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Abstract

Canonical Wht-signalling is well understood and has been extensively described in many
developmental processes. The regulation of this signalling pathway is of outstanding rele-
vance for proper development of the vertebrate and invertebrate embryo. Axin2 provides a
negative-feedback-loop in the canonical Wht-pathway, being a target gene and a negative
regulator. Here we provide a detailed analysis of the expression pattern in the development
of the chicken embryo. By performing in-situ hybridization on chicken embryos from stage
HH 04+ to HH 32 we detected a temporally and spatially restricted dynamic expression of
Axin2. In particular, data about the expression of Axin2 mRNA in early embryogenesis,
somites, neural tube, limbs, kidney and eyes was obtained.

Introduction

Axin2 (also called Axil or Conductin) is a homologue of Axin protein. It shares approximately
45% of amino acids with Axin [1, 2]. The Axin protein houses four highly conserved functional
domains throughout the species [3-5]. The N-terminal RGS-domain has been found to interact
with the tumour suppressor gene adenomatous polyposis coli (APC) [1, 6]. Central in the Axin
protein, binding sites for B-catenin and for the glycogen-synthase kinase 3 beta (GSK-3/3) were
described [4]. At the C-terminal region, the DIX-domain is located that resembles the sequence
of a DIX—domain in dishevelled protein (Dvl) and promotes its interaction with Axin [7]. At
its C-terminus, Axin also interacts with the protein phosphatase 2A (PP2A) [3, 8, 9]. Being
responsible for the degradation of the downstream canonical Wht-signalling pathway molecule
B-catenin, Axin and Axin2 function as negative regulators of the canonical Wnt-signalling
pathway [5, 10-12]. The Wht-signalling pathway is one of the best elucidated signalling path-
ways. First, the canonical Wht-pathway was described, followed by at least two non-canonical
pathways. The pathway of planar cell polarity (PCP) and the Wint/Ca**-pathway are referred
to as non-canonical pathways [13-15]. These are described to establish orientation in epithelia
(PCP) and to play a role in early embryonic ventral patterning (Wnt/Ca**-pathway) ([16] for
review). Canonical and non-canonical Wnt-signalling are known to be enmeshed with each
other, as their members partially contribute to more than one pathway [17, 18] and several
Wht ligands were described to activate both canonical and non-canonical pathways [19-22].
However, in this study, only the canonical pathway is of relevance, constituting a venue for the
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Axin family [10]. Central to canonical Wnt-signalling stands the transcriptional activator j-
catenin. When entering the nucleus, -catenin can displace transcriptional repressors such as
Groucho [23] from the TCF/LEF transcription factor, which now activates the transcription of
target genes ([24] for review). In the unstimulated cell, a multi-protein complex mediates the
degradation of §-catenin via the ubiquitin proteasome pathway [25, 26]. For this purpose, -
catenin is phosphorylated by one of the two kinases of the complex, GSK-3 or the casein
kinase 1 (CK1).Axin acts as a central scaffold protein in the degradation complex by binding
and thus bringing together all important components [3]. For this purpose, Axin and Axin2
contain highly conserved regions. GSK-38 phosphorylates B-catenin, which subsequently is
ubiquitinated by the E3 ubiquitinase STrCP and degraded by a proteasome [4, 27]. GSK-3
further phosphorylates Axin itself, leading to stabilization of its interaction with 3-catenin [4].
APC and one of the relevant receptors in Wnt pathway, the low density lipoprotein related
receptor LRP 5/6 are also known to be substrates of GSK-3[28, 29]. Although GSK-3f is
capable of phosphorylating S-catenin alone, Axin unites both proteins, facilitating and signifi-
cantly accelerating this process [30]. Finally, this process represses -catenin in the cytoplasm
to a level that prohibits its access to the nucleus. In the presence of APC, the turnover of 3-cate-
nin increases [6, 31]. Previous studies suggest a role for APC in the recruitment of several -
catenin molecules to the environment of the destruction complex [5, 32, 33]. Upon arrival of
What-ligands, they bind to the seven-pass transmembrane receptor Frizzled and to its co-recep-
tor, the low density lipoprotein related protein receptor (LRP) 5 or 6 [34-36]. This heterodi-
