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In recent years, land use upstream of the Three Gorges Reservoir (TGR) has changed significantly because of the TGR project. In
this study, the Soil andWater Assessment Tool (SWAT) model was examined for its ability to assess relationships between land use
changes and nonpoint pollutant indexes upstream of the TGR. Results indicated that the SWATmodel, calibrated with the adjusted
parameters, could successfully reproduce the nonpoint indexes at the water quality monitoring sites in the two rivers. The different
land use change types were shown to be sensitive to nonpoint pollutants in the study area. The land use change type from upland
to water was the strongest influence on changes in total nitrogen and total phosphorus. An empirical regression equation between
nonpoint indexes and different land use change types was developed for the study area by partial least squares regression (PLSR)
as follows: 𝑌 = 𝑏

0
+ ∑
𝑚

𝑖=1
𝑏
𝑖
𝑋
𝑖
. This regression equation was useful for evaluating the influence of land use change types on changes

in nonpoint pollutants over a long time period. The results from this study may be useful for the TGR management and may help
to reduce nonpoint pollutant loads into downstream water bodies.

1. Introduction

The Three Gorges Reservoir (TGR) area is of significant
strategic importance to the Yangtze River Basin and the
sustainable development of China. With rapid economic
development in recent years, increasing pollution from point
and nonpoint sources has led to considerable degradation
of water resources. Furthermore, the water environment has
increased in complexity since the completion of the Three
Gorges Dam [1]. Thus, reliable information on water quality
and pollution sources in this region is important for effective
water management. Because of the reservoir construction,
many people in this area have been displaced and have had
to move, which has resulted in continuously changing land
use patterns since 2000. These changes will influence runoff
patterns and also the water quality in this area [2, 3].

Many studies have reported that land use change can
influence nutrient generation and transport in surface flow.
Osborne and Wiley [4] examined the relationships between

nitrogen (N) and phosphorus (P) concentrations in streams
and land use/land cover (LULC) patterns in the Salt Fork
watershed, Illinois. Yong and Chen [5] examined the hydro-
logical effects of land use in Ohio and discovered that
there was a significant relationship between LULC types and
surface water quality, especially for N and P. In the TGR area,
Zhang et al. [6] used a relatively long-term dataset of biotic
and abiotic water quality variables from the Daning River
and, by using correlation and redundancy analysis (RDA),
showed that the total nitrogen (TN)/total phosphorus (TP)
ratio was the main factor influencing phytoplankton growth
in this area. Ding et al. [7] used the Soil andWaterAssessment
Tool (SWAT) model in the same basin to simulate surface
runoff water quality and found that agricultural land was the
dominant source of nonpoint pollution.

For many years, hydrological models have proved useful
for simulating and predicting water resources and nonpoint
pollutants. The Soil and Water Assessment Tool (SWAT) was
developed specifically to simulate water quantity and quality
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in large complex catchments over long time periods. This
popular tool can simulate hydrological processes and water
quality of surface, soil, and underground water. In this study,
the two small basins of the Dong and Puli Rivers, which
are located in the area upstream of the TGR, were evaluated
using SWAT. Since the commencement of water storage in
the TGR in 2003, land use has changed significantly in
these basins [8]. In this contribution, we discuss relationships
between land use change and water quality, based on detailed
land use change types in the study area. To explain water
quality, many previous studies have emphasized the amounts
or proportions of certain land use types, such as urban and
agricultural land uses. Xiao and Ji [9] used statistical analyses
to quantify the relationship between landscape metrics and
surface water quality using remote sensing and water quality
data. There have been fewer studies on the effects of land
use change types on nutrient transport in this area, so
a combined approach should be applied in the TGR for
analyzing relationships between land use change types and
changes in nutrients.

