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Abstract The transcription factor p53 is the best-known tumor suppressor, but its sibling p63 is

a master regulator of epidermis development and a key oncogenic driver in squamous cell

carcinomas (SCC). Despite multiple gene expression studies becoming available, the limited

overlap of reported p63-dependent genes has made it difficult to decipher the p63 gene

regulatory network. Particularly, analyses of p63 response elements differed substantially among

the studies. To address this intricate data situation, we provide an integrated resource that enables

assessing the p63-dependent regulation of any human gene of interest. We use a novel iterative de

novo motif search approach in conjunction with extensive ChIP-seq data to achieve a precise global

distinction between p53-and p63-binding sites, recognition motifs, and potential co-factors. We

integrate these data with enhancer:gene associations to predict p63 target genes and identify

those that are commonly de-regulated in SCC representing candidates for prognosis and

therapeutic interventions.

Introduction
In contrast to the tumor suppressor p53 with its extensive set of target genes controlling the cell

cycle and apoptosis (Fischer, 2017; Sammons et al., 2020), its phylogenetically ancient sibling p63

(DNp63) governs epidermis development (Mills et al., 1999; Yang et al., 1999) and is an oncogenic

driver of squamous cell carcinoma (SCC) (Cancer Genome Atlas Research Network et al., 2018;

Gatti et al., 2019) that is overexpressed or amplified in SCCs, which depend on its expression

(Ramsey et al., 2013). Together with p73, p63, and p53 form the p53 transcription factor (TF) family

that shares a highly conserved DNA binding domain (DBD) through which they bind to very similar

DNA recognition motifs. The mechanisms that enable these sibling TFs to shape their unique gene

regulatory network (GRN) leading to the different phenotypic control, however, remain poorly

understood.

The TP53 and TP63 genes encode for two major isoform groups that are controlled by distinct

promoters leading to transcripts differing in their N-terminus (Murray-Zmijewski et al., 2006). In

the case of TP53, the longest isoform, p53a, is ubiquitously expressed while the alternative intronic

promoter has little activity across virtually all tissues. Conversely, the usage of the two TP63 pro-

moters is highly cell type-dependent. For instance, the long isoform TAp63 is predominantly

expressed in germ cells, while the smaller transcript, DNp63, is most copious in stratifying epithelia

(Sethi et al., 2015). Similar to p53, alternative splicing leads to a, b, and g protein isoforms that dif-

fer in their C-terminus (Murray-Zmijewski et al., 2006). While both TAp63 and DNp63 may bind to

DNA through a specific binding domain, DNp63 lacks the canonical N-terminal transactivation
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domain (TAD) (Yang et al., 1998) and has long been thought to be a dominant-negative regulator

of other p53 family members or its own isoforms (Gebel et al., 2016; Yang et al., 1998). However,

DNp63 has also been shown to harbor alternative TADs, that endow transactivation activity

(Helton et al., 2006; King et al., 2003; Yang et al., 2006). Notably, many DNp63-binding sites are

associated with enhancer regions, where DNp63 has been proposed to ‘bookmark’ genes that are

expressed in stratifying epithelia (Karsli Uzunbas et al., 2019; Kouwenhoven et al., 2015a; Lin-

Shiao et al., 2019; Qu et al., 2018; Somerville et al., 2018). Here, we focus on the most widely

expressed isoforms p53a (hereafter p53) and DNp63 (hereafter p63).

The p53 TF family shares many binding sites, but all three family members have been shown to

bind to substantial sets of unique target genes (Lin et al., 2009; McDade et al., 2014). Indeed,

there are differences in the DBDs, for example regarding thermostability, hydrophobic potentials

(Enthart et al., 2016), zinc-coordination (Lokshin et al., 2007), and redox sensitivity (Tichý et al.,

2013). In addition, the different C-terminal domains (CTD) of p53 family members may also affect

their DNA binding specificity (Sauer et al., 2008). p53 binds to a canonical 20 bp response element

(RE) made of two decameric half-sites that both contain the sequence RRRCWWGYYY (R = A/G;

W = A/T; Y = C/T). p53 has also been shown to bind to decameric half-sites separated by spacers or

to single half-sites (Kitayner et al., 2010; Menendez et al., 2013; Vyas et al., 2017). Results from

systematic evolution of ligands by exponential enrichment (SELEX) (Ortt and Sinha, 2006;

Perez et al., 2007) and high-throughput analyses of chromatin immunoprecipitation (ChIP)

(Kouwenhoven et al., 2010; McDade et al., 2012; Yang et al., 2006) yielded p63 binding motifs

with high similarity to the p53RE but still showed some unique characteristics. These unique charac-

teristics identified for p63REs, however, differed substantially between the studies.

While multiple genome-wide p63 gene expression datasets became available in recent years, our

understanding of the p63 GRN remains incomplete. This is in part due to the limited overlap of the

p63-dependent genes identified in individual studies (Kouwenhoven et al., 2015b). Also, the fre-

quent binding of p63 to enhancers (Kouwenhoven et al., 2015a; Lin-Shiao et al., 2019; Lin-

Shiao et al., 2018; Qu et al., 2018; Somerville et al., 2018) and the difficulty to associate such

enhancers with target gene regulation adds another level of complexity to the quest of describing

the GRN. To overcome these limitations, we utilize a recently developed meta-analysis approach

(Fischer et al., 2016a), which helped us to dissect the GRNs of the mouse and human orthologue of

p53 (Fischer, 2020; Fischer, 2019). The analysis rests upon a ranking of potential p63 target genes

based on the number of datasets supporting a p63-dependent regulation. In addition, we utilize the

wealth of recent p63 and p53 ChIP-seq studies to establish a more precise global distinction

between p53- and p63-binding sites and their underlying REs. This approach could serve as a blue-

print to distinguish binding site specificities of TF siblings. Further integration of gene expression

studies with the binding data and enhancer:gene associations enables us to predict high-probability

direct p63 target genes.

