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Hundreds of genes have been associated with autism spectrum disorders (ASDs) and the interaction of weak and de novo variants
derive from distinct autistic phenotypes thus making up the “spectrum.” The convergence of these variants in networks of genes
associatedwith synaptic functionwarrants the study of cell signaling pathways involved in the regulation of the synapse.TheWnt/𝛽-
catenin signaling pathway plays a central role in the development and regulation of the central nervous system and several genes
belonging to the cascade have been genetically associated with ASDs. In the present paper, we review basic information regarding
the role of Wnt/𝛽-catenin signaling in excitatory/inhibitory balance (E/I balance) through the regulation of pre- and postsynaptic
compartments. Furthermore, we integrate information supporting the role of the glycogen synthase kinase 3𝛽 (GSK3𝛽) in the
onset/development of ASDs through direct modulation ofWnt/𝛽-catenin signaling. Finally, given GSK3𝛽 activity as keymodulator
of synaptic plasticity, we explore the potential of this kinase as a therapeutic target for ASD.

1. Introduction

Autism spectrum disorders (ASDs) are highly heteroge-
neous, pervasive developmental disorders characterized by
impaired social communication skills, repetitive behaviors,
and a restricted range of interests [1]. The wide range
of phenotypical traits regarding comorbidities and various
degrees of cognitive and language impairments makes up
the “spectrum” and adds complexity to the determination
of genetic markers associated with a distinct phenotype [2].
ASDs have a strong genetic component as ascertained by a
90% concordance among monozygotic twins [3]. Significant
advancements have been made in identifying molecular
mechanisms involved in ASDs by studying disorders with
Mendelian inheritance patterns such as Tuberous Sclerosis
complex (TSC1 and TSC2), Rett syndrome (MECP2), Frag-
ile X syndrome (FXS; which results from mutated Frag-
ile X mental retardation-1, FMR1), and Cowden syndrome
(PTEN), but, altogether, these disorders do not account for
more than 10% of cases [4]. In the last few years, efforts
have focused on understanding the genetic contribution of
single nucleotide variants (SNVs) and copy number variants

(CNVs) inASD [5, 6].While genomewide association studies
(GWAS) have identified over 100 genes associated with ASDs,
most of the variants identified have a weak effect suggesting a
greater contribution for rare variants [7]. Rare variants and de
novo occurring SNVs andCNVs have a larger contribution to
the onset of ASD [6]. Indeed, de novo CNVs are significantly
enriched in individuals affected with the disorder and it is
estimated that 8% of cases that carry these variants are likely
to be pathogenic [8, 9]. On the other hand, 9% of de novo
SNVs in affected individuals are disruptive or frameshift
mutations that generate nonconserved amino acid changes
such as premature stop codons or alternative splice sites
ultimately affecting the normal biological function of the
resulting protein [10, 11]. Overall, it is estimated that these
deleterious de novo variants affect ASD susceptibility in 10–
15% of probands [10, 11]. Nevertheless, exomic data suggests
that no single gene could account for more than 1% of ASD
cases, which makes it difficult to target a single protein to
treat autistic behaviors.More recently, the integration of these
genes into functional networks has allowed the identification
of specific molecular pathways that could be disrupted in
ASD [12, 13]. In this regard, recent exome sequencing studies

Hindawi Publishing Corporation
Neural Plasticity
Volume 2016, Article ID 9603751, 10 pages
http://dx.doi.org/10.1155/2016/9603751

http://dx.doi.org/10.1155/2016/9603751


2 Neural Plasticity

in family trios identified that 39% of the more disruptive
de novo mutations are part of an interconnected network
of chromatin remodeling, synaptic plasticity, and Wnt/𝛽-
catenin signaling genes [13–15].