In the study area, partial least squares regression (PLSR)
has already proved to be a useful method for analyzing
the relationship between runoff generation and land use
change [8]. The main aim of our study was to quantify the
impact of land use change types on nutrient changes in the
region upstream of the TGR. SWAT was used to simulate
hydrological and nutrient processes in the Pengxi River basin,
located upstream of the TGR. Land use maps derived from
Landsat Thematic Mapper (TM) images acquired in 2000
and 2010 were used to analyze basin land use changes. Data
for nutrient generation and transport in the river channel
was used to examine the relationship between land use
change types and corresponding nutrients, and PLSR andGIS
landscape pattern analysis were used to develop correlations
between land use change and nonpoint pollutant indexes.
Results were analyzed to determine which land use change
types had most influence on nonpoint pollutant indexes in
the region upstream of the TGR.

2. Study Area Description

The Three Gorges Reservoir, in the middle reaches of the
Yangtze River in China, is one of the largest reservoirs in the
world. It was built to harness hydropower andmitigate floods
and droughts in the middle and lower reaches of the Yangtze
and connected lake basins and tributaries. The Pengxi River
(30∘50–31∘42N, 107∘56–108∘54E) is the largest subtribu-
tary of the Yangtze River, located north of the Three Gorges
Reservoir area. The Pengxi River basin covers an area of
about 5,172.5 km2 [2]. Average annual precipitation over the
basin is 1,100–1,500mm, and the average annual discharge is
about 3.41 billion m3. Because of discharge data availability,
we focused on two major tributaries of the Pengxi River
basin, the Dong and Puli Rivers (Figure 1). About 221,500
immigrants have settled along the two rivers since the TGR
project was implemented. Land use patterns of the upstream
basin of the TGR were relatively stable through the 1980s,
but they have changed significantly since the 1990s because

of socioeconomic development of neighboring cities and
the TGR project construction. Land use changes have been
especially significant in the period from 2003, since the TGR
began to store water.

3. Methodology

3.1. Soil and Water Assessment Tool (SWAT) Description.
SWAT is a temporally continuous, physically based hydrolog-
ical model and was used to represent hydrological and water
quality processes [10]. The model subdivides a watershed
into subbasins connected by a stream network and further
delineates hydrologic response units (HRUs) consisting of
unique combinations of land cover and soils in each subbasin.
The hydrological routines within SWAT account for snow-
fall and snowmelt, vadose zone processes (i.e., infiltration,
evaporation, plant uptake, lateral flows, and percolation), and
groundwater flows [11].

SWAT simulates N and P cycles through five different
pools of N comprising two inorganic forms and three organic
forms, and six different pools of P, including three inorganic
forms and three organic forms in soil [12]. Both N and P
cycles include mineralization, decomposition, and immobi-
lization processes. Organic N and P transport with sediment
is estimated using a loading function [13, 14]. Daily organic
N and P runoff losses are calculated by loading functions
based on the concentrations of these elements in the top soil
layer and in eroded sediment and an enrichment ratio. The
nitrate (NO

𝑥
-N) concentration in mobile water is calculated

and multiplied with the volume of mobile water to estimate
total NO

𝑥
-N lost from the soil layer. Soluble P transported in

runoff is estimated using the P concentration in the top soil
layer, the runoff volume, and a soil P partitioning coefficient
[15].

The Nash-Sutcliffe (Nash) coefficient of efficiency [16]
and the coefficient of determination (𝑅2) were used as the
objective function for optimizing the model performance.
The N-S coefficient is defined as

Nash = 1 −
∑
𝑛

𝑖=1
(𝑄
𝑜𝑖
− 𝑄
𝑠𝑖
)
2

∑
𝑛

𝑖=1
(𝑄
𝑜𝑖
− 𝑄
𝑜
)
2
, (1)

where 𝑄
𝑜𝑖

(m3 s−1) is the observed data, 𝑄
𝑠𝑖

(m3 s−1) is
the simulated data, n is the total number of records for
comparison, and 𝑄

𝑜
(m3 s−1) is the mean value of the data

observed over the simulation period. 𝑅2 is the proportion of
variation explained by fitting a regression line and is seen as
a measure of the strength of the linear relationship between
simulated and observed data.