Results

The p63 gene regulatory network
To identify genes commonly regulated by p63 across cell types and tissues, we employed a previ-

ously established meta-analysis approach, that has been helpful to infer core GRNs for human and

mouse p53, the viral oncoprotein E7 and the cell cycle GRN (Fischer, 2019; Fischer et al., 2017;

Fischer et al., 2016a; Fischer et al., 2014). From 11 genome-wide studies (Abraham et al., 2018;

Bao et al., 2015; Carroll et al., 2006; Gallant-Behm et al., 2012; Karsli Uzunbas et al., 2019; Lin-

Shiao et al., 2019; Saladi et al., 2017; Somerville et al., 2018; Watanabe et al., 2014; Wu et al.,

2012; Zarnegar et al., 2012; Supplementary file 1), 16 publically available gene expression data-

sets were integrated to generate a specific p63 Expression Score (Supplementary file 2). The data-

sets have been obtained from knockdown (n = 12) or overexpression experiments (n = 4) of p63 in

primary keratinocytes (n = 3), the keratinocyte cell line HaCaT (n = 2), the foreskin fibroblast cell line

BJ (n = 1), the breast epithelial cell line MCF10A (n = 4), the squamous carcinoma cell lines H226

(n = 2), KYSE70 (n = 1), and FaDu (n = 1), as well as the pancreatic ductal adenocarcinoma cell lines

BxPC3 (n = 1) and SUIT2 (n = 1) (Figure 1A and B and Supplementary file 1).
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To illustrate the utility of our approach, we selected 30 genes from various p63 Expression Score

groups reflecting commonly up- and down-regulated ones (Figure 1C). We noted lower consistency

across the data on p63-dependent gene regulation as compared to previous meta-analyses on

human and mouse p53 (Fischer, 2019; Fischer et al., 2016a). In contrast to the recent investiga-

tions, data integrated here are based on a higher number of experiments in primary cells and a com-

parably lower number of replicates. Thus, the reduced consistency may also reflect the higher

variance as opposed to data from more homogenous cell lines. Furthermore, p63-depleted cells are

less viable, and the global decrease in mRNA levels may confound effects. Despite this, our

approach identified genes that are commonly altered by p63.

We next performed gene set enrichment analysis (GSEA) for p63-dependently regulated genes

using MSigDB gene sets (Subramanian et al., 2005). In agreement with the function of p63 as an

essential proliferation factor (McDade et al., 2011; Senoo et al., 2007; Truong et al., 2006), epi-

dermal development regulator (Mills et al., 1999; Yang et al., 1999), and MYC network activator

(Wu et al., 2012), we find that genes commonly up-regulated by p63 significantly enrich gene sets

associated with cell cycle, epidermis development, and MYC targets (Figure 2A). In line with previ-

ous reports (Mehta et al., 2018), genes down-regulated by p63 enrich gene sets connected with

interferon response (Figure 2B). Corroborating the role of p63 in mammary stem cell activity
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Figure 1. Meta-analysis of p63-dependent gene regulation. (A) Distribution of the number of genes found in each of the p63 Expression Score groups.

Because p63 Expression Score group ‘14’ and ‘�12’ contained only two genes they were included in group ‘13’ and ‘�11’, respectively, for further

analyses. (B) 16 datasets on p63-dependent gene expression from 11 studies. EE – exogenous p63 expression; sh KD – shRNA-mediated knockdown; si

KD – siRNA-mediated knockdown; KO - sgRNA-mediated knockout (C) A heatmap displaying the regulation of 15 genes with positive and 15 genes

with negative p63 Expression Scores. GAPDH and GAPDHS represent negative controls.
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(Chakrabarti et al., 2014) and SCC growth (Ramsey et al., 2013), we find that p63 up- and down-

regulated genes enrich respective gene sets up- and down-regulated in mammary stem cells

(Figure 2C) and across SCCs (Figure 2D). In addition to pathways that have been linked to p63 ear-

lier, we find that p63 up-regulated genes enrich for mTORC1 signaling genes and p63 down-regu-

lated genes enrich for gene sets associated with oxidative phosphorylation and aerobic respiration

(Figure 2E).

Further, we performed TF binding enrichment analysis for p63-dependently regulated genes

using Enrichr (Kuleshov et al., 2016). In agreement with its established roles, we identify cell cycle

gene regulators (E2F4, E2F6, SIN3A, E2F1, FOXM1, NFYA, and NFYB Fischer and Müller, 2017)

and the MYC/MAX TFs as being enriched among p63-upregulated genes. Consistent with previous

reports, our analysis also identifies KLF4 (Sen et al., 2012) and SMAD4 (Rodriguez Calleja et al.,

2016) as potential mediators of p63-dependent gene regulation. In addition, our analysis reveals

that androgen receptor (AR), its co-factor ZMIZ1, as well as SP1, FLI1, and NANOG are novel

A

B

p63 Expression Score p63 Expression Score

p63 Expression Score

p63 Expression Score

p63 Expression Score p63 Expression Score

p63 Expression Score p63 Expression Score p63 Expression Score

NES 3.58

FDR <1E-4

NES 3.38

FDR <1E-4

NES 2.07

FDR 1.22E-4

NES 2.55

FDR <1E-4

NES 2.03

FDR 1.73E-4 NES -2.89

FDR <1E-4

NES -2.91

FDR <1E-4

NES -2.62

FDR <1E-4

NES -2.25

FDR <1E-4

D

p63 Expression Score p63 Expression Score

NES 1.48

FDR 0.055

NES -1.73

FDR 0.017

E

E
n

ri
ch

m
e

n
t

S
co

re

REACTOME_CELL_CYCLE

HALLMARK_INTERFERON_ALPHA_RESPONSE C

GO_REGULATION_OF_EPIDERMIS_DEVELOPMENT HALLMARK_MYC_TARGETS_V1

LIM_MAMMARY_STEM_CELL_DNLIM_MAMMARY_STEM_CELL_UP

TCGA_panSCC_UP TCGA_panSCC_DOWN

GO_AEROBIC_RESPIRATION
HALLMARK_OXIDATIVE_PHOSPHORYLATIONHALLMARK_MTORC1_SIGNALING

Figure 2. Gene sets enriched among genes commonly regulated by p63. Enrichment of (A, B, C, E) MSigDB gene sets or (D) genes up- and down-

regulated across squamous cell cancers (SCC) (Cancer Genome Atlas Research Network et al., 2018) among genes ranked by the p63 Expression
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candidates for mediating the p63-dependent up-regulation of multiple genes. Surprisingly, our anal-

ysis identified only SOX2 as a frequent binder of genes down-regulated by p63 (Figure 3A). Consis-

tent with the strong association of p63 up-regulated genes with the cell cycle (Figure 2A) and with

cell cycle regulators (Figure 3A), we find that p63 up-regulated genes enrich DREAM (dimerization

partner, RB-like, E2F, and multi-vulval class B) and E2F target genes (Figure 3B), and DREAM target

genes appear to be modestly but consistently down-regulated when p63 is lost (Figure 3C). Nota-

bly, most datasets on p63-dependent gene expression were derived from cells in which p63 was

overexpressed or depleted, without additional treatments. However, one dataset was derived from

Nutlin-treated MCF10A cells (Karsli Uzunbas et al., 2019). MCF10A cells harbor wild-type p53 and

DREAM targets are down-regulated in response to Nutlin treatment. Strikingly, depletion of p63

decreased their expression even further without affecting CDKN1A (p21) levels (Figure 3D), which

indicates a possible cumulative effect that is independent of p53 regulatory functions.