Through the analysis of biochemical andpharmacological
data, animal models of the disease, and genetic association
studies, we predicted earlier that the onset/development of
ASDs might involve the additive effect of genetic variants
within Wnt/𝛽-catenin signaling components and/or genes
coding for molecules that modulate its functional activity
[16], and such hypothesis has received considerable attention
recently [6, 17, 18]. Wnts are lipid modified secreted glyco-
proteins that signal through threemajor pathways: the Planar
Cell Polarity (PCP), Wnt/Ca+2, and the canonical Wnt/𝛽-
catenin signaling pathway [19]. Wnt/𝛽-catenin signaling is
the most well understood cascade and it starts via binding
of the Wnt ligand to cell membrane receptors Frizzled
(FZD), belonging to the 7-transmembrane domains family
of proteins and to members of the low density lipoprotein
receptor related proteins 5 and 6 (LRP5/6), which act as
coreceptors [20]. Wnt binding to its membrane receptor
activates intracellular signaling leading to the dissociation
of 𝛽-catenin from the degradation complex consisting of
Axin and adenomatous polyposis coli (APC) scaffolds [21],
and the serine-threonine kinases casein kinase 1 (CK1) and
glycogen synthase kinase 3𝛽 (GSK3𝛽) [22]. As a net result,
𝛽-catenin accumulates in the cytosol and translocates to
the nucleus where it interacts with T-cell factor/lymphoid
enhancing factor (TCF/LEF) transcription factors to activate
transcription of target genes [23]. Conversely, in the absence
of a Wnt ligand, Axin and APC facilitate CK1 and GSK3𝛽
sequential phosphorylation of 𝛽-catenin [22] targeting the
protein for ubiquitination by the 𝛽-transducing repeat-
containing protein (𝛽-TrCP) and subsequent proteasome
degradation [24].

It is interesting to note that the tumor suppressor complex
formed by TSC1 and TSC2 interacts with the 𝛽-catenin
degradation complex and thus modulates the action of Wnt
signaling [25, 26]. Other genetic elements associated with
ASDs are the canonical Wnt2 ligand [27], the hepatocyte
growth factor receptor (MET) [28, 29], which is a target gene
of Wnt/𝛽-catenin signaling [30], and several genes encod-
ing for cadherins, including CDH5, CDH8, CDH9, CDH10,
CDH13, CDH15, PCDH10, PCDH19, and PCDHb4 [31], some
of which may interact with 𝛽-catenin in cell-cell adhesion
complexes. More recently, the chromo-helicase domain pro-
tein 8 (CHD8) [13, 14, 32], which inhibits 𝛽-catenin through
direct binding [33], and DYRK1A that modulates Wnt sig-
naling through interaction with the p120 catenin [34] have
been found to be associated with ASDs. Interestingly, these
genes harbor recurrent disruptive mutations and display a
high correlation with head size abnormalities [14], which is
a feature commonly observed during the first 2-3 years of
life of an ASD individual [35]. Finally, rare de novo genetic
variants in the 𝛽-catenin (CTNNB1) gene itself have been
implicated in severe intellectual disability [36]. Therefore,
the convergence of genetic markers in synaptic components
opens a therapeutic window that aims not only to correct
developmental brain abnormalities, but also to compensate

the inherent plasticity through modulation of the highly
dynamic synapse. In the present paper, we review current
knowledge of synaptic transmission leading to excitatory
and inhibitory (E/I) imbalance commonly seen in ASD and
how this phenomenon relates to dysfunction of the Wnt/𝛽-
catenin pathway. Furthermore, we trace functional defects to
GSK3𝛽 activity and explore its pharmacological regulation as
a potential therapeutic target for ASD, particularly in relation
to synaptic plasticity.

