
Ling et al. BMC Public Health         (2022) 22:1466  
https://doi.org/10.1186/s12889-022-13793-7

RESEARCH

Spatiotemporal impacts of human activities 
and socio‑demographics during the COVID‑19 
outbreak in the US
Lu Ling1, Xinwu Qian2, Shuocheng Guo2 and Satish V. Ukkusuri1* 

Abstract 

Background:  Understanding non-epidemiological factors is essential for the surveillance and prevention of infec-
tious diseases, and the factors are likely to vary spatially and temporally as the disease progresses. However, the 
impacts of these influencing factors were primarily assumed to be stationary over time and space in the existing lit-
erature. The spatiotemporal impacts of mobility-related and social-demographic factors on disease dynamics remain 
to be explored.

Methods:  Taking daily cases data during the coronavirus disease 2019 (COVID-19) outbreak in the US as a case study, 
we develop a mobility-augmented geographically and temporally weighted regression (M-GTWR) model to quantify 
the spatiotemporal impacts of social-demographic factors and human activities on the COVID-19 dynamics. Differ-
ent from the base GTWR model, the proposed M-GTWR model incorporates a mobility-adjusted distance weight 
matrix where travel mobility is used in addition to the spatial adjacency to capture the correlations among local 
observations.

Results:  The results reveal that the impacts of social-demographic and human activity variables present significant 
spatiotemporal heterogeneity. In particular, a 1% increase in population density may lead to 0.63% more daily cases, 
and a 1% increase in the mean commuting time may result in 0.22% increases in daily cases. Although increased 
human activities will, in general, intensify the disease outbreak, we report that the effects of grocery and pharmacy-
related activities are insignificant in areas with high population density. And activities at the workplace and public 
transit are found to either increase or decrease the number of cases, depending on particular locations.

Conclusions:  Through a mobility-augmented spatiotemporal modeling approach, we could quantify the time and 
space varying impacts of non-epidemiological factors on COVID-19 cases. The results suggest that the effects of 
population density, socio-demographic attributes, and travel-related attributes will differ significantly depending on 
the time of the pandemic and the underlying location. Moreover, policy restrictions on human contact are not univer-
sally effective in preventing the spread of diseases.

Keywords:  Disease propagation, Human activity, Social-demographic characteristics, Spatial and temporal 
heterogeneity, Geographically and temporally weighted regression
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Background
As of June 2022, the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), the aetiological agent of 
coronavirus disease 2019 (COVID-19), has infected 84 
million people and caused more than 1 million deaths 
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[1] in the US. The main routes of SARS-CoV-2 entry and 
transmission are “contact”, “droplet”, and “airborne” [2]. 
In light of the severe consequences from the COVID-19 
outbreak, different public authorities quickly responded 
to the outbreak through various strategies, including the 
declaration of emergency, travel restrictions, city lock-
down, and enforcing social distancing [3, 4]. If prop-
erly followed and executed, these measures serve as the 
crucial first steps to limit physical contact and mitigate 
the extent of the outbreak before a vaccine is available. 
Nevertheless, under similar mitigation measures, signifi-
cant differences are observed in the number of reported 
infections and the mortality rate across the US [5]. This 
motivates us to explore the underlying factors that result 
in the heterogeneous disease dynamics for assisting the 
disease mitigation policies in the remaining phase of the 
COVID-19 and better preparing against future risks of 
unknown infectious diseases.

As mentioned in the WHO study for the 2009 H1N1 
pandemic [6], in addition to the pathological variables, the 
extent of the disease outbreak may be attributed to vari-
ous non-epidemiological factors, including mobility level, 
social-demographics, pre-existing conditions of the popu-
lation [7], quality of health services, travel patterns, social 
network [8–11], ecological factors [6, 12], etc. But our 
knowledge of the precise impacts of these factors is very 
limited, primarily due to the lack of data that may enable 
the nexus between disease dynamics and the possible 
contributing factors. With recent advances in ubiquitous 
computing and epidemiology and the wide adoption of 
smartphones in the past decade, we are now able to moni-
tor human activities at a fine spatiotemporal level and 
overlay such dynamics with high-resolution trajectories 
of disease outbreaks. This, together with the available data 
on socioeconomic, demographics, and historical daily 
commuting patterns, provides an unprecedented oppor-
tunity to scrutinize the impacts of non-epidemiological 
factors and comprehensively evaluate how these factors 
drive the fate of the disease outbreak across the US.

Existing studies have related social-demographic charac-
teristics and human activity with the spread of the COVID-
19. The social-demographic structure of the population 
is demonstrated to have a significant effect on the fatality 
rate. An early study in China [13] suggested that people 
with an age greater than 80 years older have the highest 
fatality rate of 14.8%, and similar findings were obtained 
from studies in other countries [14, 15]. In addition, stud-
ies [16, 17] revealed the existence of racial disparities 
among the Whites, the blacks, the Asians, and the Hispan-
ics in the COVID-19 outbreak. In particular, nearly 20% of 
the US counties had a disproportionate black population 
[18], and they accounted for 52% of the confirmed cases 
and 58% of the deaths nationally. Except for demographic 

factors, the social and economic factors are also found to 
affect the fate of the COVID-19 outbreak. The study [19] 
suggested that households with the lowest income level are 
six times less likely to be able to work from home and three 
times less likely to be able to self-isolate in the UK during 
the COVID-19. Besides, Stojkoski et  al. [20] mentioned 
that the high-income population is more resilient to being 
infected by the COVID-19. Finally, extensive efforts have 
shown that human activities and mobility dynamics are 
dominating factors that facilitate the spread of infectious 
diseases [21–24]. Studies suggested that information prop-
agation and commercial activity patterns co-affect the epi-
demic propagation [25–27]. Nevertheless, Lima et al. [28] 
provided evidence that restricting mobility may not elimi-
nate the diseases. And Bajardi et  al. [29] recommended 
that stricter regimes of travel reduction would have led to 
a delayed outbreak of two weeks based on the study of the 
2009 H1N1 pandemic.