meric complex binds Dvl at the cytoplasmatic tail of Fz [37] and initiates the recruitment of
Axin and kinases (Gsk3b or Ck1) to the membrane, mediating the dissociation of the -cate-
nin-destruction complex [29, 38, 39]. Several studies have been performed in order to elucidate
the exact molecular scenario after Wnt-binding. For instance, Wnt was described to induce
Dvl, that is thought to recruit Axin-bound GSK-3/ to the membrane, where the latter phos-
phorylates LRP 5/6 and as a consequence dissociates from Axin [29, 40]. The phosphorylation
of LRP 5/6 can equally be achieved by CK1 [39, 41]. Axin priorly was dephosphorylated by
another member of the f-catenin degradation complex, the protein phosphatase 1 (PP1) [42,
43]. Unphosphorylated Axin releases -catenin [30, 40] and easily binds to LRP 5/6. Binding of
Axin to Dvl that is connected to the cytoplasmatic tail of Frizzled, is proposed to facilitate this
initial recruitment [27]. Previous studies have further proposed a model for the formation of so
called signalosomes, built from multiple associated LRP/Axin complexes [44]. As a result of
the dissociation from the S-catenin-destruction complex, f-catenin is not degraded any more,
cytoplasmatic levels rapidly rise and it enters the nucleus [37]. A special function for Axin2 was
found, when discovering its transcriptional dependence on TCF/LEF motive [45]. Axin2
expression therefore is initiated by canonical Wnt-signalling and provides a negative-feedback
loop [27, 37, 45]. As this study aims to emphasize the relevance of Axin2 in regulating the
Wht-signalling pathway, it is important to mention the state of the art regarding the role of
canonical Wnt-pathway in development and in disease. During development, canonical Wnt-
signalling is described to be required for proper posterior axis formation and for the formation
of the head [46-48]. Moreover, Wht-signalling is known to be indispensable in the developing
central and peripheral nervous system [49]. It is described to be involved to the segmentation
clock during somitogenesis [50] and in the development of several other structures and organs,
such as the limbs, the kidney, the gastrointestinal system, the sensory organs and the lungs
([37, 49] for review). In the adult, deregulation of the Wnt pathway cause several cancers and
Wht-signalling is required for stem cell self renewal [51, 52]. The regulation of Wht-signalling
via Axin and Axin2 impacts embryonic development and health in the adult, as described by
many studies. Axin mutant mice failed to survive [11, 53] and display severe developmental
defects. Mice with homozygous mutations in Axin2 developed a secondary caudal body axis
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[11] and exhibited malformations of the skull due to premature fusion of cranial structures
[54]. This malformation is an equivalent to the human disease craniosynostosis, that is
described to develop on the basis of Axin2 mutations [55]. Another developmental defect asso-
ciated with Axin2 abnormalities in mice and human is familial tooth agenesis and oligodontia
[56, 56, 57]. Further, Axin is related to hepatocellular cancer [58, 59], ovarian cancers [60] and
to medulloblastomas [61]. Axin2 mutations play a secondary role in familal adenomatous poli-
posis coli (FAP), when the causal mutation is not situated in APC and because proper function
of APC requires Axin [62, 63]. Predisposition to colorectal cancer, when carrying mutations in
Axin2 is described [58, 63]. Shedding similar functions than Axin, Axin2 was previously tested
on its functional redundancy [54]. Axin2 was shown to be able to at least partially compensate
for mutated Axin when expressed in the respective cells. Axin however, is expressed in small
amounts in all embryonic tissues, while Axin2 expression was described to be restricted and
dynamic during mouse development [11, 45]. Interestingly, Axin was described to be the limit-
ing factor in Wht regulation, referring to its low cytoplasmatic levels [64]. Axin2 on the other
hand, is highly expressed, suggesting an extensive role for Axin2 regulation in certain tissues.
This observation, together with the fact that Axin2 is a target of Wht-signalling, indicates the
importance of Axin2 mediated negative regulation in certain tissues. In this study, we demon-
strate the dynamic expression pattern of Axin2 in the development of the chick.