2. Wnt/𝛽-Catenin Signaling and Synaptic
Transmission Defects in ASDs

The inherent ability of the brain to process information is
accomplished by a highly sophisticated network that allows
long-distance communication between cells and which is
largely based on the E/I balance from neuronal connections.
Genetic, functional, and structural information suggests that
the E/I balance may underlie the symptomatology of ASDs
[37–39]. This idea has been examined through optogenetic
methods in the medial prefrontal cortex of mice, and it was
found that the elevation, but not the reduction, of cellular E/I
balance (i.e., increase in excitatory transmission) induced cel-
lular defects in information processing, leading to behavioral
and social deficits [39]. E/I balance anomalies have similarly
been observed in several ASD animal models, including the
neuroligin 3 (NLGN3) mutant mice, and the models for
Rett, Fragile X, and Angelman syndromes (Rev. in [40]). In
humans, one of themost relevant evidence associating the E/I
balance with ASDs is its high comorbidity with epilepsy (30%
comorbidity with ASDs) [41, 42]. Epileptic activity can be
triggered by blocking synaptic inhibitory transmission or by
activating excitatory transmission linking the E/I imbalance
in the establishment of epileptiform seizures [43].

Wnt signaling has been widely acknowledged during pat-
terning, development, andmaturation of functional synapses
within the CNS [16, 44–48]. Wnt1, Wnt3a, Wnt7a, and Wnt8
are ligands known to activate Wnt/𝛽-catenin signaling and
are involved in brain development and synaptogenesis [49–
51]. Wnt7a and Wnt8a have also been shown to regulate
excitatory synaptic formation [45, 52]. Furthermore, a recent
study suggests that LRP6, Wnt/𝛽-catenin signaling corecep-
tor, is critical for the development of functional synapses
in vivo [52], which further supports the involvement of
Wnt/𝛽-catenin signaling in synaptic development. Interest-
ingly tetanic stimulation induces the release of the Wnt3a
ligand from the postsynaptic terminal [53].We demonstrated
later that treatment with purified Wnt3a protein of cultured
hippocampal neurons enhanced a fast influx of Ca2+ in the
presynaptic terminal and enhanced mEPSC frequency at the
postsynaptic terminal, in an LRP6-dependent mechanism
[54]. Hence, the data suggests a prominent role for Wnt/𝛽-
catenin signaling in the regulation of excitatory synaptic
transmission in pre- and postsynaptic compartments, thus
ascribing a role for the signaling cascade in E/I balance
regulation (Figure 1).
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Figure 1:Wnt/𝛽-catenin signaling inASDs.Wnt binding to FZD-LRP5/6 complex receptor at themembrane recruits the destruction complex
and inhibits GSK3𝛽 activity thus stabilizing 𝛽-catenin in the cytoplasm and nucleus. Activation of the Wnt/𝛽-catenin pathway facilitates
synaptic plasticity through the activation of voltage gated ion channels that allows activation of CAMK and CREB mediated transcription.
Mutations in TSC associated with ASD prevent 𝛽-catenin degradation which results in a gain of function of the Wnt pathway. In the
presynaptic terminal cadherin mediated cell adhesion between synapses is weakened by phosphorylation of 𝛽-catenin and synaptic vesicle
clustering is enhanced through DVL1. Clustering is also dependent on NLGN/NRXN cell adhesion complexes. Both lithium (LiCl) and VPA
activate Wnt/𝛽-catenin signaling through inhibition of GSK3𝛽 activity. Conversely, in the absence of a Wnt ligand, activated GSK3𝛽 targets
𝛽-catenin for proteosome-mediated degradation. Mutations associated with DISC1 fail to inhibit GSK3𝛽 and thus activate Wnt/𝛽-catenin
pathway. In the presynaptic side Wnt signaling buffering of synaptic vesicles is inhibited and adherens junctions mediated by cadherins are
strengthened.