Together, the meta-analysis approach overcomes the limitations of individual studies and identi-

fies target genes supported by multiple datasets. The extensive and integrated resource on p63-reg-

ulated genes enables researchers to compare their results quickly and to identify the most promising

targets.
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Figure 3. Transcription factors in the p63 GRN. (A) Significant (adj.p-value�0.05) enrichment of TF binding at genes with a p63 Expression Score �8
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p63 and p53 regulate largely distinct gene sets
Given that p63 and p53 share a significant number of binding sites and thus potential target genes,

we next compared the p63 Expression Score to the previously established p53 Expression Score

(Fischer et al., 2016a). In agreement with the up-regulation of cell cycle genes and DREAM targets

through p63 (Figures 2A and 3) and their down-regulation through p53 (Fischer et al., 2016a;

Fischer et al., 2016b; Schade et al., 2019; Uxa et al., 2019), we noted that negative p53 Expres-

sion Scores tend to correlate with positive p63 Expression Scores (Figure 4A). Furthermore, the

results indicate that p53-induced genes (positive p53 Expression Scores) appear to be largely unaf-

fected by p63. Consistently, expression data for 343 target genes with strong evidence for direct

up-regulation by p53 (Fischer, 2017), do not show consistent expression changes upon knockdown

or induction of p63 (Figure 4B). Together, these results indicate that basal expression of the majority

of p53 target genes is not affected by p63.

Common and distinct properties of p63 and p53 DNA binding
To identify shared p63- and p53-bound sites, we compared the 20 p63 ChIP-seq datasets

(Supplementary file 1) to 28 p53 ChIP-seq datasets we compiled recently (Fischer, 2019). Notably,

p63 and p53 data was collected from cells with strong basal p63 expression and stimulated p53

expression, respectively. While the majority of all p53 ChIP-seq peaks occurs in only one of the

experiments, more than half of the p63 peaks are present in two or more datasets (Figure 5A and

B). Even though we were able to integrate substantially more p53 datasets, the number of identified

p63 binding sites was still higher (Figure 5C). This indicates that p63 occupies many more binding

sites as compared to p53. Importantly, when more datasets agree on p53- and p63-binding sites,

these sequences are more likely to harbor a canonical p53 and p63RE, facilitating the motif discovery

by tools such as HOMER (Heinz et al., 2010) and enriching bona fide binding sites (Figure 5D). Ear-

lier meta-analyses employed a similar strategy (Fischer et al., 2016a; Nguyen et al., 2018;

Verfaillie et al., 2016). To dissect the binding preferences of p63 and p53, we generated three dis-

tinct peak sets (Figure 5E). The ‘p53+p63’ set contained all binding sites with evidence in at least

five p63 and five p53 ChIP-seq datasets. The ‘p53 unique’ (hereafter ‘p53’) set contained all binding

sites that were supported by at least five p53 ChIP-seq datasets but not a single p63 dataset. We

also generated a ‘p63 unique’ (hereafter ‘p63’) set vice versa.

We employed an iterative de novo motif search using HOMER to identify frequent binding site

motifs. After each round, we removed all peaks harboring the best motif and repeated the search.
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Figure 4. p63 and p53 regulate largely distinct target gene sets. (A) The p63 Expression Score compared to the previously published p53 Expression
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The scatter plot displays the log2(fold-change) of previously collected high confidence direct p53 target genes (Fischer, 2017) across the 16 p63-
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Figure 5. The p63 and p53 DNA-binding landscape. (A and B) The number of p63 and p53 binding peaks sorted by the number of datasets that

commonly identified/support the peak. (C) The number of p53 and p63 peaks identified in the 28 p53 and 20 p63 ChIP-seq datasets, respectively. (D)

The relative number of ‘known’ p53 and p63 motifs found by HOMER v4.10 (Heinz et al., 2010) under p53 and p63 peaks, respectively, with increasing

dataset support. (E) Schematic of ‘p53’, ‘p63’ and ‘p53+p63’ peak selection for further analyses. (F) De novo motif search results from HOMER v4.10 for

the ‘p53+p63’, ‘p53’, and ‘p63’ peak sets. The first round of motif search identified the ‘primary’ motif in each peak set. Using an iterative approach, all

Figure 5 continued on next page
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We identified similar yet distinct binding motifs for the three groups (Figure 5F). Comparison of the

primary ‘p53+p63’, ‘p53’, and ‘p63’ motifs suggests that p63-binding sites display a highly con-

served C, G, C, and G at positions 4, 7, 14, and 17, respectively. The second round revealed a

p53RE containing a 1 bp spacer (p53 secondary motif), supporting the model that p53 can bind to

spacer-containing p53REs (Vyas et al., 2017). The results further indicate that p53 can bind to a sin-

gle half-site (p53 tertiary motif) and that this single half-site is more constrained at positions 5 and 6

as well as the flanking regions than half-sites in the canonical p53RE (e.g. primary p53+p63 and p53

motifs). Of note, these single half-sites may also include p53REs with spacers longer than 1 bp that

are not detected separately because of their very low abundance. Sole half-sites together with

spacer-containing p53REs underlie only ~5% of p53-bound sites (Figure 6). Furthermore, p53 and

p63 appear to be able to bind to three-quarter sites (secondary and quaternary p53+p63 and p63

motifs), while p63 can generally bind to a broader spectrum of sequences as compared to p53

Figure 5 continued

peaks that contained the ‘primary’ motif were removed and the de novo motif search was repeated. This iterative approach was followed until no more

p53/p63-like motif was identified.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Correlation between p53 and p63 binding frequency and motif consensus.