3.2. Partial Least Squares Regression (PLSR). Partial least
squares regression (PLSR) method is an effective technique
for finding the relationship between the properties of a
molecule and its structure. In mathematical terms, PLSR
relates a matrix 𝑌 of dependent variables to a matrix 𝑋
of molecular structure descriptors, that is, a latent variable
approach to modeling the covariance structures in these two
spaces [17]. PLSR allows for the analysis of data with strong
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Figure 1: Location of the study area.

correlations in the predictor variables and when the number
of training samples is far smaller than that of predictor vari-
ables [18]. The most outstanding advantage is applicability to
the situation in which there is high multicollinearity between
predictors. PLSR can achieve a higher accuracy with a smaller
number of predictor variables, relative to multiple linear
regression and principal component analysis [19]. During
cross validation, the optimal number of components for the
model is determined based on the predicted residual sum of
squares (PRESS) [20].TheminimumPRESS is normally used
to indicate the optimal number of components [21]. Once
the optimal component number is identified, regression coef-
ficients are extracted. Only those variables with significant
contribution (i.e., regression coefficient larger than 0.05) to
the response variable are selected for constructing the best
model and their regression coefficients are recalculated in
that model [19].

The relationship between the land use change types and
nonpoint indexes was obtained using the PLSR method
which was implemented using the Minitab 15 statistical
software [22].

The general formula can be expressed as follows:

𝑌 = 𝑏
0
+

𝑚

∑

𝑖=1

𝑏
𝑖
𝑋
𝑖
. (2)

In this study, the percentage of the subbasin area where the
land use changed between 2000 and 2010 were used for the
model fitting. Here, Xi (𝑖 = 1, 2, . . . , 7) and 𝑌 represent
percentages of eight land use change types and the nonpoint
pollutant indexes, respectively.m is the number of variables,
𝑏
𝑖
is the regression coefficient, and 𝑏

0
is the constant.

3.3. Data Preparation. DEM data at a 90m resolution were
used to generate the topographic information needed for the
SWAT model, such as river channels, channel width, slope,
and subbasins. Land use maps and soil maps were used to
extract the HRUs, the basic unit for calculating parameters
in the SWAT model. Land use maps were developed from
Landsat 5 Thematic Mapper (TM) data (Figure 2), and 9
land use types were defined (Table 1). Five soil types were
identified from the Chinese National 1 : 1,000,000 scale soil
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Figure 2: Land use maps of the Pengxi River basin in (a) 2000 and (b) 2010.

Table 1: Land use type value and name.

Value SWAT name Land use type
11 AGRL Paddy field
12 RICE Upland
21 FRSD Forest
22 RNGB Shrubland
23 ORCD Orchard
3 PAST Pasture
4 WATR Water
51 URBN Urban
52 URML Rural

map (Figure 3). The original DEM digital spatial data, land
use map, soil type map, and river drainage map were con-
verted to the same spatial resolution. All input spatial data
were processed into the Albers equivalent conical projection
system, as required for the SWAT simulation.

Themeteorological, hydrological, andwater qualitymon-
itoring data used to construct the SWAT model are shown
in Table 2. Precipitation, minimum and maximum air tem-
perature, and wind speed data, collected frommeteorological
stations within the study area (Figure 1), were used as the
daily climate inputs for SWAT. Additional climate variables,

such as solar radiation and dew-point temperature, were
produced by a weather generator using values from the
nearest standardized weather station. Daily discharge data
were collected from gauging stations in the two basins
(Figure 1). Water quality monitoring data were collected
from the Jinguan (JG) and Zhaojia Bridge (ZJB) monitoring
stations in the Dong and Puli Rivers, respectively.