Materials and Methods
Embryos

Fertilized eggs of Gallus gallus domesticus were incubated at 37°C and 80% relative humidity.
Eggs were provided by a local breeder (Sorries-Trockels Vermehrungszucht). Staging was per-
formed according to Hamburger and Hamilton [65].

The obtained chicken embryos were isolated, fixed in 4% PFA for at least 24h. For descrip-
tion and analysis of the expression pattern of Axin2 during chicken development, chicken
embryos in developmental stages HH 04 to HH 32 were proceeded in in-situ hybridization.

Whole mount in-situ hybridization

Whole mount in-situ hybridization was performed as previously described [66], using cAxin2
riboprobe for detection of Axin2 transcripts in all embryonic tissue.

Generation of a riboprobe for in-situ hybridization. The probe for cAxin2 in-situ
hybridization was generated from a pCMS-EGFP plasmid containing a full length Axin2 cod-
ing sequence. It was restricted using EcoRV and Smal to obtain a 835bp fragment binding
from bp926 to bp1788 on Axin2 mRNA (NCBI Reference Sequence: NC_006105.4). The puri-
fied fragment was blunted and cloned to pJET1.2/blunt Cloning Vector. From here, the frag-
ment was excised using Xbal and Xhol and ligated to pBluescript IT KS+ Vector. The obtained
plasmid was suitable for generating a riboprobe in in vitro transcription.

Sectioning

Vibratome-sections. The embryos were embeddedin 2, 5 — 4% agarose gel and sectioned
with Vibratome (Leica VT 1000 S) to 50-80um. Sections were collected and covered with cover
slips and Aquatex (Merck).

Cryo-sections. In-situ hybridized chicken embryos were embedded in Leica tissue freezing
medium™and frozen with liquid nitrogen. Obtained blocks were sectioned with Leica CM3050
S cryo-stat. Sections were collected on slides, dried and covered using Aquatex (Merck).
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Ethic statement. According to German legislation, the use of embryonic vertebrates in an
animal experiment needs approval only if the animal is in the last third of its embryonic devel-
opment. In the case of chicken, this means that experiments done on animals before embryonic
day 14 (E14) are not regarded as an animal experiment by the Tierschutzgesetz, and therefore,
do not need approval or governmental permission.

The chicken embryos sacrificed for this work were between developmental stages HH+04
(E1) and HH32 (E7.5). All embryos were sacrificed at the end of the study by opening the shell
and tearing the allantois and amnion with forceps. Thereafter, the embryos were immersed in
4% PFA/PBS solution for fixation. No permits were required for the described study, which
complied with all relevant regulations.

Results and discussion
0.1 Expression pattern of cAxin2 during early chicken embryogenesis

After whole mount in-situ hybridization, a dynamic expression pattern of Axin2 was found
from stages HH 04 to 32. In early embryogenesis, Axin2 expression was observed in the primi-
tive streak (ps)(Fig 1, A black arrow, B, C, D) and in the Hensen’s node (hn)(Fig 1, B red arrow,
Cred arrow, D, E). Additionally, the head fold (hf) heavily expresses Axin2 from stage HH 07