Figure supplement 2. Correlation between p53 and p63 binding frequency and motif consensus.

Figure supplement 3. Top motifs co-enriched with primary ‘p53+p63’, ‘p53’, and ‘p63’ motifs at the respective DNA sites.

Figure supplement 4. TFs with significantly similar binding repertoirs.
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Figure 6. The DNA-binding landscape of p53. DNA sites occupied by p53 in at least five datasets were searched iterative with the motifs identified by

our iterative de novo search (Figure 5F). We searched first for the primary ‘p53+p63’ motif and among all remaining sites for the primary ‘p53’ motif.

All other ‘p53+p63’ and ‘p53’ motifs were searched subsequently.
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(Figure 5F). This broader binding repertoire likely underlies p63’s capacity to engage with substan-

tially more binding sites than does p53.

It is important to note that the vast majority (~70%) of p53- and p63-binding sites harbor full-

length p53 and p63REs (Figures 6 and 7, Supplementary file 3). There is a good correlation

between p53- and p63-binding site occupation, and most sites commonly bound by p53 are also fre-

quently bound by p63 (Figure 5—figure supplement 1). However, p63 binds many sites that are

not bound by p53 (Figure 5E and Figure 5—figure supplement 2). More importantly, p53 binding

is strongly constrained to canonical p53RE (Figure 5—figure supplements 1C–D and 2A–C). In con-

trast, p63 binding appears not to benefit from a more canonical p63RE (Figure 5—figure supple-

ments 1E–F and 2D–F). These data suggest that sequence-specific binding is particularly important

to recruit p53, while p63 only requires minimal sequence identity and could require additional co-

factors to bind and ultimately regulate its target genes.

Therefore, we also searched for potential cooperating TFs that may be co-enriched at p53- and

p63-binding sites. Consistent with earlier analyses (Verfaillie et al., 2016), no additional motif was

substantially enriched in the vicinity of ‘p53’ or ‘p53+p63’ binding sites. Consistent with the co-

enrichment of AP-1 and p63 at enhancers (Lin-Shiao et al., 2018), we found that unique p63-binding

sites were consistently enriched for AP-1 (bZIP) in addition to bHLH motifs (Figure 5—figure supple-

ment 3). Using the CistromeDB toolkit (Zheng et al., 2019b), we identified TFs that significantly

p63 DNA binding landscape

32,535 p63 peaks supported by ≥ 5 data sets
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Figure 7. The DNA-binding landscape of p63. DNA sites occupied by p63 in at least five datasets were searched iterative with the motifs identified by

our iterative de novo search (Figure 5F). We searched first for the primary ‘p53+p63’ motif and among all remaining sites for the primary ‘p63’ motif.

All other ‘p53+p63’ and ‘p63’ motifs were searched subsequently (Supplementary file 3).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Complement to Table 1.

Riege et al. eLife 2020;9:e63266. DOI: https://doi.org/10.7554/eLife.63266 9 of 26

Tools and resources Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.63266


enrich for binding to the ‘p53+p63’, ‘p53’, and ‘p63’ sites. As expected, the analysis identified the

p53 family members p53, p63, and p73 as best hits for the common sites, but only p53 and p73 for

the unique p53 and only p63 and p73 for the unique p63 peak sets (Figure 5—figure supplement

4). In agreement with earlier studies, the analysis identified p300 (Katoh et al., 2019), MAF (Lopez-

Pajares et al., 2015), SOX2 (Watanabe et al., 2014), BANF1 (also known as BAF) (Bao et al.,

2015), and KMT2D (Lin-Shiao et al., 2018) as potential co-binders of p63; as well as TRIM28

(Doyle et al., 2010), BRD4 (Stewart et al., 2013), p300 (Lill et al., 1997), ZBTB33 (KAISO)

(Koh et al., 2014), CDK9 (Claudio et al., 2006), and HEXIM1 (Lew et al., 2012) as potential co-

binders of p53. Moreover, our analysis identified potential co-binders that to our knowledge have

not been identified before, such as KDM1A, PRMT1, and GRHL2 for p63 and BRD9, ZNF131, and

C17orf49 for p53. Importantly, these new potential co-binders appear to be unique to either p63 or

p53, suggesting that they may contribute to shaping the DNA-binding landscapes that are specific

to p63 and p53 (Figure 5—figure supplement 4).

Identification of direct p63 target genes
Given that p63 regulates many target genes through enhancers (Kouwenhoven et al., 2015a; Lin-

Shiao et al., 2019; Lin-Shiao et al., 2018; Qu et al., 2018; Somerville et al., 2018), straight forward

integration of differential gene regulation data and p63 binding data based on proximity binding to

a gene’s TSS is unlikely to capture all direct p63 target genes. To resolve this issue, we integrated

the p63 binding data and the p63 Expression Score based on enhancer:gene association information

(Fishilevich et al., 2017) in addition to proximity binding to TSSs to predict direct p63 target genes.

Given the large number of p63-binding sites identified (Figure 5C and E) and the high variance in

p63-dependent gene regulation (Figure 1B), we employed conservative thresholds to identify high-

probability target genes of p63. We only used p63-binding sites supported by at least half of the

datasets (�10) that are linked through TSS proximity (within 5 kb) or double-elite enhancer:gene

associations (Fishilevich et al., 2017) to genes with a |p63 Expression Score|| � 8 (Table 1 and Fig-

ure 7—figure supplement 1). Of note, many genes are associated with proximal and enhancer p63

binding, because many proximal promoters are also identified as double-elite enhancers in the data-

base. The 180 (138 up-regulated and 42 down-regulated) genes that passed our conservative filter-

ing contain many genes that are known direct p63 targets, such as RAB38 (Barton et al., 2010),

S100A2 (Kirschner et al., 2008; Lapi et al., 2006), HAS3 (Compagnone et al., 2017), IRF6

(Thomason et al., 2010), PTHLH (Somerville et al., 2018), GPX2 (Yan and Chen, 2006), JAG1

(Sasaki et al., 2002), MMP14 (Lodillinsky et al., 2016), NRG1 (Forster et al., 2014), and PLAC8

(Gallant-Behm et al., 2012). The identification of these well-established p63 target genes indicates

the ability of our approach to identify bona fide candidates. Importantly, the integration of

enhancer:gene associations enabled the identification of genes that are likely regulated by p63

through enhancers, such as IL1B, MREG, MYO5A, RRP12, SNCA, AK4, and EHD4 (Table 1 and Fig-

ure 7—figure supplement 1).