The aforementioned studies highlighted the significant 
roles played by mobility-related and social-demographic 
factors in the disease spreading process. Nevertheless, 
few studies examined the collective impacts of non-epi-
demiological factors on the spatiotemporal dynamics of 
infectious disease. In addition, the impacts of these influ-
encing factors were primarily assumed to be stationary 
over time and space in the existing literature. The lack of 
consideration of these aspects will fail to reveal the inter-
dependencies among modeling determinants and may 
result in biased model estimations.

To address the issues, the study aims to introduce a 
quantitative approach, named mobility-augmented geo-
graphically and temporally weighted regression model 
(M-GTWR), to investigate the heterogeneous effects of 
non-epidemiological factors on the spreading dynamics 
of the COVID-19. By relating pre-pandemic inter-county 
traffic data with the spatial adjacency, the M-GTWR quan-
tifies the spatiotemporal effects of the social-demographic 
characteristics and human activity on the weekly average 
daily confirmed cases in the US. Our results suggest that 
counties with a high percentage of black population, a high 
household income level, a low education level, and a high 
unemployment rate are associated with more weekly aver-
age daily confirmed cases. Moreover, the impact of human 
activity is found to differ spatially. Grocery and pharmacy 
activities only show positive and statistically significant 
effects on the COVID-19 cases in rural counties, and the 
effects of the public transit activities are tightly related to 
the work from home policy and reopening strategies.

Methods
Study area
We investigate the COVID-19 dynamics in the US coun-
ties. There are 3141 counties in the US, and the counties 
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present a significant variation of reported daily cases. To 
ensure that the disease dynamics are statistically mean-
ingful, we target the counties with at least 100 confirmed 
cases from March 23, 2020 to December 13, 2020. In 
addition, counties with incomplete data are also removed. 
Finally, we keep the counties within 48 contiguous states. 
The preprocessing results in 699 selected counties that 
cover both metropolitan areas (592) and non-metro-
politan areas (107) according to the definition in the 
rural-urban commuting area code [30]. And the spatial 
distribution of the study areas (red-colored counties) is 
shown in Fig.  1. The selected counties cover 79% of the 
total US population. We report that the processed data 
provide a reasonable scale to understand the non-epide-
miological determinants of the COVID-19 propagation 
and link with the underlying effects of the social-demo-
graphics characteristics and human activities on disease 
propagation in the metropolitan counties in the US.

Data Description
Dependent variables
The dependent variables used in the study are the number 
of weekly average daily confirmed cases at the county level, 
which are obtained from the Center for Systems Science 
and Engineering at Johns Hopkins University [5]. We use 

the weekly average daily confirmed cases rather than daily 
cases to smooth the daily fluctuations in the data. As sug-
gested in other studies [13], there is a time delay between 
the date when an individual was actually infected and the 
reported date, which is usually two weeks for the COVID-
19. In addition, human activity dynamics were reflective of 
the reporting date. To ensure the consistency between the 
disease and mobility dynamics, we apply a two-week delay 
to the human activity data to match the disease data. We 
report that the number of confirmed cases in the selected 
counties accounted for 75.5% of the total cases during the 
study period in the US, as shown in Fig. 2. These indicate 
that the dependent variables in the selected counties are 
representative of the general disease dynamics in the met-
ropolitan areas in the US.

Explanatory variables
The explanatory variables used in our study contain both 
the dynamic variables that changed over time as the dis-
ease progressed and the static variables that remained 
constant during the study period. Table 1 summarizes the 
selected variables and their summary statistics.

Dynamic variables  The dynamic variables in the study 
are obtained from the Google Mobility Report [31]. The 

Fig. 1  The spatial distribution of selected counties (in red) in the US
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Google Mobility Report describes the change of daily 
activities in terms of recreation activity (RRPC), park 
activity (PAPC), residential activity (RAPC), grocery and 
pharmacy activity (GPPC), transit activity (TSPC), and 
workplace activity (WOPC) from the baseline value. The 
baseline value is the median value for the corresponding 
day of the week between January 3, 2020 and February 6, 
2020. The dataset demonstrates the changes in visiting 
frequency of a particular activity category at individual 
counties and is also indicative of the activity intensity on 
the corresponding day of the week. To be consistent with 
the dependent variables, we calculated the average daily 
activity in a week. Then, we visualize the mean and stand-
ard deviation of the dynamic variables in the selected 

counties and their comparison with all counties in US in 
Fig. 3. Similar to the dependent variables, we observe that 
the dynamic variables in selected counties also resemble 
the trends of the entire population in US.

To eliminate the estimated bias from the association 
effects and multicollinearity issue, we tested the Pear-
son correlation and variance inflation factor(VIF) among 
dynamic variables in Table 2. It is observed that the Pear-
son correlations of the GPPC, TSPC, and WOPC are less 
than 0.6, and the VIF values are less than 10. However, 
the Pearson correlations among the RRPC, PAPC, and 
RAPC are near 0.7, which indicates a high correlation 

Fig. 2  The number of weekly average daily confirmed cases between processed counties and all counties in US

Table 1  Definition and descriptive statistics of explanatory variables

Variables Definitions Mean S.D. VIF

Demographic

POPD Population density (per square km) 1210.83 4374.67 2.53

OLDP The percentage of older population (%) 15.56 4.40 1.65

BLAP The percentage of black population or African American population (%) 12.09 12.95 2.29

ASIP The percentage of Asian population (%) 3.89 4.48 2.14

LATP The percentage of Hispanic Latino population (%) 15.53 16.31 2.07

Socioeconomic

BDHP Percentage of population having at least bachelor’s degree (%) 31.26 10.71 7.11

MHIC Yearly mean household income ($) 82836 21101 6.68

CLUE Citizen labor force unemployment rate (%) 5.91 1.81 2.45

Travel

MILE Public road mileage (meter) 5238.21 5128.13 1.32

WFHP Percentage of population work at home (%) 4.83 1.88 2.21

PTAP Percentage of population taking public transit (%) 3.09 6.86 2.09

MTAT​ Mean commuting time (minutes) 24.94 5.01 2.60

Human Activity

GPPC Change of grocery and pharmacy activity (%) -3.03 10.80 3.27

WOPC Change of workplace activity (%) -27.70 14.49 4.74

TSPC Change of transit stations activity (%) -19.06 23.27 2.24
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among these variables. Therefore, we selected GPPC, 
TSPC, and WOPC as model input.