3. ASDs and Wnt Signaling at
the Presynaptic Terminal

At the presynaptic region, canonical Wnt signaling has a
major role in clustering and recycling of synaptic vesicles
(SVs). Conditioned media containing Wnt7a, and to a lesser
extent Wnt3a, were found to enhance SVs recycling in
primary cultures of rat hippocampal neurons [55]. Similarly,
loss of Wnt7a function inhibits SVs clustering, an effect that
is mimicked by loss of function of Dishevelled 1 (DVL1)
signaling downstream ofWnt ligands [47]. Interestingly, Dvl1
knockout mice exhibit social interaction and sensorimotor
abnormalities [56].Moreover, theWnt7a/Dvl1 doublemutant
mice show defects in spine morphogenesis and excitatory
synaptic neurotransmission [45], which parallels behavioral
abnormalities with a disrupted presynaptic assembly and E/I
balance, as it is likely observed in ASDs.

Wnt/𝛽-catenin signaling also seems to trigger neu-
rotransmitter release and SV trafficking by modulating
the function of SVs-associated phosphoproteins, including
membrane-trafficking proteins such as synapsin and synap-
totagmin. While all three members of the synapsin (SYN)
gene family (SYN1-3) [57] have been associated with ASDs

[58–60], it has been shown that canonical Wnt ligands
such as Wnt7a and Wnt3a enhance the clustering [61] and
phosphorylation [54] of Syn1 at the synaptic button prior to
neurotransmitter release. Likewise, SYN2 is predicted as a
Wnt/𝛽-catenin target gene [62] and is upregulated as a con-
sequence of enhancedWnt signaling activity in hippocampal
neurons from APC conditional knockout mice that has
impaired learning and memory and that displays ASD-like
behaviors [63]. Finally, it was shown that the Wnt signaling
component Dvl1 is involved in neurotransmitters release at
the tip of neurites of differentiated neurons through direct
binding to the presynaptic protein synaptotagmin I [64].

Other mechanisms modulating the activity of the presy-
naptic terminal involve the function of cell adhesion proteins,
most notably trans-synaptic cadherin interactions. It is widely
accepted that cadherin-𝛽-catenin adhesion complexes have
an essential function during the recruitment and clustering
of SVs to synapses [65–69]. Indeed, ablation of 𝛽-catenin
results in the mislocalization of SVs along the axon, while
clustering of active zone proteins like Bassoon is unchanged
[68]. Tyrosine 654 phosphorylation of 𝛽-catenin weakens
cadherin-catenin interactions [70]. Interestingly, the tyro-
sine kinase FER, which is an ASDs’ candidate gene [71],
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activates the tyrosine phosphatase SHP-2 which removes 𝛽-
catenin phosphorylation and strengthens cadherin mediated
adhesion [72]. Among other proteins modulating 𝛽-catenin
dissociation from cell adhesion complexes that have been
genetically linked with ASD is the MET receptor tyrosine
kinase [30], which phosphorylates Tyr142 in 𝛽-catenin and
promotes its dissociation from cadherins [73], thus linking
regulation of cell adhesion by catenins in the pathophysiology
of ASDs. In sum, the data available indicates an essential
role for Wnt/𝛽-catenin signaling in synaptic structure stabil-
ity and function through modulating cell adhesion, vesicle
exocytosis, and clustering well beyond 𝛽-catenin functioning
solely as a TCF/LEF transcriptional coactivator.

4. ASDs and Wnt Signaling at
the Postsynaptic Terminal

Experience driven plasticity is highly dependent on proper
synaptic transmission and is mainly modulated by Ca2+
related pathways. Canonical and noncanonicalWnt pathways
have been extensively related to Ca2+ homeostasis and signal-
ing [47, 54, 74, 75]. Ligands such as Wnt3a [54], Wnt5a [75],
andWnt7a [47] have all been shown to increase Ca2+ influxes
in neurons. It is accepted that activation of L-type voltage
sensitive Ca2+ channels (L-VSCCs) or NMDA receptors
allows the entrance of Ca2+ which in turn activate CAMKII
triggering actin cytoskeleton reorganization to regulate den-
dritic growth [76]. In this regard, CAMKII and the Wnt
target gene CAMKIV [77] activate transcription factors such
as CREB to start activity dependent transcription to further
promote synaptic development [78]. CAMKIVhas been asso-
ciated with ASD [79] and additionally it mediates 𝛽-catenin
dependent dendritic growth upon Ca2+ influx [78, 80].

