ultrasound parameters. This once
again reflects the inappropriateness of considering this parameter when characterizing honey
samples, in this case in particular with regard to their texture. By way of example, Figure 7 is
a plot of the linear regression analysis between gumminess and FFT50 at 30 ◦C. These results
were expected because the honeys changed in consistency with temperature, being thinner at
35 ◦C than at 30 ◦C, and thinner still at 40 ◦C. Indeed, Alfonso et al. [20] noted that the viscosity
of all kinds of honey decreases with temperature. In addition, other researchers have shown
that the complex viscosity of honey samples is significantly influenced by the temperature and
their soluble solids’ concentration [19,21]. In samples, such as the thicker ones, with greater
amounts of undissolved solids, higher frequencies would be proportionally more attenuated
than lower ones. Thus, the more fluid a honey is (and, consequently, the lower are the values
of its hardness, gumminess, and chewiness, and the higher those of adhesiveness), whether
because of its composition or because of its being at a higher temperature, the more easily higher
ultrasound frequencies are transmitted (and hence the greater values of the FFT percentiles).
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Table 3. Correlation coefficient, r, of the linear correlations between the ultrasound FFT frequencies
and the textural parameters of the honey (* p < 0.05).

Temperature Adhesiveness Chewiness Gumminess Hardness

FFT25

35 ◦C 0.13 −0.05 −0.01 −0.09
30 ◦C 0.11 −0.34 −0.04 −0.30
25 ◦C 0.08 −0.13 −0.26 −0.19

FFT50

35 ◦C 0.28 −0.21 −0.19 −0.24
30 ◦C 0.75 * −0.81 * −0.82 * −0.82 *
25 ◦C 0.33 −0.32 −0.51 −0.41

FFT75

35 ◦C 0.21 −0.11 −0.09 −0.17
30 ◦C 0.69 −0.75 * −0.67 −0.72 *
25 ◦C 0.63 −0.58 −0.79 * −0.69

FFTcentral

35 ◦C 0.63 −0.59 −0.57 −0.64
30 ◦C 0.39 −0.45 −0.46 −0.42
25 ◦C −0.37 0.32 0.26 0.32

4. Conclusions

The frequencies of the ultrasound waves propagating through the honey samples
were generally lower than the transducers’ nominal frequency. The FFT results showed a
trend for higher ultrasound frequencies to be better transmitted as the honeys warm.

The statistically significant correlations found between the FFT ultrasound parameters
and the texture parameters of the four honey samples add value to the utility of this
non-destructive technique. Of particular interest, because of their novelty with respect
to the existing literature on the topic, were the correlations observed between hardness,
adhesiveness, gumminess, chewiness, and the frequency components. These correlations
lend further support to the use of ultrasound for the characterization of honey since
they are properties that can directly contribute to assessing the impact that a honey’s
content of sugars and moisture has on its acoustic properties. Indeed, the FFT frequency
components at the temperatures above 35 ◦C made it possible to distinguish the Thousand
Flowers variety from the rest. Moreover, FFT25, FFT50, and FFT75 increased linearly with
temperature over the range studied, and the study of the slope and intercept of these linear
correlations enabled each variety to be distinguished from the others.
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