Static variables  In this study, the static variables include 
the county level demographic factors, socioeconomic fac-
tors, and travel-related information. The demographic 
factors include the total population, older population, 
white population, black or African American, Asian 
population, Hispanic Latino population, and land area. 

They are collected from the US Census Bureau’s MAF/
TIGER Geodatabases [32] and the 2016 American Com-
munity Survey (ACS) [33]. In light of the varying size of 
the selected counties, we calculated the population den-
sity (POPD) by dividing the total population by the land 
area. Besides, we measured the percentage of race type 
by dividing the population in each race category by the 
total population. The socioeconomic factors in our study 
include the percentage of the population having at least a 

Fig. 3  The dynamic variables of the processed county and all counties in US

Table 2  Pearson product-moment correlation coefficient for explanatory variables

POPD OLDP BLAP ASIP LATP MILE BDHP MHIC CLUE WFHP PTAP MTAT​ GPPC WOPC TSPC

POPD 1

OLDP -0.08 1

BLAP 0.1 -0.19 1

ASIP 0.31 -0.25 -0.05 1

LATP 0.06 -0.2 -0.22 0.13 1

MILE -0.04 -0.06 -0.13 0.13 0.33 1

BDHP 0.26 -0.16 -0.06 0.43 -0.21 -0.08 1

MHIC 0.26 -0.12 -0.21 0.49 -0.02 -0.02 0.49 1

CLUE 0.01 0.02 0.37 -0.13 0.26 0.23 -0.46 -0.47 1

WFHP 0.05 0.21 -0.28 0.2 -0.01 0.11 0.47 0.48 -0.29 1

PTAP 0.46 -0.13 0.08 0.49 0.08 -0.01 0.45 0.47 -0.02 0.1 1

MTAT​ 0.23 -0.06 0.04 0.37 0.1 0.08 0.22 0.45 -0.01 0.24 0.41 1

GPPC -0.19 -0.06 0.08 -0.25 -0.1 0.01 -0.36 -0.33 0.12 -0.25 -0.28 -0.19 1

WOPC -0.29 0.17 0.07 -0.49 0.04 0.01 -0.52 -0.57 0.23 -0.29 -0.48 -0.32 0.47 1

TSPC -0.27 0.06 -0.02 -0.4 -0.09 -0.07 -0.45 -0.42 0.09 -0.24 -0.46 -0.26 0.49 0.44 1
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bachelor’s degree (BDHP), yearly mean household income 
(MHIC), and the citizen labor force unemployment rate 
(CLUE). They are collected from the 2016 ACS [33]. 
The socioeconomic factors serve as indirect measures 
to probe how people may respond to the preventative 
measures and the economic resilience of the community 
against disease outbreaks.

In addition to the demographic and socioeconomic 
variables, we also include several travel-related factors as 
human activity intensity measures before the COVID-19. 
The travel-related factors include travel mode factors and 
public road mileage (MILE). The travel mode factors in 
our study contain the percentage of the population work-
ing at home (WFHP), the percentage of the population tak-
ing public transit (PTAP), and the mean commuting time 
(MTAT). These variables are obtained from the 5-Year ACS 
statistic (ACS 2011 to 2015) [34]. Except for the above vari-
ables, public road mileage is another crucial travel-related 
factor to reflect the intensity of economic activities in the 
county. The public road is described as any road under 
the jurisdiction  maintained by a public authority. We col-
lected the public road mileage from the 2018 Public Road 
Geodatabase [35]. Table 2 presents the Pearson correlation 
coefficients of the static factors, where most of the Pear-
son correlation coefficients of the static variables are less 
than 0.4. Some variables having correlations below 0.6 are 
also included in our model because they capture signifi-
cant variations and provide non-overlapping effects for the 
dependent variables (we take the public road mileage as an 
explanatory factor instead of the public road mileage den-
sity to avoid the high correlation between public road mile-
age density and population density).

Traffic flow data
The traffic flow data are used to cooperate with the spatial 
adjacency and serve as a kernel function in the M-GTWR 
model to describe the spatial structure among counties. 
The traffic flow data include the road commuting flow and 
airline flow, which are gathered to supplement the spatial 
distance with the real travel connections among coun-
ties during the COVID-19 outbreak. The distance data 
are directly obtained from the shapefile provided by the 
US Department of Transportation and Bureau [36]. The 
road commuting flow among counties is collected from 
the average 5-Year ACS statistic at the county level [34] 
and describes the traffic connections between residence 
counties and workplace counties. And the geographical 
airline passenger flow among airports is provided by the 
US Department of Transportation and Bureau. The Bureau 
of Transportation Statistics offers quarterly airline and air-
port origination and destination survey (DB1B) within the 
US, which is a 10% sample of airline tickets (passengers) 

from reporting carriers. The DB1B has records of airline 
passenger volumes in US airports, but it does not contain 
information of airline flow among counties. To obtain the 
airline flow, we apply the airline traffic flow assignment 
method based on the origination and destination airport 
passenger volumes from DB1B.