Activation of CAMKII and other kinases through
NMDAR-mediated Ca2+ influx is an event preceding the
establishment of long-term synaptic potentiation (LTP) that
allows the recruitment of AMPARs at the postsynaptic ter-
minal, which in turn enhances long lasting excitatory trans-
mission [81]. Additionally, CAMKII robustly phosphorylates
the cell adhesion neuroligin 1 (NLGN1) protein increasing
its surface expression [82]. Notably, suppression of Wnt/𝛽-
catenin signaling impairs LTP and conversely its activation
facilitates it [53], and both enhanced and diminished LTP
have been observed in animal models of ASD. For instance,
given that enhanced LTP has been observed in TSC2 mutant
model [83] and that TSC2 missense mutations fail to inhibit
the Wnt pathway [26], it is likely that overactivation of the
signaling cascade may enhance LTP in this specific model.
In contrast, mutant models for Fragile X mental retardation-
1 (FMR1), and also for the disrupted in schizophrenia 1
(DISC1) genes, exhibit diminished capacity to establish LTP
[84, 85]. Besides their putative role in schizophrenia, ASDs
and other neurological diseases [86–88], common DISC1
genetic variants, directly impact Wnt/𝛽-catenin signaling
function (see below) [89]. Altogether, the data suggest that
the Wnt/𝛽-catenin pathway plays a central role in Ca2+
homeostasis at postsynaptic terminals, which is commonly
disrupted in ASD. In addition, abnormal establishment of

LTP, phenomenon in which the signaling cascade plays an
important role, has profound effects in activity driven plas-
ticity affecting efficient synaptic transmission and disrupting
the E/I balance.

LTP is the most well understood paradigm of activity
driven plasticity and is considered to be one of the synaptic
mechanisms underlying learning and memory [81]. In turn,
several aspects of the ASD core symptomatology and the
high comorbidity with intellectual disability disorder could
be explained by defective memory mechanisms [90]. Indeed,
diminished episodic memory has been reported for high
functioning ASD individuals and is thought to impair the
relational binding of elements comprising complex stimuli
[91]. Therefore, rescuing defects in LTP that appears to be
highly regulated by the Wnt/𝛽-catenin pathway specifically
through the modulation of GSK3𝛽 could improve core
ASD symptomatology and open a therapeutic window for
the treatment of ASD through the fine-tuning of synaptic
plasticity.

5. Synaptic Wnt/GSK3𝛽 Signaling Hub in ASD

GSK3 is an evolutionary conserved serine/threonine kinase
highly abundant in the brain. Two homologous isoforms,
GSK3𝛼 and GSK3𝛽, have been described in mammals and
are involved inmultiple cellular processes including glycogen
metabolism, gene transcription, microtubule stability, and
apoptosis [92]. GSK3𝛽 is as a convergence point of major
prevalent neurological disorders, including Alzheimer’s dis-
ease, schizophrenia, and bipolar disorder [93–95], and its
activity is negatively regulated by Wnt signaling. As men-
tioned before, the DISC1 gene has an essential role in mod-
ulating brain structure and function and when mutated leads
to neuropsychiatric behavior. DISC1 inhibits GSK3𝛽 activity
by direct physical interaction resulting in reduced 𝛽-catenin
phosphorylation and activation of Wnt/𝛽-catenin signaling
cascade [96] and common genetic variants affecting the
coding sequence of the gene were found to suppress Wnt/𝛽-
catenin signaling activity [89]. Regarding ASDs, hyperacti-
vation of GSK3𝛽 has been documented in animal models
of FXS [97–99]. For instance, knock in mice expressing
constitutively active form of GSK3𝛽 displays similar social
preference abnormalities as FMR1 KO mice [99].