+ onwards (Fig 1, B, C black arrows). During further development, in stage HH 10, Axin2 tran-
scripts were detectable in the Hensen's node (hn), posterior presomitic mesoderm (psm) (Fig 1,
E) and medially in the freshly segmented paraxial mesoderm (dml-dorso-mediallip) (Fig 1, E.1
red arrow). Transversal sections were performed to analyse the expression of Axin2 during early
embryogenesis in detail. They present gastrulation and neurulation processes, where the matu-
ration can be observed in a cranial to caudal axis. The green bars in the whole mount specimens
indicate the sectioning level. Sections of HH stage 08 (Fig 1, C.1, C.2, C.3) show the caudally
regressing primitive streak (ps) with the primitive groove (pg). The primitive folds (pf) of the
ectoderm and the developing mesoderm underlying the primitive groove (pg) express Axin2
(Fig 1, C.1, C.2, C.3). Further, the transversal section of the head fold (hf) in HH stage 08 (C.4)
shows intense expression of Axin2 in medial parts, facing towards the lumen of the anterior
neuropore. In HH 09, during the primary neurulation process, cranially to Hensen’s node (hn)
(Fig 1, D, D.1, D.2), only little Axin2 is expressed in the neural groove (ng) (Fig 1, D.1, D.2) and
in the elongating notochord (nc) (Fig 1, D.1 and D.2). At this stage the head folds (hf) at mid-
brain (mb) level have converged (Fig 1, D.3) and Axin2 expression is increased in the medial
neural folds. In Fig 1, E.2, E.3, E4 and E.5 (HH 10), the segmental plate mesoderm (spm) is
formed, as the neural folds (nf) extend distally to form the neural tube (nt). Axin2 is expressed
in the neural groove (ng) and in the notochord (nc)(Fig 1, E.4, E.5). At HH stage 10 more crani-
ally, first somites (so) are shaped in the segmental plate mesoderm (Fig 1, E.2, E.3), as the neural
folds (nf) fuse to form the neural tube (nt). In sections E.6 to E.8 (Fig 1), the development of the
caudally shifted Hensen’s node (hn) is depicted. Axin2 expression is restricted to the central
Hensen’s node (Fig 1, E.6, E.7, E.8) expanding towards the ventral axial mesoderm (am). In pic-
ture E.6 (Fig 1), the prechordal mesoderm (pcm) is heavily stained for Axin2.

By stage HH 11, the expression of Axin2 in the dorso-medial lip (dml) appears (Fig 2, A,
A.1black arrows). This expression intensifies as the somites mature (Fig 2, HH 14: B, black
arrow and HH 15: C, C.1 black arrows). Additionally, the posterior neuropore (pnp) is inten-
sively stained for Axin2 (Fig 2, A, B, C). Regarding the head of the depicted embryos in Fig 2,
Axin2 expression is visible predominantly in the mid-brain (mb)(Fig 2, A, B.1, C white arrow).
During secondary neurulation, which describes the elongation of the neural tube (nt) into the
tail bud, Axin2 is expressed centrally in the tail bud mesoderm (tbm)(Fig 2, C.2, C.3,C.4) in
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E6 HH10 ¢ E7 HH10

Fig 1. Expression of cAxin2in stages HH 04+ to HH 10. Overviews and transversal sections of chicken
embryos. Green bars in overviews (C, D, E) indicate sectioning level. (A) HH 04+: Axin2transcripts in ps
(black arrow). (B) HH 07+: expression intensified in ps, hn(red arrow) and hf (black arrow). (C) HH 08:
expression in hf (black arrow), hn (red arrow) and ps. (C.1) Axin2 expression in pfand pg. (C.2) intense
staining in the pf. (C.3) expression thickened ectoderm as a first step of neurulation. (C.4) transcripts in the
most medial inner epithelium of the hf. (D) HH 09: expression in hn, faintly in the psmand in the mb. (D.1,
D.2) expression in the ng and in the nc. (D.3) strong expression in the medial layer of the hf. (E) HH 10:
strong Axin2 expression in hnand psm, as in the mb. (E.1) higher magnification of the so and nt shows
expression in the medial so, the dml. (E.2) faint staining in medio-dorsal epithelium of the early soand in the
developing nt. (E.3) transcripts rarely detectable in the nfprior to closing. (E.4) expression of Axin2in the nc
and in the annealing nf. (E.5) expression in the centre of the nfand in the nc. (E.6, E.7, E.8) upheaval of the
nfin the distal-most hn. (E.6) expression in the centre of the future ntand in the pcm. (E.7, E.8) transcripts in
the folding neuroectoderm expanding towards the am. ps-primitive streak, hn-Hensen’s node, hf-head fold,
pf-primitive folds, pg-primitive groove, psm-presomitic mesoderm, mb-mid-brain, ng-neural groove, nc-
notochord, so-somites, nt-neural tube, nf-neural fold, spm-segmental plate mesoderm, pcm-prechordal
mesoderm, am-axial mesoderm.