A p63/SCC 28-gene set correlates with HNSC patient survival
Out of the 180 high-probability p63 target genes 32 (28 up- and four down-regulated) are also iden-

tified as being commonly up- or down-regulated in SCCs compared to non-SCC cancers

(Cancer Genome Atlas Research Network et al., 2018; Table 1). Importantly, several of the genes

commonly up-regulated by p63 as well as in SCC have been identified to promote SCC growth or

invasion, such as LAD1 (Abe et al., 2019), TMEM40 (Zhang et al., 2019), FGFBP1 (Czubayko et al.,

1997), IL1B (Lee et al., 2015), FAT2 (Dang et al., 2016), FOSL1 (Usui et al., 2012), LPAR3

(Brusevold et al., 2014), MMP14 (Pang et al., 2016), and RASSF6 (Zheng et al., 2019a). Therefore,

we asked whether the set of 28 up-regulated direct p63 targets correlates with patient survival. To

this end, we employed data of head and neck SCC (HNSC) patients from The Cancer Genome Atlas

(TCGA). Notably, it is known that this cancer type frequently harbors amplified TP63

(Cancer Genome Atlas Network et al., 2015). We find that expression levels of our gene set

indeed correlate significantly negatively with HNSC patient survival (COX likelihood ratio test

p=0.032). To determine whether expression levels of the set have an influence on the survival of

HNSC patients, we subdivided the samples according to the average expression levels into four

equally sized groups (low, low-med, med-high, high). While the sample group with low expression
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Table 1. High-probability direct p63 target genes.

Genes identified as significantly up- or down-regulated in at least the half of all datasets (|p63 Expression Score| � 8) that are linked to

p63-binding sites supported by at least half of all datasets (�10) through binding within 5 kb from their TSS or through double-elite

enhancer-gene associations (Fishilevich et al., 2017). Using these thresholds we identified 138 and 42 high-probability candidates as

directly up- and down-regulated by p63, respectively. Gene names marked in bold are also up- or down-regulated across SCCs

(Cancer Genome Atlas Research Network et al., 2018).

Gene
symbol

p63 Expression
Score

p63 binding
within
5 kb from TSS

p63 binding
linked
through
enhancer

Gene
symbol

p63 Expression
Score

p63 binding
within
5 kb from TSS

p63 binding
linked
through
enhancer

DUSP6 14 yes yes FSCN1 8 yes yes

RAB38 14 yes yes GINS3 8 yes no

GSDME 13 yes yes GM2A 8 yes yes

LAD1 13 yes yes HMGA2 8 yes yes

S100A2 13 yes yes HSPA4L 8 yes yes

TMEM40 13 yes yes JAG1 8 yes yes

FGFBP1 12 yes yes KCTD12 8 yes no

HAS3 12 yes no KIAA0930 8 yes yes

NECTIN1 12 yes yes KIF14 8 no yes

TCOF1 12 yes yes KIRREL1 8 no yes

DUSP7 11 yes yes LIG1 8 yes yes

IL1B 11 no yes LPAR3 8 yes yes

MREG 11 no yes LRRFIP2 8 no yes

PA2G4 11 yes no MALT1 8 no yes

RGS20 11 yes no MAST4 8 no yes

SDC1 11 no yes MCM3 8 no yes

SFN 11 yes yes MMP14 8 yes yes

STK17A 11 yes yes MMRN2 8 yes no

VSNL1 11 yes yes NOM1 8 yes no

ARHGAP25 10 yes yes NRCAM 8 yes yes

CDCA4 10 yes yes NRG1 8 no yes

DUSP11 10 yes no OAS3 8 yes yes

FAT2 10 yes no PPFIBP1 8 yes yes

FERMT1 10 yes yes PROCR 8 yes no

IL4R 10 yes yes QSOX2 8 yes yes

INPP1 10 yes yes RAD51C 8 yes yes

IRF6 10 no yes RASSF6 8 no yes

ITGA6 10 no yes RFX7 8 yes no

KIZ 10 yes no SH3PXD2A 8 no yes

MAPKBP1 10 no yes SLC1A5 8 yes yes

MYO10 10 yes yes SLC2A9 8 yes yes

MYO19 10 yes yes SLC37A2 8 yes no

ORC1 10 no yes SMAD5 8 yes no

PAK1 10 yes no SPATS2 8 no yes

PTHLH 10 yes yes SSRP1 8 no yes

SMTN 10 yes no TGFB1 8 yes yes

WDFY2 10 yes no TMEM237 8 yes no

XDH 10 yes yes TOMM34 8 yes no

Table 1 continued on next page
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Table 1 continued