Mobility‑augmented geographically and temporally 
weighted regression model
In light of the heterogeneous disease dynamics in the 
US, conventional global regression techniques are no 
longer appropriate by assuming that all determinants are 
stationary over space and time. The geographically and 
temporally weighted regression model (GTWR) [37] is 
an effective method to account for the spatial and tem-
poral nonstationarity issues and provides more interpret-
able estimations for the influencing factors during the 
COVID-19 pandemic. Considering that we have a series 
of N observations (Y1,X1), (Y2,X2), ..., (YN ,XN ) over 
time and space, each at location (ui, vi) and at time ti , the 
GTWR model can be formulated as follows:

where Yi and Xik refer to the dependent variable and 
the kth explanatory variable of the ith observation. ǫi 
is the error term with ǫi ∼ N (0, σ 2) . β0(ui, vi, ti) is the 
intercept, and βk(ui, vi, ti) is the regression parameter 
obtained as:

where W (ui, vi, ti) is the spatiotemporal weight matrix.
In the GTWR model, the weight between two obser-

vations is estimated solely based on the spatial distance 
and the time gap. Nevertheless, the disease propagation 
shall not only be influenced by geographic distance but 
mobility connections among locations. Therefore, we 
developed a M-GTWR model that incorporates the great 
circle distance-based weight matrix with the mobility-
based weight (the components include airline volume 
and commuting volume) to improve the baseline GTWR 
model [37, 38]. The standardized form of each compo-
nent is proposed in this study to reduce the fluctuation of 
the components in the mobility-augmented weight func-
tion dMij  between node i and j.

where τair and τcommuting represent the parameters for the 
standardized airline volume and the standardized 

(1)Yi = β0(ui, vi, ti)+

n

k=1

βk(ui, vi, ti)Xik + ǫi
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commuting volume; Nair
ij  and Ncommuting

ij  denote the real air-
line volumes and real commuting volumes; σ

(

dSij

)

 , σ
(

Nair
ij

)

 , 
and σ

(

N
commuting
ij

)

 are the prior bandwidth to standardize 
each component in the mobility-augmented weight matrix.

Besides, the function of the mobility-augmented weight 
matrix combining the temporal distance matrix ( dTij  ) 
is shown below. Note that the geographically weighted 
regression (GWR) model with mobility-augmented weight 
matrix (M-GWR) can be achieved when � = 1 . Besides, we 
apply the Gaussian kernels into the M-GTWR model.

During the model calibration, we first apply the cross-
validation (CV) method proposed by Shao [39] to select 
the optimal bandwidth hMST for M-GTWR [40], choose 
the spatiotemporal effect parameter � [37], and calibrate 
parameters ( τair , τcommuting ). Then, the corrected Akaike 
Information Criterion (AICc) is used to calibrate the trade-
off between goodness of fit and degrees of freedom [40]. 
Finally, we verify the effectiveness of the M-GTWR model 
based on the analysis of variance (ANOVA) method.

Airline traffic assignment
Since the airline passenger volume has potential sea-
sonal fluctuation, we used the DB1B market records of 
the first quarter of 2019 to infer the airline travel con-
nections in the first quarter of 2020 (when COVID-19 
started) in this study. The dataset contains 420 original 
airports and 419 destination airports, which serve 396 
original cities and 394 destination cities in the US. To 
obtain the airline flow among the selected counties, we 
first assign the number of passengers from the origin air-
port to the nearby counties that are within the radiation 
range using the below distance-based gravity model [41]:

In the equation, C is a proportionality constant, α and 
γ tune the dependence related to the population size 
of each county. The distributed weight wij is positively 
related to the product of the population of served county 
Pi and the population of the airport located county Pj , 
and negatively related to the distance dij between the two 
counties. And f (dij) is a distance-dependent functional 
form, which assumes to be an exponential law for the dis-
attraction between two counties and is defined as:

According to [41], the empirical PDF of the connected 
airline volume reaches the summit when the distance 

(4)dMST
ij = �dMij + (1− �)dTij + 2

√

�(1− �)dMij d
T
ij

(5)wij = C ×
(Pi)

α × (Pj)
γ

f (dij)

(6)f (dij) = e(βdij)

between the two areas is around 250km and decays expo-
nentially afterward. The parameters α , γ , and β used in 
the study are, therefore, obtained from their statistical 
analysis: α is 0.46, γ is 0.64, and β is 0.0122 when the dis-
tance is less than or equal to 300km, and α is 0.35, and γ 
is 0.75 when the distance is great than 300km.

The assigned air travel demand PDi of county i is 
PDi = TDjwij , where TDj is the total passengers volume of 
the original airport j. After distributing the passengers 
demand of served county in the US, we then conduct a simi-
lar approach to get the assignment weight w′

i
′
j
 between the 

destination airport i′ and the county j. Finally, the airline pas-
sengers’ demand from county i to county j is calculated as

Model calibration
Spatial autocorrelation and heterogeneity test
To understand the effects of influencing factors on the 
COVID-19 propagation, we first assess whether there 
are significant spatial nonstationarity and autocorrela-
tion of the dependent variables over the study period. 
In this study, we apply the Breusch-Pagan(BP) test to 
examine the spatial heterogeneity of the weekly average 
daily confirmed cases. The BP test is a classic approach 
to detect spatial heterogeneity [42]. The null hypoth-
esis in the BP test is that the error variables are equal 
in all areas: σ 2

1 = σ 2
2 = σ 2

i = · · · = σ 2 . The alternative 
hypothesis is that there should be at least one location i, 
such that σ 2

i  = σ 2 . Besides, we use the adjusted Moran’s 
I test to examine the spatial autocorrelation of the 
weekly average daily confirmed cases that varies from 
time, which is proposed by Gao et  al. [43]. Based on 
the tested BP value being 332.77(***), we reject the null 
hypothesis of homoscedasticity for weekly average daily 
confirmed cases in the 38 weeks. In addition, adjusted 
Moran’s I is 0.573(***) with Z scores being 445.11. The 
result demonstrates the spatial misspecification of 
weekly average daily confirmed cases. Moreover, since 
the Z-score values are positive in the number of weekly 
average daily confirmed cases, it implies that the spa-
tial distribution of counties having weekly average daily 
confirmed cases is more likely to be spatially clustered.