Mouse models for Fragile X, Phellan-McDermid, and
Angelman syndromes, as well as for Tuberous Sclerosis, all
present an abnormal number of dendritic spines that suggest
a dysregulation in synaptic turnover [100–102]. In this regard,
postnatal ablation of GSK3𝛽 in mice forebrain has anxiolytic
and prosocial effects [103] and its overexpression accounts for
spatial learning deficits in the Morris water maze paradigm
[104]. Interestingly, forebrain deletion of GSK3𝛽 leads to
reduced spine density where persistent spines are lost and
newly formed spines are unstable [105]. These structural
abnormalities are accompanied by a drop in AMPA depen-
dent mEPSC and the effect is mimicked by the expression of
constitutively active 𝛽-catenin [105]. Furthermore, pharma-
cological inhibition of GSK3𝛽 has been shown to increase
internalization of NMDA and AMPA receptors, effect that
is mainly observed for NR2B containing receptors [106].
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Conversely, activation of GSK3𝛽 impairs the establishment
of LTP [107] and high frequency stimulation inhibits GSK3𝛽
in a Ca2+ dependent mechanism [108]. Given that increased
abnormal spine density is a pathological hallmark inASD that
may lead to brain hyperconnectivity underlying the basis for
E/I balance, the data suggests that inhibition of the Wnt/𝛽-
catenin signaling through hyperactivation of GSK3𝛽 might
help to explain transmission anomalies as it is observed in
ASD.

6. Pharmacological Regulation of
GSK3𝛽 in ASD

Due to its high heterogeneity, genetic factors cannot be held
accountable for the entire spectrum of autism suggesting
a role for environmental factors in the onset of ASD. In
utero exposure to anticonvulsive medication is known to
cause neurodevelopmental abnormalities [109]. The most
well studied anticonvulsive agent in these subjects is valproic
acid (valproate, VPA), a known inhibitor of GSK3𝛽 [110] and
of histone deacetylase (HDAC) [111] activities. As an inhibitor
of GSK3𝛽, VPA induces the stabilization of 𝛽-catenin and
the activation of Wnt target genes, though the exact mech-
anism of GSK3𝛽 is not currently understood. Indeed, in
utero exposure to VPA increases the incidence of autism in
the offspring [112, 113] and mice models, which have been
prenatally exposed toVPAexhibitingASD-like behaviors and
morphological brain abnormalities [112, 114]. Currently, mice
prenatally exposed to VPA (VPA mice) are widely used as
animalmodels to understand the onset/development of ASDs
[115]. This VPA mouse model results from intraperitoneal
injection in embryonic stages E12–E17, which is a critical
period in forebrain development, where dysregulation of
Wnt signaling (different time points) induces morphological
abnormalities in the brain [116].

While several molecular mechanisms regarding the onset
of ASDs in VPA mice have been reported, the activation
of Wnt/𝛽-catenin signaling is central through the regulation
of GSK3𝛽. VPA mice exhibit elevated NMDA receptor
levels and enhanced LTP [117] and inhibition of GABA
transporter VGAT expression in cortical cultures [118],
suggesting an important enhancement in excitatory neuro-
transmission. Likewise, VPA mice induce demethylation of
WNT1 and WNT2 genes further enhancing Wnt/𝛽-catenin
signaling [119]. In this regard, sulindac treatment, an anti-
inflammatory drug that downregulates Wnt/𝛽-catenin sig-
naling by enhancing GSK3𝛽 expression in the prefrontal cor-
tex or the hippocampal region of VPA mice [120], improved
repetitive stereotypic activity, learning and memory, as well
as behavioral abnormalities [120, 121]. Interestingly, the VPA
transcriptome revealed enhanced expression of multiple
genes involved in Wnt/𝛽-catenin, neurotrophin, and LTP
signaling, the same pathways which also appear enriched in
the transcriptome of lithium [122], which mimics Wnt/𝛽-
catenin signaling by inhibiting GSK3𝛽 [123]. Nonetheless,
although prenatal treatment with VPA appears to enhance
the expression of Wnt/𝛽-catenin signaling, most of the data
comes from in vitro cell cultures exposed to VPA and
not from in vivo studies using mice prenatally exposed to