4. Result Analysis and Discussion

4.1. Sensitivity Analysis. In this study, eighteen parameters
were identified as sensitive and were tested for the Pengxi
River basin and are shown in Table 3, along with the sensi-
tivity order from the sensitivity analysis. Water quality was
most sensitive to the denitrification threshold water content
(SDNCO). This parameter controls the amount of NO

𝑥
-N

removed from the surface layer in runoff relative to the
amount removed via percolation, and it plays a critical role
in the TN simulation processes. Other sensitive parameters
were the P percolation coefficient (PPERCO), residue decom-
position coefficient (RSDCO), soil P partitioning coefficient
(PHOSKD), local rate constant for organic P mineralization
(BC4), P enrichment ratio (ERORGP), a constant for biologi-
cal oxidation of ammonia nitrogen (BC1), the contribution of
the groundwater soluble P concentration to streamflow from
the subbasin (GWSOLP), a soil erodibility factor (USLE K),
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Table 2: Main data sources.

Data Data item Station Data period Sources

Meteorological data

Maximum and minimum temperature,

Kaixian 2001–2010

State Meteorological Administration

solar radiation,
sunshine percentage,
weed speed, and
relative humidity

Precipitation

Wenquan

2001–2010

Guanmian
Dajin
Yanshui
Yunyang
Hexing
Yujia

Nanmen
Qiaoting
Hexing

Hydrological data Discharge Wenquan 2002–2010 Hydrological Statistical Yearbook
Yujia 2001–2005, 2010

Water quality data TN and TP Jinguan 2007–2009 Water quality monitoring section
Zhaojia bridge 2007–2009

Yellow earth
Neutral purplish soil
Calcareous purplish soil

Paddy soil
Limestone soil

0 5 10 20 30

(km)

N

S

W E

Figure 3: Soil maps of the Pengxi River basin.

and the coefficient rate for humus active organic nutrients
mineralization (CMN). After this analysis, a daily time step
was used for calibration and validation, and all parameters
were modified during model calibration.

4.2. Model Calibration and Validation. Based on the rainfall
station distribution, the natural river network, and basin
topography, the Pengxi River basin was divided into 30 sub-
basins, as shown in Figure 1. Using land use, soil properties,
and slope data, these basins were further divided into 181
HRUs. Initial values of the model parameters were obtained
from input maps and the database.

To estimate the impact of land use change on nonpoint
pollution, the hydrological processes of the SWAT model
were calibrated and validated using land use data from
2000 and daily discharge data from the Wenquan and Yujia
stations, located at the outlets of the Dong and Puli Rivers,
respectively. Water quality processes (N and P cycles) were
then calibrated and validated. An automatic parameter esti-
mation procedure, SWAT-CUP (CUP stands for calibration
and uncertainty procedures), was used to estimate parameter
values for runoff and water quality simulation. To evaluate
land use change effects on nonpoint pollution between 2000
and 2010, land use data from 2010 was used in themodel after
it had been calibrated and validated with 2000 land use data,
with all other parameters remaining the same. The results
of calibration and validation for the hydrological processes
are given in Table 4. The N and P cycles in the Dong and
Puli River basins were calibrated using the observed data
from 2007 and 2008, collected from the JG and ZJB water
quality monitoring stations, and validation was based on
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Figure 4: Time series of simulated and observed daily TN and TP from 2007 to 2009 at the JG station in the Dong basin.

Table 4: Simulation results of runoff in the two basins.

Station Simulation period 𝐸ns 𝑟
2

Wenquan station Calibration for 2002–2006 0.94 0.94
Validation for 2007–2010 0.98 0.99

Yujia station Calibration for 2001–2002 0.80 0.81
Validation for 2003–2005, 2010 0.93 0.87

Table 5: Simulation results of TN and TP nonpoint pollution in the
two basins.

Simulation period
TN TP

JG ZJB JG ZJB
𝑟
2
𝐸ns 𝑟

2
𝐸ns 𝑟

2
𝐸ns 𝑟

2
𝐸ns

Calibration
2007-2008 0.85 0.6 0.76 0.74 0.83 0.55 0.74 0.64

Validation
2009 0.88 0.67 0.78 0.72 0.85 0.61 0.76 0.67

∗JG is the water monitoring station of the Dong River basin, Jinguan; ZJB is
the water monitoring station of the Puli River basin, Zhaojia bridge.

observed data from 2009 (Table 5). Results of the TN and TP
calibration and validation show that all of the 𝐸ns values were
over 0.55 and 𝑅2 values were more than 0.7. Figure 4 shows
the TN and TP scatterplot and time series for the validation
phases at the JG and ZJB water monitoring stations for the
Dong and Puli River basins and demonstrates that the SWAT
model was able to satisfactorily simulate temporal variations
in daily TN and TP.