Mobility‑augmented weight matrix calibration
The mobility-augmented weight matrix in the 
M-GTWR model is incorporated by the standard-
ized form of the great circle distance with the mobil-
ity connection (airline flow and commuting flow). To 
calibrate the parameters(τair , τcommuting ), we conducted 
the CV to verify the performances of different param-
eter combinations. The results are shown in Fig.  4. 

(7)PDij = PDi × w
′

i
′
j
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Based on the analysis, the optimal parameters for the 
combination of the standardized mobility connection 
is 0.8 for the airline flow and 0.2 for the commuting 
flow, with the corresponding AICc being 7937 in the 
M-GTWR model. And the optimal � is 0.98, which 
means the spatial effect is the dominant effect in the 
spatiotemporal relationship. The final weight matrix in 
the M-GTWR model is:

Model comparisons
After finalizing the modeling parameters, we then evalu-
ate whether the proposed M-GTWR model is superior to 
other benchmarks in characterizing the spatial and tempo-
ral variations of the weekly average daily confirmed cases 
and offering better explanatory power for the COVID-19 
case. The selected benchmarks include the base GTWR 
model, the M-GWR and GWR model that only consider 
spatial heterogeneity, and the (ordinary least squares) 
OLS model that assumes stationarity. We use the ANOVA 

(8)
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to compare the improvements in the residual reduc-
tion among the candidate models. This approach is also 
adopted by [37] for model comparisons in studying the 
spatiotemporal variations of real estate prices. The results 
of the ANOVA test are summarized in Table 3.

The statistics demonstrate the significance of the spatial 
and temporal nonstationarity of the weekly average daily 
confirmed cases in the study area over the period. And it is 
preferable to adopt the GWR-based model instead of the 
OLS model. Besides, the comparison between the GWR 
model and the GTWR model asserts the importance of con-
sidering the temporal nonstationarity of the data. Finally, we 
also observe that the mobility-augmented weighting scheme 
achieves notable improvements in modeling residual for the 
GWR model and the GTWR model and that the improve-
ments are statistically significant. Therefore, the results sup-
port the superiority of the M-GTWR model over all other 
alternatives in representing COVID-19 dynamics in the US.

Results
The estimated results of the M-GTWR model are 
obtained in Table  4. The M-GTWR model addresses 
the nonstationarity issue for the fundamentally 

Fig. 4  The parameter calibration in the M-GTWR model
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heterogeneous and dynamic disease propagation and 
provides more efficient estimates by assuming the 
effects of the influencing factors are spatiotemporal 
heterogeneous. Compared with the global OLS model, 
the M-GTWR model improves AICc and adjusted R2 
from 59779.59 and 0.54 to 26309.13 and 0.94.

The impacts of the demographic variables
Population density (POPD)
Instead of the static effects of the influencing fac-
tors estimated in the global OLS model, our findings 
show the effects of the factors vary among regions 
and time. For estimates of the demographic variables, 

Table 3  ANOVA comparison between GWR and OLS models

Source of variance RSS DF MS F-test P-value

OLS residuals 3205 15 2136.7

GWR-basic residual 18988 15856 1.2 1784 ***

M-GTWR residual 18484 15949 1.2 1844 ***

GTWR-basic residual 6168 1456 4.2 504 ***

M-GTWR residual 2869 12025 0.2 8956 ***

GWR-basic/OLS improvement 13063 1423 9.2

M-GTWR/OLS improvement 13567 1329 10.2

GTWR-basic/OLS improvement 25883 1306 19.8

M-GTWR/OLS improvement 29182 5253 5.6

M-GTWR/GWR-basic improvement 16119 3830 4.2

M-GTWR/M-GWR improvement 15615 3924 4.0

M-GTWR/GTWR-basic improvement 3299 3947 0.8

Table 4  Estimates of the M-GTWR model

Variables Min Max Median Lower quartile Upper quartile

Intercept -73.19 16.60 -13.81 -28.58 -4.94

Demographic

Log.POPD 0.18 1.20 0.63 0.57 0.69

OLDP -13.13 8.96 -1.30 -4.05 0.85

BLAP -0.05 0.05 0.02 0.01 0.02

ASIP -0.15 0.12 -0.03 -0.06 -0.01

LATP 0.02 0.05 0.01 0.01 0.02

Socioeconomic

CLUE -0.40 0.35 -0.05 -0.09 0.01

BDHP -0.17 0.07 -0.01 -0.02 0.00

Log.MHIC -1.90 6.71 0.83 0.13 1.86

Travel

Log.MILE 0.44 1.82 1.03 0.91 1.13

WFHP -0.38 0.27 -0.07 -0.13 -0.03

PTAP -0.08 0.17 0.01 -0.01 0.02

Log.MTAT​ -3.20 3.69 0.22 -0.44 0.88

Human Activity

GPPC -0.06 0.05 -0.01 -0.02 0.01

WOPC -0.11 0.08 -0.01 -0.03 0.01

TSPC -0.04 0.02 -0.01 -0.01 0.01

AIC 21356.98

AICc 26309.13

R
2 0.96

Adjusted R2 0.94
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the coefficient of population density is positive to 
weekly average daily confirmed cases, and the esti-
mates are statistically significant in the studied counties 
from the 12th week and 48th week. In particular, the 
median elasticity of the population density shows that 
a 1% increase in the population density leads to a 0.63% 
increase in the weekly average daily confirmed cases.