Gene
symbol

p63 Expression
Score

p63 binding
within
5 kb from TSS

p63 binding
linked
through
enhancer

Gene
symbol

p63 Expression
Score

p63 binding
within
5 kb from TSS

p63 binding
linked
through
enhancer

ARHGDIB 9 yes yes TRIM7 8 yes yes

AURKB 9 yes no TRIP13 8 yes no

BTBD11 9 yes no TSPAN5 8 yes no

C6orf106 9 yes no TSR1 8 no yes

CARD10 9 yes yes TYMS 8 yes yes

CHAF1A 9 no yes UCK2 8 yes yes

CSTA 9 yes no UTP4 8 no yes

CYP27B1 9 yes no YAP1 8 yes no

FEZ1 9 yes yes YES1 8 yes yes

GNA15 9 yes no ZFP36L2 8 no yes

GPX2 9 yes no APH1B -8 no yes

GSTP1 9 yes no BIRC3 -8 yes yes

HRAS 9 yes yes C9orf3 -8 yes yes

IFI16 9 yes yes CHST3 -8 no yes

KREMEN1 9 yes yes CPQ -8 no yes

LDLR 9 yes no DUSP8 -8 yes no

MAPK6 9 yes yes EPCAM -8 no yes

MYO5A 9 no yes ERBB2 -8 no yes

NCAPH2 9 yes no FBN1 -8 no yes

NDE1 9 yes yes ITFG1 -8 yes no

NDST1 9 yes yes LLGL2 -8 yes yes

NIPAL4 9 yes yes NCSTN -8 no yes

PPIF 9 no yes OPN3 -8 no yes

PPP4R4 9 yes no PBX1 -8 yes yes

PTTG1 9 yes yes PDXK -8 no yes

RAPGEF5 9 yes yes PLAC8 -8 yes yes

RNASE7 9 yes yes S100A4 -8 no yes

RRP12 9 no yes SPOCK1 -8 no yes

SERPINB13 9 yes no TNS3 -8 no yes

SNCA 9 no yes ARL6IP5 -9 no yes

STX6 9 yes no COBL -9 no yes

AK4 8 no yes CUEDC1 -9 yes yes

ARHGAP23 8 yes yes GSN -9 yes no

ASCC3 8 yes yes PDGFC -9 yes yes

BRCA1 8 yes no PGPEP1 -9 no yes

BTBD10 8 yes yes PLXNB2 -9 yes yes

CCNK 8 yes no PXDN -9 no yes

CCT4 8 yes no RALGPS1 -9 yes yes

CD44 8 yes yes ROR1 -9 yes no

CDC42SE1 8 yes no SLC16A5 -9 yes yes

CDCA7 8 yes no TM4SF1 -9 yes yes

COL17A1 8 yes no ALDH3B1 �10 yes yes

Table 1 continued on next page
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had the most favorable prognosis, the null hypothesis could not be rejected in the direct comparison

with patients with high average expression levels (p=0.090; Figure 8A). However, upon contrasting

the low-expression group with all remaining samples, a significant improvement of survival was

detected (p=0.024; Figure 8B). Expression of the 28-gene set correlated positively with p63 expres-

sion when p63 expression was rather low (FPKM <20), but showed a saturation and no further corre-

lation when p63 expression was high (FPKM >20; Figure 8C and D, and Figure 8—figure

supplement 1). This indicates that p63 levels influence the 28-gene set in a switch-like manner where

a saturation of p63-dependent activation is quickly reached in HNSC cells. Together, these findings

indicate that the genes commonly up-regulated by p63 and in SCC influence the prognosis of HNSC

patients. Taken together, this finding calls for a more detailed assessment of ubiquitous p63/SCC

genes as biomarkers in the future.

Discussion
Although p63 (DNp63) is known as master regulator in epidermis development and more recently

emerged as a key oncogenic factor in SCC, a comprehensive assessment of the GRN commonly con-

trolled by p63 and its comparison to the GRN commonly controlled by the closely related tumor

suppressor p53 has been missing. An increasing number of available high-throughput datasets

enabled us to generate ranked lists of p63-regulated genes and p63-bound DNA sites that together

reveal high-probability direct p63 target genes regulated by p63 across cells of multiple origins.

Because p63 target genes, very much like p53 target genes (Fischer, 2020; Fischer, 2019), differ

substantially between mouse and human (Sethi et al., 2017), many p63 target genes initially

described in mouse could not be confirmed to be p63-regulated in this study using human data.

Given that p63-binding sites are frequently associated with enhancer regions and enhancer identity,

we have integrated enhancer:gene associations to identify target genes that are regulated by p63

through direct binding to associated enhancers. This approach enabled the identification of novel

direct target genes that are missed by standard analyses that employ only TSS proximity (Table 1

and Figure 7—figure supplement 1).

Given the similarity between their DBDs, it has been a long-standing question how p53 and p63

bind to distinct sites in the genome and how these sites differ from another. Several studies found

differences in the biochemical properties of p53 and p63 that could affect their DNA binding speci-

ficity (Enthart et al., 2016; Lokshin et al., 2007; Sauer et al., 2008; Tichý et al., 2013). Various

studies aimed to identify the precise p63 recognition motif and its difference from the p53RE using

either SELEX (Ortt and Sinha, 2006; Perez et al., 2007) or ChIP-seq data (Kouwenhoven et al.,

2010; McDade et al., 2014; Yang et al., 2006), yet these studies reported different features as

being unique for p63 compared to p53 DNA recognition. By combining multiple ChIP-seq datasets

we have contributed here to better distinguish between sites commonly bound by p53 and p63

Table 1 continued

Gene
symbol

p63 Expression
Score

p63 binding
within
5 kb from TSS

p63 binding
linked
through
enhancer

Gene
symbol

p63 Expression
Score

p63 binding
within
5 kb from TSS

p63 binding
linked
through
enhancer

CRKL 8 yes yes CYP1B1 �10 no yes

DRAP1 8 yes yes HHAT �10 yes yes

EHD4 8 no yes MEGF8 �10 no yes

ERCC6L 8 no yes PTGES �10 yes no

ESRP1 8 no yes PTTG1IP �10 no yes

FABP5 8 yes no RPS27L �10 yes yes

FANCI 8 yes yes SECTM1 �10 yes yes

FLOT2 8 yes no SLC22A5 �10 yes no

FOSL1 8 yes yes TNFSF15 �10 yes yes

FRMD4B 8 yes no SRD5A3 �11 yes no
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across cell types and sites that are unique to p53 or p63 (Figure 5E). Most importantly, our results

could explain why a substantial fraction of DNA sites is occupied exclusively by p53 or p63. While

most sites bound by p53 are also commonly occupied by p63 (Figure 5E and Figure 5—figure sup-

plement 1A), single half-sites and half-sites separated by spacers underlie many sites that are only

bound by p53 (Figures 5F and 6), supporting earlier findings whereby p53 can be recruited through

spacer-containing motifs (Vyas et al., 2017). However, while spacers reportedly have been identified

in fifty percent of 200 analyzed p53REs (Vyas et al., 2017), our genome-wide quantification of

motifs underlying 7705 high confidence p53 peaks based on an unbiased motif search using HOMER

revealed that only 1.1% to 5.1% of the p53 peaks contain p53REs with 1 bp spacers or half sites that

are possibly separated by longer spacers (Figure 6). Mechanistically, our results imply that relying

on the CWWG core motif and the flanking regions may enable p53 to bind to those sites. In

BA

C D

Figure 8. p63/SCC 28-gene set correlates with poorer survival in HNSC. Kaplan-Meier plots of TCGA HNSC patient survival data. (A) Patients were

subdivided in four equally sized subgroups based on expression levels of the 28-gene set. The results suggest a poorer survival of patients with an up-

regulated expression of the set genes. (B) To corroborate this finding patients of the subgroups low-med, med-high, and high from (A) were joined to

form a new high group. Boxplot in bins of 10 of TP63 FPKM expression values in TCGA HNCS patient sample data compared to (C) FPKM values of a

meta-gene comprising the 28-gene set and (D) ssGSEA scores of the 28-gene set. X-axis is right-censored at 100 to better visualize the effect. The full

graph is displayed in Figure 8—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Extension of Figure 8C and D.