4.3. Land Use Changes. Land use maps were developed from
Landsat 5 TM data. To measure the land use composition
within the 30 selected subbasins of the Pengxi River basin,

we used land use maps in raster format from a geographical
information system (GIS). The original land use map distin-
guished 15 land use types. We reclassified the land uses into
9 categories: paddy field, upland, forest, shrubland, orchard,
pasture, water, urban, and rural (Table 1). In a previous study,
we found that the main land use types in the Pengxi River
basin were upland, paddy field, pasture, and forest [8]. We
did more detailed research on land use change as part of this
previous study. We calculated the transfer matrix from 2000
to 2010 for the Pengxi River basin and allocated the 72 change
types between the 9 land use types and then identified the 8
top most common land use types based on the area of the
main land use change types in the study area (Figure 5). The
category axis represents the codes for each land use change
type. Preliminary analysis indicated that the main land use
change types during this period included pasture conversion
to upland, upland to orchard, upland to pasture, pasture to
water, upland to shrubland, pasture to water, shrubland to
upland, and paddy field to upland.The total area of the 8 land
use types is 105.62 km2, which accounts for 50% of the whole
area of land use change. Most of the 8 land use change types
were in the 5 main land use types.

To analyze the characteristics of the spatial distribution
of the main land use change types in detail, we identified the
distributed subbasins of each land use change type (Figure 5).
We found that every land use change type tended to be
clustered in certain areas. Analysis indicated that upland
to pasture (C12–3) areas occurred in 13 subbasins in Dong
River basin, accounting for 17.41% of the Dong River basin,
and 1 subbasin in the Puli River basin. Pasture to water
(C3-4) areas were mainly distributed in 5 subbasins in the
downstream basins of the Dong and Puli Rivers. Upland
to water areas occurred in 11 subbasins and were evenly
distributed in the middle and lower subbasins of Dong and
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Figure 5: Continued.
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Figure 5: Spatial variation of land use conversion from 2000 to 2010. C12–3 upland to pasture; C3-4 pasture to water; C12–4 upland to water;
C3–12 pasture to upland; C11-12 paddy field to upland; C22–12 shrubland to upland; C12–22 upland to shrubland; C12–23 upland to orchard.
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Figure 6: Spatial variation of water quality from 2000 to 2010 (a) percent change in TN; (b) percent change in TP.

Puli River basins. The area of pasture to upland change type
was the greatest of all of the change types, with a change
area of 17.18 km2, but it only involved 5 subbasins, which
were generally distributed in the middle and lower reaches
of Dong and Puli Rivers. Conversion from paddy field to
upland areas generally occurred in the upper and middle
subbasins of the Puli River basin. The changes between
shrubland and upland (C12–22 and C22–12) occurredmainly
in the upper and middle subbasins of Dong River basin,
with more changes from upland to shrubland. Upland to
orchard conversions were ranked second, with a change area
of 17.08 km2, occurring in 12 subbasins. These were generally
distributed in the upper and middle subbasins of the Dong
and Puli River basins.

These changes were clearly a consequence of the TGR.
The TGR, the world’s largest hydropower project, has created
a reservoir 600 km long with a surface area of 1060 km2 along
the Yangtze valley between Yichang and Chongqing. It was
constructed from 1993 to 2009. Its water level is 175m above
sea level, and its total storage capacity is 39.3 billion m3.
In June 2003, the water level reached 135m above sea level,
and, with its continued rise, 1.13 million inhabitants had to
be relocated, many to the upstream river basins. From 2000
to 2004, further 96 000 residents from the region along the
upper reaches of the TGR were relocated [23]. This placed

significant additional pressure on land use in the local area,
which was already intensively disturbed. Overall, land use in
basins upstream of the TGR has been strongly influenced by
socioeconomic development and the TGR project.