Percentage of older population (OLDP)
In Fig. 5, we visualize the coefficient and t-stats distributions 
for the percentage of older population from three selected 
weeks (12th, 30th, 48th). The coefficients are observed to 
be positive, and the estimates are statistically significant in 
around 50% of the studied counties at the 12th week. How-
ever, the corresponding coefficients among 34% of these 
counties gradually shift to negative while the estimates remain 
statistically significant at the 48th week. One reason is that 
the older population is more vulnerable to the disease. This, 
along with the worse pandemic situation, indicates that the 
older population is increasingly cautious and adopting bet-
ter preventative measures, which reduce their chances of 
being infected as the outbreak proceeds. In addition, among 
the studied counties that have insignificant effects at the 
12th week, 59% of these counties have shifted to have nega-
tive coefficients and remain statistically significant at the 48th 
week. The coefficients of the high population density counties 
(mean population density is 357 population/km2 ) are more 
likely to shift to negative in the later stage than the relatively 
low population density counties (mean population density is 
288 population/km2 ). That might be because the high popu-
lation density counties provide a better guide for the older 
population in preventing the COVID-19. Finally, the coeffi-
cients are observed to be negative and statistically significant 
in around 64% of the studied counties at the 48th week.

Percentage of the Hispanic Latino population (LATP)
From the race perspective, the coefficients of the percent-
age of the Hispanic Latino population are positive, and the 
estimates are statistically significant in about 18% of the 
counties in the 12th week. later on, the percentage of His-
panic Latino population is statistically significant and posi-
tively related to the weekly average daily confirmed cases at 
over 90% of counties in the 30th week and 48th week.

Percentage of the Asian population (ASIP)
As shown by the t-stat in Fig.  6a and b, more than 40% 
of counties are observed to have negative coefficients of 
the percentage of the Asian population during the study 
period, which is more than the number of counties hav-
ing positive coefficients, including the high population 
density cities and states (e.g., Californian, Seattle, and 
Florida). As reported by the studies [44, 45] that Asians 
have a higher infected rate by the COVID-19 due to the 

deficiency of Vitamin D and a higher incidence of coro-
nary heart disease. However, the Asians might get warn-
ings from their families and peers who experienced the 
earliest suffering of the COVID-19, which may help the 
Asian population to be more aware of the risk of the 
COVID-19 and may take better preventative actions 
against the disease in advance. It yields similar results 
when we apply the normalization of the race population 
across the studied counties.

Percentage of black or African American population (BLAP)
As shown in Fig. 6c, and d, the percentage of black or Afri-
can American population is found to be a statistically sig-
nificant factor in 70% of the counties in the 12th week, and 
the number of counties with significant effects drastically 
reduces to 20% in the 48th week. This finding is consistent 
with the previous survey [18], where they asserted that the 
black communities are more vulnerable due to the spread 
of the COVID-19 with the lower coverage rate of health 
insurance. The insights also indicate the black population 
has taken action to protect themselves, which reduces the 
chances of being infected in the late stage of the pandemic.

The impacts of the socioeconomic variables
Citizen labor force unemployment rate (CLUE)
As for the effects of the socioeconomic variables, the esti-
mates of the citizen labor force unemployment rate are sta-
tistically significant (t-stat > 1.64 or t-stat < -1.64) in around 
50% of the counties during the study period (see Fig. 7). In 
the 12th week, the number of counties with a positive coef-
ficient of the citizen labor force unemployment rate is more 
than the number of areas with negative effects (24% vs. 
17% ). The unemployed population with unstable(unsafe) 
workplaces and irregular social activity might intensify the 
disease propagation as suggested by the previous finding 
[46]. More importantly, the high population density areas 
are more likely to have positive and statistically significant 
effects of the citizen labor force unemployment rate in the 
12th week (e.g., counties in California, Washington, Ari-
zona, Minnesota, and Florida). However, this situation has 
changed in the 48th week as shown in Fig.  7d. That may 
be related to the effectiveness of the shelter policy and the 
COVID subsidies, which mitigated the sufferings of the 
unemployed population in purchasing daily needs and 
helped reduce their daily activity levels. Similarly, the study 
[47] also indicates that occupation is the key factor affect-
ing travel time change and infected rate.

Percentage of the population having at least bachelor’s 
degree (BDHP)
For the education effects, about 30% of areas have nega-
tive coefficients (t-stat < -1.64 ) of the percentage of the 
population having at least a bachelor’s degree, and about 
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10% of areas have positive coefficients (t-stat > 1.64) dur-
ing the study period. The reason might be the highly edu-
cated population have a higher awareness of the risks 
of the COVID-19 and are more acceptable to the public 
suggestions for preventing the COVID-19.

Yearly mean household income (MHIC)
For the effects of the household income, the median 
elasticity indicates a 1% increase in the yearly mean 
household income results in a 0.83% increase in weekly 
average daily confirmed cases. The reason might be 

that commercial activity and business communica-
tion are more active in counties with high yearly mean 
household income.

The impacts of the travel‑related variables
Public road mileage (MILE)
As for the travel-related effects, the effects of the public 
road mileage are statistically significant and positive in 
all studied counties during the study period. It indicates 
that the availability of public transportation facilities 
is more likely to increase the number of weekly average 

(a) Coefficients, 12th week (b) t statistics, 12th week 

(c) Coefficients, 30th week (d) t statistics, 30th week 

(e) Coefficients, 48th week (f) t statistics, 48th week 
Fig. 5  The distribution of the effects of the percentage of older population. Note: the range of Z-scores, the number of counties in the range, and 
the percentage of counties in the range are calculated in the t statistic legend (all the figures below follow the same approach)
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(a) Asian, 12th week (b) Asian, 48th week

(c) Black, 12th week (d) Black, 48th week
Fig. 6  The t statistic distribution of race type

(a) Coefficient, 12th week (b) t statistic, 12th week

(c) Coefficient, 48th week (d) t statistic, 48th week
Fig. 7  The distribution of the effects of citizen labor force unemployment rate
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daily confirmed cases. In particular, the median elasticity 
of the estimates suggests that a 1% increase in the pub-
lic road mileage results in a 1.03% increase in the weekly 
average daily confirmed cases.