doi:10.1371/journal.pone.0163610.9001
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HH11 HH14

dmi

Fig 2. Expression of cAxin2in stages HH 11 to HH 15. Overviews (A, B, C) and transversal sections of
chicken embryos. Green bars in overviews indicate sectioning level (C). (A) HH 11: Axin2 expression in the
head, pnp, ntand (A, A.1) dml of the so (black arrow). (B) HH 14: strong expression in the dm/ (black arrow).
(B.1) transversal section through the head at mid-brain level with transcripts in the medial head fold in in the
adjacent neighbouring mesenchyme (black arrow). (C) HH 15: Axin2 expression in the brain (white arrow),
the dm/(C.1 black arrow) and in the pnp. (C.2) expression in the snc and in the ventral snt. (C.3, C.4) Axin2
expression in the tbm. (C.5) section through head and neck with expression of Axin2in the oc, the
neighbouring hb and the ov. pnp-posterior neuropore, nt-neural tube, dml-dorso-medial lip, so-somites, snc-
secondary notochord, snt-secondary neural tube, tbm-tail bud mesoderm, oc-otic cup, hb-hind-brain, ov-
optic vesicle.

doi:10.1371/journal.pone.0163610.9002

HH 15 and ventrally in the recently formed secondary neural tube (snt) and secondary noto-
chord (snc)(Fig 2, C.2).

In stage HH 14 at mid-brain level (Fig 2, B.1), the anterior neuropore has closed and Axin2
expression has shifted to a patch in the ventral mesoderm, flanking the mid-brain (mb)(Fig 2,
B.1 black arrow). In HH stage 15, Axin2 expression is detectable in the developing sensory
organs, eye and ear, for the first time (Fig 2, C.5). Axin2 mRNA was detected in the otic cup
(oc)(Fig 2, C.5) and adjacent hind-brain (hb), as well as in the out-pocketing optic vesicle (ov)
(Fig 2, C.5). The optic vesicle (ov) forms laterally from the prosencephalon, where Axin2 is
transcribed in the medial wall.
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Previous studies have investigated the role of Wht-signalling during gastrulation, neurula-
tion, axis- and head formation. In the early patterning events of the vertebrate body, canonical
Wht-signalling is believed to first act as dorsalizing and later as posteriorizing signal [67, 68].
In concordance to that, several Wnt-mutant mice exhibit truncated posterior axis, lost tail for-
mation and disturbed somitogenesis [69, 70]. Experiments in chicken and Xenopus resulted in
axis duplication and disturbed head formation after Wnt overexpression [71]. Proper forma-
tion of the head requires Wnt inhibition in the anterior embryonic tissue [72-74]. Ectopic
expression of Wnt inhibitors was found to induce notochord formation [75]. The examination
of Axin knockouts revealed its function in ventralizing the respective tissue and in inhibiting
posterior axis formation [11]. Furthermore, Axin loss of function in Xenopus resulted in dis-
turbed closure of neural folds, head folds and the duplication of the allantois [76]. These find-
ings together with the our new observed expression of Axin2 during chicken embryogenesis
support the idea that appropriate regulation Wnt-signalling via Axin2 influences body pattern-
ing, axis elongation and head formation. The expression of several Wats in the chicken primi-
tive streak and Hensen’s node reinforce this hypothesis [77].