4.4. Impact of LandUseChanges. Water quality changes at the
subbasin level are presented in Figure 6. In general, the basins
can be divided into threemajor classes: (1)positive high: if the
percentage change in nonpoint pollutant indexes is greater
than or equal to 5% of the original value; (2) modest: if the
percentage change in hydrological characteristics is between
−5% and 5% of the original value; and (3) negative high:
if the percentage change in hydrologic characteristics is less
than or equal to −5% of the original value (Figure 7). This
demonstrates that the percent change in TN is modest in
the majority of the subbasins of Dong River basin, except
in subbasins 5, 10, and 11, in all of which upland to orchard
was the main land use change type. In addition, decreases in
TN were mostly observed upstream and downstream, which
may be due to conversion from upland to pasture. More than
70.3% of the area, mainly distributed in the upstream reaches
of the Puli River basin, was classified as negative high for
TN.The remaining downstream areawas classified as positive
high.Themajority of the region experienced modest changes
in TP, with about 21.7% of the area classified as positive high
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and 31.1% classified as negative high.The positive high region
ismostly associatedwith conversion of upland to orchard and
water, which increased TP production.

The objective of this section is to examine whether land
use conversion can explain nonpoint pollutant indexes at
the subbasin level. To estimate the percentage of land use
conversion within each of the 30 subbasins (Figure 1), the
2000 and 2010 land use maps were overlain. The top 8 land
use conversion classes were identified and the percentage of
land use conversion within each of the 8 classes relative to
the total subbasin area was calculated for all 30 subbasins.
The strength of the relationship (correlation) between the
percentage of land use conversion within a subbasin and two
nonpoint pollutant indexes was assessed (TN and TP). As
shown in Table 6, changes in nonpoint pollutant indexes were
examined by considering the percentage change in a variable
relative to the 2000 land use scenario value (P N, P P), as well
as the absolute difference in the variable (D N, D P). Several
significant correlations were found, even at the 0.01 level
(Table 6), using the Spearman test. Differences can be found
between the correlations as they were described as in the
forms of absolute and percentage differences. However, there
was a clear correlation between the percentage change area
and the percentage change of all nonpoint pollutant indexes
in land use conversion from upland to water. Meanwhile,
the correlation coefficients were relatively high with few
exceptions (e.g., typically higher than 0.6), such as the
percentage change of TP in percentage change area of landuse
conversion code 5 (upland to pasture). Most of the significant
correlations were observed for the changes from upland land
use to pasture, water, and shrubland types. The percentage
changes of TN and TP were positively correlated with land
use conversion code 15 (upland to water) at significant levels.
The reason for these changes was that the nitrogen and
phosphorus enriched surface soils in the previous upland
area release nitrogen and phosphorus to the water body
directly after the land use change. Therefore, this conversion
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Figure 8: Coefficient map of TN PLRS results.

was found to be one factor that increased the TN and TP
concentrations in the downstream area. The percentage
change of TP was found to be significantly correlated with
land use conversion codes 53 and 51 (upland to pasture and
shrubland). And the negative correlation indicates that the
TP flux decreased when land use changed from upland to
pasture and shrubland. These correlations reveal that the
upland land use is the most important source for both TN
flux and TP flux in this region, while different land use
change may increase or attenuate the release of the these
pollutions.Meanwhile, the previous study has also shown that
agricultural lands produced 20 times higher phosphorus as
the forest lands and 154 times that of barren land use [5].

4.5. Quantitative Analysis of Land Use Effects on Nonpoint
Pollutant Indexes. The purpose of establishing the relation-
ships between water quality indexes and percent land use
change was twofold: (1) to understand how water quality
indexes respond to land use change and (2) to make new
or improved estimations of the nonpoint pollutant indexes
by applying the established empirical relationships to future
conditions. Derived from the PLSR, standardized regressions
of the nonpoint indexes are given.