Mean commuting time (MTAT)
For the travel mode effects, the median elasticity shows 
that a 1% increase in the mean commuting time results 
in 0.22%(0.95%) increase in the weekly average daily 
confirmed cases. The effects of mean commuting time 
on the weekly average daily confirmed cases are heter-
ogeneous among counties during the study period. For 
example, the mean commuting time is positively (t-stat 
> 1.64) related to weekly average daily confirmed cases 
for counties in California. However, the counties in Ari-
zona have negative effects (t-stat < -1.64) of the mean 
commuting time on the weekly average daily confirmed 
cases. The underlying reason might be that the long 
mean commuting time in high population density areas 
intensifies disease propagation. Whereas the large-scale 
of urban structure with low population density effec-
tively reduces the contact space among people.

Percentage of population taking public transit (PTAT)
The t statistic estimations for the percentage of popula-
tion taking public transit are summarized in Fig. 8. In 
particular, about 80% of counties have positive coeffi-
cients in the 12th week (see Fig.  8a).The long contact 
duration and close proximity among passengers in the 
transit system are likely the causes of this observation 
[22]. It also indicates that the public transit closure 
strategy may effectively curb the propagation of the 
COVID-19 in the early stage. However, the effects of 
the percentage of population taking public transit in 
most counties became less significant or insignificant 
in the 48th week. This highlights the temporally vary-
ing effects of the modeling determinants and suggests 
that the percentage of population taking public transit 

is no longer a determining factor in the later stage of 
the pandemic.

Percentage of population work at home (WFHP)
As shown in Fig. 9, there is a higher number of counties 
showing that the percentage of population work at home 
is negatively related to weekly average daily confirmed 
cases in the 12th week than in the 48th week. This finding 
is consistent with the estimated results of the percent-
age of population taking public transit and suggests that 
the work from home policy plays a more significant role 
in the early stage of the pandemic. Besides, the evidence 
of work from home policy applied in Australia [48] also 
verifies our insights.

The impacts of the human activity variables
Change of grocery and pharmacy activity (GPPC)
The local daily activities directly respond to the work 
from home policy and travel restriction. Thus, the esti-
mated coefficients of the human activity variables may 
serve as a measure of the effectiveness of disease preven-
tion and mitigation strategies. In the M-GTWR model, 
the change of grocery and pharmacy activity is positively 
(t-stat>1.64) related to weekly average daily confirmed 
cases in about 30% of the counties in the 12th week of 
2020 as shown in Fig.  10a. More importantly, the posi-
tive effects are found to be significant in rural counties 
or low-income areas in California (e.g., Tulare), Arizona 
(e.g., Yavapai), and New York (e.g., Long Island area). This 
is opposite to the estimated effects of the recreation and 
park activities (not present in the model due to the high 
correlation with the change of grocery and pharmacy 
activity) in the high population density areas. Although 
daily activities increase the disease propagation, people 
might have better personal prevention (e.g., social dis-
tance and mask-wearing) or reduce their daily activities 
in the high population density areas. Besides, the effects 
of the change of grocery and pharmacy activity on weekly 

(a) 12th week (b) 48th week
Fig. 8  The t statistic distribution of percentage of population taking public transit
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average daily confirmed cases become less significant in 
most of the counties in the 48th week (see Fig. 10b).

Change of workplace activity (WOPC)
The change of workplace activity is either negatively 
(t-stat<-1.64) or insignificantly related to weekly aver-
age daily confirmed cases in most counties. That might 
be because the work from home policy conducted at the 
beginning stage of the pandemic reduces the work trips 
and workplace activities.

Change of transit stations activity (TSPC)
The effects of the change of transit stations activity 
are significant in areas with high population density 
(e.g., Fresno county in California) and low population 
density areas (e.g., Apache county in Arizona). These 
might be related to the transit usage policies that 
apply in different areas. And this discrepancy in terms 
of the change of transit stations activity highlights the 
importance of modeling spatial heterogeneity to more 
accurately understand the impacts of non-epidemio-
logical factors. The distribution of the t stats of pub-
lic transit is shown in Fig.  11). In the 12th week, the 
number of counties having negative coefficients of 

the change of transit stations activity on weekly aver-
age daily confirmed cases is more than the number of 
counties having positive coefficients. However, this 
situation has changed in the 48th week. This might be 
related to the public transit usage restrictions in the 
early period of the pandemic and the reopening strat-
egy at the later stage. Therefore, the analysis shows 
that the effects of the influencing factors are spati-
otemporal heterogeneous.

In conclusion, based on our analysis, the coefficients 
of the population density and public road mileage yield 
persistently positive and statistically significant in stud-
ied counties during the studied period. This clarifies 
that population density and public infrastructure facili-
ties are the primary factors that intensify the number 
of cases during the pandemic. On the other hand, the 
impacts of the several social-demographic variables 
(e.g., the percentage of black population, yearly mean 
household income, and percentage of the population 
taking public transit) are observed to become less sig-
nificant or even insignificant in the later weeks (e.g., 
the 48th week). This suggests that static variables may 
have greater impacts on the disease dynamics in the 
early stage of the pandemic than in the later stage. 

(a) 12th week (b) 48th week
Fig. 9  The t statistic distribution of percentage of population work at home

(a) 12th week (b) 48th week
Fig. 10  The t statistic distribution of change of grocery and pharmacy activity
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Nevertheless, the human daily activity variables (e.g., 
change in workplace activity and change in transit sta-
tions activity) are sensitive to the disease prevention 
policies, and their impacts remain statistically signifi-
cant during the entire course of the COVID-19.