Riege et al. eLife 2020;9:e63266. DOI: https://doi.org/10.7554/eLife.63266 14 of 26

Tools and resources Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.63266


contrast, the two CNNG core motifs that underlie p63, but not p53REs, offer an explanation why a

substantial fraction of DNA sites is bound exclusively by p63 (Figures 5F and 7), supporting one of

the models established earlier (McDade et al., 2014). Notably, p63’s ability to bind to a greater vari-

ety of recognition motifs likely underlies the markedly greater number of p63 compared to p53-

binding sites in the genome. In addition, our motif search indicates that factors bound to AP-1

(bZIP) and bHLH motifs may specifically support p63 binding (Figure 5—figure supplement 3), and

transcription factor enrichment analysis identified the bZIP TF MAF, the TF GRHL2, the chromatin

remodeler BANF1, the histone methyltransferase PRMT1, and the ZNF750/KDM1A/KLF4 complex,

which was previously shown to operate downstream of p63 (Boxer et al., 2014), as potential co-

binders that could help to facilitate p63 binding to certain genomic loci (Figure 5—figure supple-

ment 4). Considering its pioneer role, p63 could vice versa enable the binding of these TFs to the

respective loci. Given that p63 and p73 form stable heterotetramers (Gebel et al., 2016), p73 may

possess binding specificities that are highly similar to those identified for p63. Our results indicate

that our approach could serve as a blueprint to distinguish DNA recognition motifs, binding sites,

co-factors, and target genes of TF siblings more precisely. Our iterative de novo search algorithm

enabled the identification of spacer-containing p53REs, indicating that our approach uncovers sec-

ond-tier TF binding motifs invisible to standard approaches. Moreover, the results provide insights

to the p63 DNA binding repertoire in unprecedented depth (Figure 5F).

Consistent with results from an earlier genome-wide study (Yang et al., 2006), our findings imply

that p63 is more frequently involved in a direct up-regulation as opposed to a direct down-regula-

tion of target genes (Figure 3A and Figure 7—figure supplement 1). Mechanistically, p63 has been

shown to up-regulate target genes through its alternative TAD located at the N-terminus while the

C-terminus is important for down-regulation (Helton et al., 2006). Exogenous expression of differ-

ent isoforms of p53 family members and their antagonistic effects on target gene promoters in lucif-

erase reporter assays suggested a model whereby p63 exhibits a dominant negative effect on other

p53 family members (Mundt et al., 2010; Westfall et al., 2003; Yang et al., 1998). Inconsistent

with its reputation as dominant negative regulator of p53, however, genome-wide studies showed

that the groups of p63-regulated genes and p53-regulated genes show only very little overlap (Gal-

lant-Behm et al., 2012). A recent analysis of DNA sites bound and of genes regulated by p53 and

p63 revealed that p63 is more likely to support than to inhibit p53 activity (Karsli Uzunbas et al.,

2019). Our analysis further supports the notion that p63 does not commonly interfere with target

gene up-regulation by p53 but that except for cell cycle genes they regulate largely distinct gene

sets (Figure 4).

We identify several candidate TFs that may operate downstream of p63 and that may serve as

transitional nodes in the p63 GRN. In addition to known mediators of p63-dependent gene regula-

tion, such as MYC and KLF4, we identify AR and its co-factor ZMIZ1, SP1, FLI1, and NANOG as novel

candidate nodes in the p63 GRN (Figure 3A). In agreement with the tumor suppressor role of p53

and the oncogenic role of p63, we find that cell cycle genes are antagonistically regulated by p53

and p63 (Figures 2A and 4A). On the one hand, cell cycle genes are well-known to be down-regu-

lated by p53 indirectly through the cyclin-dependent kinase inhibitor p21 and the cell cycle repressor

complexes DREAM and RB-E2F (Fischer et al., 2016a; Fischer et al., 2016b; Schade et al., 2019;

Uxa et al., 2019). On the other hand, cell cycle genes are down-regulated upon loss of p63 and this

p63-dependent regulation reportedly occurs through regulating p21 signaling and the DREAM com-

ponent p130 (McDade et al., 2011; Truong et al., 2006). In addition to indirect effects, we also pre-

dicted multiple cell cycle genes as direct p63 targets (Table 1). Consequently, a loss of p63 may

substantially contribute to the effect of p53 in reducing cell cycle gene expression (Figure 3D). In

addition of p63’s role in driving the expression of some cell cycle genes, the entire set of cell cycle

genes may be subsequently up-regulated indirectly through p63’s pro-proliferative targets. While

the up-regulation of cell cycle genes occurs in most cancers (Whitfield et al., 2006), we find that

p63 additionally regulates genes that are specifically altered across SCCs (Figure 2D). These results

underscore the critical role of p63 and its target genes in determining the transcriptional profile of

SCC. An example of a p63 target in SCC is NRG1, which can be inhibited to block SCC proliferation

and tumor growth (Hegde et al., 2019). The resource of genes commonly regulated by p63 pro-

vided here may help to identify targets that can be exploited therapeutically. We provided a show-

case example, where expression levels of the 28 p63 target genes that are commonly up-regulated

by p63 and in SCC (Table 1) correlate significantly with poorer survival of HNSC patients (Figure 8).
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Thus, this 28-gene set may contain particularly promising candidates for therapeutic interventions

and for the use as biomarkers.