The regressionmodels with standardized regression coef-
ficients for respective variables are listed in Table 7. The
standardized coefficients can be used as indicators of the sign
and magnitude of the control of predictor variables on the
response variable.

The optimal number of components for the best PLSR
model, identified by using the minimum PRESS value, was
2. Eight predictor variables were included in the best model.
Their standardized regression coefficients in the best model
are listed in Table 7, and the largest three coefficients of land
use change type were codes 15, 32, and 51, which indicates that
they were the land use change types that influenced TN fluxes
most (Figure 8). Land use change type codes 15, 51, and 60
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Table 6: Spearman correlation coefficients and probabilities (𝑃 value). Correlations between percentage of land use conversion within a
subbasin and water quality variables. Bold coefficients indicate significant relationships.

2000 2010 Code Area (km2) P N P P D N D P

Upland Pasture 5 16.85 −0.47 −0.57∗ −0.53 −0.65
0.09 0.03 0.05 0.01

Pasture Water 12 18.84 −0.21 −0.61 −0.15 −0.70
0.73 0.28 0.81 0.19

Upland Water 15 12.63 0.81∗∗ 0.69∗ 0.64∗ 0.46
0.00 0.02 0.03 0.16

Pasture Upland 30 17.18 0.32 0.65 0.45 0.56
0.54 0.16 0.37 0.24

Paddy field Upland 32 10.17 −0.47 −0.45 −0.29 −0.55
0.43 0.45 0.64 0.34

Shrubland Upland 35 10.70 0.08 0.85 0.08 0.21
0.85 0.65 0.85 0.62

Upland Shrubland 51 12.16 −0.45 −0.62∗ −0.25 −0.52
0.14 0.03 0.44 0.08

Upland Orchard 60 17.08 0.13 0.02 0.11 0.04
0.70 0.95 0.70 0.90

P N: percent changes in total nitrogen %.
P P: percent changes in total phosphorus %.
D N: differences in total nitrogen (kg⋅ha-1).
D P: differences in total phosphorus (kg⋅ha-1).
𝑛 = 23.
∗
𝑃 < 0.05.
∗∗
𝑃 < 0.01.
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Figure 9: Coefficient map of TP PLRS results.

play an important role in the TP fluxes (Figure 9). The fitted
models are

𝐶TN = −2.21𝑐5 + 3.07𝑐12 + 19.76𝑐15 + 0.03𝑐30 − 5.05𝑐32

− 3.44𝑐35 − 7.80𝑐51 + 1.12𝑐60 + 4.35

𝐶TP = −3.30𝑐5 + 2.18𝑐12 + 21.06𝑐15 − 5.88𝑐30 − 4.13𝑐32

− 3.06𝑐35 − 7.42𝑐51 + 10.58𝑐60 + 2.25.

(3)

Themodel is overall highly significant with a 𝑃value less than
0.001. The 𝑅2 values are greater than 0.5, indicating that the

Table 7: Fitted models and model performance of TN and TP
changes.

Standardized regression coefficients
Land use change types

𝐶TN 𝐶TP2000 2010 code
Upland Pasture 5 −0.17 −0.32
Pasture Water 12 0.05 0.04
Upland Water 15 0.33 0.45
Pasture Upland 30 0.001 −0.31
Paddy field Upland 32 −0.18 −0.19
Shrubland Upland 35 −0.16 −0.18
Upland Shrubland 51 −0.21 −0.26
Upland Orchard 60 0.02 0.30

Model performance
𝑛 23 23

𝐹 statistic 13.26 7.24
𝑃 value 0.001 0.002
𝑅
2 0.56 0.62

model fits the data relatively well and that it can satisfactorily
predict the data. The data prediction performance of the
model can be also illustrated by plotting the fitted and
predicted values (Figures 10 and 11). The points on the plot
show a general linear pattern for the low data range but are
widely scattered for the high data range, suggesting that the
model is not very accurate for the high data range.The scatter
for the high data range may be due to the land uses with
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higher areas of change making the land use change more
complex.