the drug. In this context, it is interesting to note that chronic
VPA treatment in mice has been shown to correct dendritic
spine deficits and to improve novel object recognition [124];
thus, the postnatal basal activity of the Wnt/𝛽-catenin path-
way is still unknown. In this context, it is interesting to note
that ASD could result from a transient gain of function of the
Wnt/𝛽-catenin pathway during embryonic development and
a subsequent decline after birth.

Lithiumhas beenwidely used tomanagemood disorders,
such as bipolar disorders, and it is not uncommon for ASD
children to feature symptoms within this spectrum such
as euphoria, mania, or paranoia [125]. Few studies have
documented the effects of lithium in ASDs but overall they
show promising results as a therapeutic agent. For instance,
lithium administration to 30 children and adolescents diag-
nosed with ASD through DSM-IV-TR criteria improved the
symptomatology on 43% of patients [125]. Likewise, chronic
administration of lithium to neonatal rats who exhibit
ASD-like behaviors abolished their symptoms and improved
defects in neurogenesis and E/I balance [126]. Additionally,
chronic lithium treatment reversed the increase in cerebral
protein synthesis and ameliorates behavioral abnormalities
commonly observed in FXS mice models [127], probably
through inhibitory GSK3𝛽 phosphorylation (phosphor-Ser9
and phosphor-Ser21) [128]. Interestingly, pharmacological
inhibition of GSK3𝛽 rescues LTP and hippocampal neuroge-
nesis defects in FMR1 knockout mice and improves cognitive
tasks [97, 103]. Furthermore, GSK3𝛽 inhibition similarly res-
cues dendritic spines deficit observed in FXSmice suggesting
that inhibition of this kinase and thus activation the Wnt/𝛽-
catenin play a role in reactivating synaptic plasticity and these
effects might play an important role in the behavioral and
learning improvements observed.

Antagonists formetabotropic glutamate receptor (mGluRs)
are up to date the most successful pharmacological mod-
ulators improving ASD symptomatology probably through
regulation of abnormal mRNA translation at synapses [129].
In this context, the use of MPEP (2-methyl-6-phenylethynyl-
pyridine), mGluR5 antagonists, increases inhibitory GSK3𝛽
phosphorylation selectively in FMR1 knockout mice [130],
effect that is mimicked by chronic lithium treatment. More-
over, this compound corrects dendritic spine deficits through
upregulation of PSD-95 and learning impairment in FXS
mice model [131], further ascribing a regulatory function
directly at the synapses as the underlying mechanism for
the therapeutic effect. Finally, MPEP treatment induces the
expression of several pathways, including those governed by
Wnt signaling in the frontal cortex of rats [132].

7. Concluding Remarks

ASD displays a high genetic heterogeneity that results in a
wide range of abnormal phenotypes and settling a unified
paradigm that accounts for the gain or loss of function
of genetically associated genes has been an elusive task.
Currently, most elements associated with ASDs converge in
signaling pathways important for synaptic plasticity, where
Wnt/𝛽-catenin signaling plays a central role. As described
in this review, several lines of evidence indicate that Wnt
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signaling regulation of serine/threonine kinase GSK3𝛽 has
profound effects in activity dependent synaptic plasticity
and thus in the regulation of the E/I balance. Through
dissecting Wnt/GSK3𝛽 activity and pharmacology in cells
and animal models of ASDs, it seems plausible that there
may be differential effects driven byWnt/𝛽-catenin signaling
activity during the initial patterning of brain structures and
later on when these structures have been established. Overall,
the therapeutic value of GSK3𝛽 modulation that seems to
rescue synaptic plasticity events that could be disrupted in
ASD brains warrants further basic and clinical investigation.
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