0.2 Expression pattern of cAxin2in stages HH 17 to 32

At HH stage 17, the chicken limb buds (Ib) are distinguishable, expressing Axin2 mRNA from
their onset (Fig 3, A red arrows). During the rapid outgrowth of the limb buds (Ib) the Axin2
expression increases (Fig 3, HH 19: C, HH 20: D.1, HH 21: E.3, HH 22: E2). The apical ecto-
dermal ridge (aer) is notably stained (Fig 3, D.1 white arrow, E.3 black arrowhead, E.2 black
arrow). In somites (so), Axin2 expression shifts from the medial somite to the intersomitic fur-
row (isf)(Fig 3, HH 21: E.1 white arrow; HH 22: F, E.2 white arrows). After whole mount in-
situ hybridization, the neural tube (nt) is stained for Axin2 in two longitudinal stripes, at first
weakly (Fig 3, HH 19: C.1, HH 20: D.2 black arrowhead), then stronger (Fig 3, HH 21: E.1
black arrowhead, HH 22: E1 black arrowhead). Moreover, the mesenchyme of the sprouting
tail bud (tb) expresses Axin2 (Fig 3, HH 17: A, HH 19: C.3 black arrowhead, HH 22: F.4 red
arrow). As well as at other expression sites, Axin2 transcription relatively increases during mat-
uration of the respective tissue or organ. At the head region, Axin2 is expressed in the otic vesi-
cle (ov)(Fig 3, HH 17: A black arrow; HH 19: C.2 white arrow; HH 21: E.2 black arrowhead).
Furthermore, the branchial arches (ba) are specifically stained after Axin2 in-situ hybridization
(Fig 3, HH 19: C.2 black arrow, HH 21: E.2, HH 22: E3). Moreover, the brain vesicles express
Axin2.

HH 23 to 29 embryos (Fig 4) express Axin2 in similar regions, compared to the earlier
developmental stages, with little changes. Axin2 is expressed in brain and otic vesicle (ov)
throughout these stages (Fig 4, HH 24: B.1 white arrow). In addition, the branchial arches (ba)
show intense staining (Fig 4, HH 24: B.1), which becomes restricted during development and
predominantly was observed on the protuberances of the mandibular (Fig 4, HH 27: E black
arrowhead, HH 28: F white arrow) and maxillary arch, respectively (Fig 4, HH 29: G white
arrow). The expression pattern in the neural tube (nt) changes from two longitudinal lines (as
described above) to one central line (Fig 4, HH 26: D.3; HH 27: E.1 white arrows). Another
expression site of Axin2 is presented in Fig 3, picture E. Here, the white arrow indicates an
Axin2 expression in the facial development. Axin2 is still expressed in the limbs (Ib) by stage
HH 26 (Fig 4, D.1). Here, it is notable that in further developed stages the future shoulder is
heavily stained (Fig 4, HH 26: D.1, HH 28: F and HH 29: G red arrows). The interdigital zones,
where programmed cell death occurs, express Axin2 (Fig 4, HH 28: F and HH 29: G black
arrows). This observation was continuously found in the development of digits in later stages
(Fig 4, HH 31: H black arrow and HH 32: I). Strong Axin2 expression is also visible in these
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Fig 3. Expression pattern of cAxin2from HH stage 17 to 22. (A) HH 17 embryo with Axin2 expression in
the brain, Ib (red arrows), tail and ov (black arrow). (A.1) dorsal view: expression in the dm/ (white arrow). (B)
HH 18: more prominent staining in the /b and in the ba. (C, C.1, C.2 & C.3) HH 19: Axin2transcripts in the nt
(C.1) and dm/ (C.1, white arrow), in Ib (C, C.1), in ov(C.2, white arrow), ba (C.2, black arrow) and in the tip of
the tail (C.3, black arrow). (D, D.1, D.2) HH 20: similar expression of cAxin2. (D.1) the wing bud expresses
Axin2, white arrow: aer. (D.2) dorsal view: prominent expression in nt (black arrowhead) and isfiwhite arrow).
(E, E.1, E.2, E.3) HH 21: Transcripts in the tip of the tail (E, black arrowhead), in ntand so(E.1), in the otic
anlage (E.2, black arrowhead) and in the developing /b (E.3). (F, F.1, F.2, F.3 and F.4) HH 22: consecutive
expression of Axin2 mRNA in ba (F, black arrow; F.3), nt (F.1, black arrow), isf (F, white arrow, F.2, white
arrow) and tail (F.4, red arrow). Ib-limb buds, ov-otic vesicle, dml-dorso medial lip, ba-branchial arches, nt-
neural tube, aer-apical ectodermal ridge, isf-intersomitic furrow, so-somites.