Materials and methods

Re-analysis and integration of publicly available gene expression
profiling datasets
We re-analyzed publicly available p63-dependent gene expression profiling datasets. As a first qual-

ity requirement, we only included datasets for re-analysis that contained at least two biological repli-

cates for the treatment as well as for the control condition. All microarray datasets were available at

a pre-processed stage at the Gene Expression Omnibus (GEO) and we re-analyzed these datasets

with GEO2R to obtain fold expression changes and Benjamini Hochberg-corrected p-values

(Clough and Barrett, 2016). Gene identifiers were mapped to Ensembl Gene IDs using the Ensembl

annotation data (Cunningham et al., 2019). All RNA-seq datasets have been retrieved through GEO

from the Sequence Read Archive (SRA) (Leinonen et al., 2011). We employed our RNA-seq analysis

pipeline to obtain fold expression changes and p-values adjusted for multiple testing. Briefly, we uti-

lized Trimmomatic (Bolger et al., 2014) v0.39 (5nt sliding window approach, mean quality cutoff 22)

for read quality trimming according to inspections made from FastQC (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) v0.11.8 reports. Clipping was performed using Cutadapt v2.3

(Martin, 2011). Potential sequencing errors were detected and corrected using Rcorrector v1.0.3.1

(Song and Florea, 2015). Ribosomal RNA (rRNA) transcripts were artificially depleted by read align-

ment against rRNA databases through SortMeRNA v2.1 (Kopylova et al., 2012). The preprocessed

data was aligned to the reference genome hg38, retrieved along with its gene annotation from

Ensembl v.92 (Cunningham et al., 2019). For read alignment, we used the splice-aware mapping

software segemehl (Hoffmann et al., 2014; Hoffmann et al., 2009) v0.3.4 with adjusted accuracy

(95%). Mappings were filtered by Samtools v1.9 (Li et al., 2009) for uniqueness and properly aligned

mate pairs. Read quantification was performed on exon level using featureCounts v1.6.5 (Liao et al.,

2014), parametrized according to the strand specificity inferred through RSeQC v3.0.0 (Wang et al.,

2012). Differential gene expression and its statistical significance was identified using DESeq2

v1.20.0 (Love et al., 2014). Information on the samples that were compared for each dataset is

included in Supplementary file 1. Given that all RNA-seq data was derived from PolyA-enriched

samples, we only included Ensembl transcript types ‘protein_coding’, ‘antisense’, ‘lincRNA’ and

‘TEC’ in our analysis. Common thresholds for adj. p-value�0.05 were applied.

Generation of the p63 expression score
For 19,156 genes covered by at least three datasets including a minimum of one RNA-seq dataset, a

p63 Expression Score was calculated as the number of datasets that find the gene to be significantly

up-regulated minus the number of datasets that find the gene to be significantly down-regulated in

dependence on p63. This meta-analysis resulted in 27 p63 Expression Score gene groups because

no gene was identified as up-regulated in all 16 or 15 datasets or down-regulated in all 16, 15, 14,

or 13 datasets.

Enrichment analyses
Gene set enrichment analysis (GSEA) was performed using GSEA (http://software.broadinstitute.

org/gsea/) with ‘H’, ‘C2’, and ‘C6’ gene sets from MSigDB v7.0 (Subramanian et al., 2005) and cus-

tom panSCC gene sets derived from Table S1C in Cancer Genome Atlas Research Network et al.,

2018. GSEA was performed on a pre-ranked list of genes that were ranked primarily by p63 Expres-

sion Score and secondarily by median log2(fold-change) to obtain unique ranks.

Enrichment of transcription factor binding to genes with high (�8) or low (� �8) p63 Expression

Score was identified using the results section ‘ENCODE and ChEA Consensus TFs from ChIP-X’ from

Enrichr (Kuleshov et al., 2016).

Integration of publicly available p63 and p53 binding data
Peak datasets from p63 ChIP-seq experiments were retrieved from CistromeDB (Zheng et al.,

2019b; Supplementary file 1). When replicate experiments were available, all peaks were used that
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have been identified in at least two replicates. A similar collection of p53 peak datasets has been

described previously (Fischer, 2019). To intersect multiple peak files Bedtools ‘multiinter’ was used

and to identify overlapping and non-overlapping peaks Bedtools ‘intersect’ was employed

(Quinlan and Hall, 2010).

Motif search
Known p53 and p63REs were identified using the ‘known motifs’ in HOMER v4.10 with default

options and -size given (Heinz et al., 2010). De novo motif discovery was performed with options -

size given -len 10,15,20,25 -mis 5 S 10.

Identification of potential co-factors
We used the CistromeDB toolkit (Zheng et al., 2019b) to identify TFs that display ChIP-seq peaksets

that are significantly similar to our ‘unique p53’, ‘unique p63’, and ‘p53+p63’ peaksets.

Survival and expression correlation analysis
For the 28-gene set, single-sample enrichment scores were derived from FPKM normalized gene

expression values of 546 HNSC patient samples. To this end, we utilized the official GenePattern sin-

gle sample gene set enrichment analysis (ssGSEA) codebase v10.0.3 (Barbie et al., 2009; https://

github.com/GSEA-MSigDB/ssGSEA-gpmodule). A sample score represents the coordinately up- or

down-regulated expression of all genes within one set as its signature (Barbie et al., 2009). Kaplan-

Meier plots and correlation analyses were performed on TCGA time to event and event occurrence

information using the R survival package v3.2–3. Following the TCGA standard for HNSC

(Cancer Genome Atlas Network et al., 2015), survival analyses were right-censored at 60 months

(1800 days) to avoid non-cancer-related events. The Cox proportional hazards model was used to

investigate the association of patient survival time and the combined expression levels of the 28-

gene set. Subsequently, we subdivided the expression scores into four equally sized categorical

groups (high, med-high, med-low, low). The rates of occurrence of events over time were compared

between these groups using the fitted COX PH model.

We retrieved read quantification data ’HTSeq - Counts’ from 546 samples of the TCGA project

HNSC utilizing the R package TCGAbiolinks v2.18.0 (Colaprico et al., 2016). Per sample, all read

counts of the 28-gene set were merged into an artificially created metagene. Subsequently, we cal-

culated normalized expression values per gene as fragments per kilobase million, where the length

of a gene corresponds to the lengths of its exons assigned to either the canonical transcript (CCDS)

or the longest transcript according to hg38 Ensembl annotation v92. TP63 FPKM values were plot-

ted against the meta-gene FPKM value or the ssGSEA derived gene set scores (see above).
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my S, Ellisen LW
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Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J, Irondelle M, Lagoutte E, Vacher S,
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