Discussion
In this study, we developed an M-GTWR model to 
investigate the effects of non-epidemiological factors on 
disease propagation. Specifically, we show that the pro-
posed M-GTWR model is superior to the state-of-the-art 
benchmarks in capturing the spatiotemporal heterogene-
ity of disease dynamics during the COVID-19 outbreak. 
Our results find that the older, the black, and the Latino 
are more vulnerable to the COVID-19 than other popula-
tion groups. The reason may be attributed to either physi-
cal weakness or low-risk awareness. The highly educated 
population is more likely to comply with the restrictions 
during the COVID-19 outbreak. For the commuting 
time, its median elasticity shows that a 1% increase in 
the commuting time to work results in a 0.22% increase 
in the weekly average daily confirmed cases. Finally, the 
change in human activity patterns also presents a mixed 
impact on disease dynamics. In particular, the scale of the 
impacts is found to be closely related to the activity inten-
sity and activity types. The grocery and pharmacy activity 
is found to be significant in low population density areas. 
And activities associated with public transit usage lead to 
a positive impact on the weekly average daily confirmed 
cases. This indicates the major role played by the public 
transit during COVID-19 and implies the need to restrict 
public transit usage, especially in high-transit demand 
areas. These insights address the spatiotemporal effects 
of the non-epidemiological factors on the COVID-19 
propagation.

Several implications for the high population density 
areas (e.g., New York City, counties in California, Wash-
ington, Arizona, Virginia, Minnesota, and Florida): 

1	 The intensity of recreation activity is found to be a 
primary activity factor that facilitates the spread of 
the COVID-19. Besides, limiting access to public 
transit and public office is observed to be effective 
during the pandemic as suggested in Fig. 11.

2	 Among the counties with a high population den-
sity, the percentage of the unemployed population 
(see Fig.  7) and population with a  low education 
level are the two primary factors associated with a 
higher number of weekly average daily confirmed 
cases.

3	 High population density areas may spend more 
resources on the older population to reduce the expo-
sure  rate, especially in public areas, as suggested in 
the aforementioned analysis of the older population.

4	 High population density areas  with a high percent-
age of black population may consider spending more 
efforts in alerting the black communities on the risk 
of the COVID-19 and enforcing the adoption of per-
sonal protective equipment such as face masks.

Several implications in our study that are important for 
the low population density counties (e.g., counties in Ari-
zona and counties in Massachusetts): 

1	 The work from home policy and public transit 
restriction may be ineffective. Instead, the low popu-
lation density areas may focus on providing specific 
strategies to regulate the daily activities of the unem-
ployed populations as suggested in Fig. 7a and b.

2	 The low population density counties should advise 
the older population to avoid riding public transit 
and visiting public recreation areas.

3	 The racial disparities in the infections of the 
COVID-19 are especially significant in low popula-
tion density (e.g., counties in New Mexico, Arizona, 
and Massachusetts). The black community suffers 
more than other races in most of the low popula-

(a) 12th week (b) 48th week
Fig. 11  The t statistic distribution of change of transit stations activity
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tion density counties (see Fig.  6c and d). Besides, 
counties in Utah may benefit from improving the 
COVID-19 prevention among Asian communities 
(see Fig. 6a and b).

The study explores the spatiotemporal effects of non-
epidemiological factors on the COVID-19 propa-
gation and addresses the heterogeneous effects of 
demographic characteristics and daily activity on dis-
ease propagation. However, there are some limitations 
in the study. First, the efficiency of the intervention 
strategies  (e.g., wearing face masks, maintaining social 
distance, and handwashing) for mitigating the spread-
ing of COVID-19 lack of exploration due to the limited 
data source. More importantly, since these strategies 
are at a great cost to the economy, the optimal con-
trol strategies to balance public health and freedom 
of movement, the economy, and society deserve fur-
ther investigation. Second, although we estimated the 
effects of the several types of activities, we do not dif-
ferentiate the risk level of detailed activities due to the 
data limitation (e.g., we estimated the effects of the rec-
reation activities, but the exposure risk of the bar and 
book store might be different). The understanding of 
the exposure risk of detailed activities provides direc-
tional suggestions for the policy-makers in conducting 
control strategies for COVID-19 prevention. Third, the 
findings rely on the analysis of the aggregated county-
level dataset. However, the lack of exploration of the 
microscopic behavior-related analysis would increase 
the uncertainty of underlying reasons. Thus, future 
studies should be more tailored to the demograph-
ics and socioeconomic of the particular location and 
groups. Besides, we used the sampling of US counties 
to construct the model. The applicability of insights 
remains to be tested for the rest of counties in the US 
and other countries. The model parameters can also be 
adjusted using the data from other locations.

Conclusion
By establishing a quantitative framework for identi-
fying influencing factors of COVID-19 dynamics in 
the US, the study first concludes that the proposed 
M-GTWR achieves a substantial improvement over 
other benchmark methods in addressing the spa-
tiotemporal nonstationarity issues in the disease 
dynamic data. Then, we obtain several key results from 
the study. High population density and the availability 
of public infrastructures will facilitate the spread of the 
disease. A 1% increase in population density and pub-
lic road mileage leads to 0.63% and 1.03% more daily 
cases on average, respectively. Besides, the effects of 

socio-demographic attributes and the travel-related 
attributes differ significantly over time and the under-
lying location. Moreover, the effectiveness of limiting 
human contact through reduced human activity levels 
is found to vary significantly over space and time. The 
grocery and pharmacy activity is positively related to 
daily cases in about 30% of studied counties in the 12th 
week of 2020. This number decreases to 10% in the 
48th week of 2020. This reveals that the general pre-
ventative non-pharmaceutical measures, such as work 
from home policy and travel restrictions, are unlikely 
to be universally effective over all subareas of a coun-
try. The insights derived in this study will provide 
important guidance for efficient resource allocation 
strategies (e.g., the distribution of medical resources) 
and non-pharmaceutical interventions for future dis-
ease mitigations and interventions.
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