The PLSR modeling result indicates that land use change
type codes 12, 15, 30, and 60 have positive impacts on the
nonpoint pollutant indexes, while codes 5, 32, 35, and 51
have negative impacts on the nonpoint pollutant indexes.
The results for codes 32 and 35 are not as might have been
expected, as two intertransformation types between upland
and shrubland should have had opposite coefficients from the
PLSR model; however they are both negative. This may be
due to instability of the PLSR method and limitations of the
sample data. For example, Shen et al. [24] found that nutrient
simulations for forests showed higher uncertainty than those
for grassland and plantation in the SWAT model, which may
help explain the PLSR result. Correlation results suggest that
code 32 should be positive, while code 35 should be negative.

Land use conversions from upland and pasture to water
are mainly in the middle and lower reaches of the Dong and
Puli River basins, where themost densely populated urban or
rural areas are located. In these areas, water (including river,
lake, reservoir, and pond) showed signs of pollution from
human activity. In addition, large amounts of precipitation
can cause polluted water to overflow into water bodies,
thereby impacting negatively on nonpoint pollutant indexes;
this may help explain the positive impact of land use con-
version codes 12 and 15 on nonpoint pollutant indexes. Many
studies have reported that agricultural land use contributes to
degraded water quality in nearby aquatic systems, by altering
the soil surface conditions, increasing the impervious area,
and generating pollution [5, 25, 26]. Our results agree with
previous findings that suggest that most of the water quality
index model coefficients have negative signs when upland
changes to other land use types (Tables 6 and 7).However, Lee
et al. [27] reported that there was a fairly weak relationship
between agricultural land use and water quality indexes,
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Figure 11: Scatter plot of the fitted and cross-validated data versus
the actual TP changes.

particularly for nutrients such as TN and TP. The degree to
which agricultural land use has a negative influence on water
quality depends on farming practices and geographic location
[28, 29]. In our study area, upland is the primary agricultural
land use, and, as previously discussed, upland cultivation
differs from paddy field cultivation in many ways (e.g., [5,
25]). Paddy fields in the study area receive more intensive
fertilizer applications than the upland cultivated areas. We
therefore expected negative impacts of land use conversation
code 32 on nonpoint pollutant indexes due to differences in
fertilization between paddy fields and upland. For vegetation
classified as shrubs, the dominant characteristic is that the
shrubs or trees have a minimum height of 1.5m and a dense
understory [30]. Shrubland is usuallymade up of populations
such as solanum deflexicarpum, birchleaf pear, myrsine
stolonifera, pyracantha fortuneana, and fern and sometimes
has been classified as a kind of forest [31, 32]. Generally,
forest plant litter contains higher levels of organic nutrients
than crop residue. Furthermore, litter biodegradability and
breakdown is lower in forest soils than in crops [33] and
herbaceous plants [34], meaning that land use changes from
shrubland to upland lead to a negative impact on nonpoint
pollutant indexes.

5. Conclusions

A distributed hydrological model was used to evaluate the
effects of land use change on nonpoint pollution indexes (TN
and TP). In this study, eighteen parameters were identified
as sensitive and were tested for the Pengxi River basin.
Using selected sensitive parameters, the SWAT model was
calibrated and validated for the JG and ZJB water quality
monitoring stations, located in the Dong and Puli Rivers,
respectively. The model gave satisfactory results for TN and
TP simulations at a daily time interval. The transfer matrix
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from 2000 to 2010 showed that there were 8 main land
use change types, which, covering 105.62 km2, accounted for
more than 50% of the total area of land use change. Most
land use change was between upland, paddy field, pasture,
shrubland, and water. Land use change between 2000 and
2010 was partly due to human activities, for example, the
TGR. Spearman correlation results show that the change
from upland to water had most effect on TN and TP. PLSR
modeling of TN and TP also showed that the upland to water
land use change plays a very important role in TN and TP
changes, contributing more than one-third of importance to
the TN and TP changes.
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