doi:10.1371/journal.pone.0163610.9003

older stages’ shoulders (Fig 4, HH 31: H and HH 32:I). The chicken external ear (ee) expresses
Axin2 as well (Fig 4, HH 31: H and HH 32: I red arrows). Finally, Axin2 is expressed in the first
rows of feather buds (fb) on the back of the farthest developed stages (Fig 4, HH 31: H, H.1 and
HH 32:1.1 white arrows), as at the shoulders and hips. On the chicken eye, the developing
scleral ossicles express Axin2 (Fig 4, HH 32: I white arrow).

0.3 Axin2 expression during somitogenesis

In transversal sections of in-situ hybridized chicken embryos, Axin2 expression was found dur-
ing somitic differentiation (Fig 5). Green bars in the whole mount specimens (A, B, C,D, E, E
G) indicate the levels, where the sections have been performed. In the segmented paraxial meso-
derm, Axin2 is expressed in the epithelial somites and in the differentiating dermomyotome. At
HH stage 15 transcripts are mainly detectable in the medial and medio-dorsal wall of the

PLOS ONE | DOI:10.1371/journal.pone.0163610 September 28, 2016 8/24
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Fig 4. Axin2transcripts in chicken embryos from stage HH 23 to HH 32. (A) HH 23: expression pattern
resembles what is described in Fig 2. Limbs, inner ear, brain, eye, and tb express Axin2 (A). (B, B.1 & B.2)
HH 24: Axin2 expression in the ov (B.1, white arrow) and ba (B.1), as well as in ntand isf(B.2, dorsal view).
(C, C.1) HH 25: Axin2is expressed at similar embryonic structures with little change. (D, D.1, D.2, D.3) HH
26: Axin2 expression in ba (D, black and red arrow; D.2), ov(D.2), Ib(D.1), brain (D), eye (D), isf(D.3, white
arrow) and nt (D.3). (E) HH27: Axin2transcripts in the facial whilst (E, white arrow), in the ba (black arrows),
as well as in /b. The dorsal view (E.1) expression in the nt (white arrow). Ba display specific staining for
cAxin2 (HH 28: F & HH 29: G, white arrows). HH 28 and 29: intense expression in the embryonic shoulder (F
& G, red arrows). Expression of Axin2in the forming interdigital spaces (F & G, black arrows). (H, H.1) HH
31: expression of Axin2 mRNA in /b and apoptotic interdigital zones (H, black arrow), at the ee(H, red arrow)
and in the fb(H & H.1, white arrows). (I, I.1) HH 32: Axin2transcripts in the eye (I, white arrow), ee (I, red
arrow) and in the fb (1.1, white arrow). Ib-limb buds, ov-otic vesicle, ba-branchial arches, tb-tail bud, nt-neural
tube, isf-intersomitic furrow, fb-feather buds, ee-external ear.

doi:10.1371/journal.pone.0163610.9004

epithelial somites (Fig 5, A.1 black arrow). This expression gains intensity in stage HH 16 and
17 as the somite (so) maturates (Fig 5, B.1, C.3). More cranially in HH 17, where somites have
maturated even further, deepithelialization of the somite (so) has begun (Fig 5, C.2). Axin2
expression is relatively strong in the remaining medio-dorsal epithelium (Fig 5, C.2 black
arrow) and in the mesenchyme ventrally flanking the neural tube (nt)(Fig 5, C.2 red arrow).
Further cranially, where the dermomyotome is almost completely formed (Fig 5, C.1), Axin2
expression was found in the most ventral parts of the forming dml of the dermomyotome (Fig 5,

PLOS ONE | DOI:10.1371/journal.pone.0163610 September 28, 2016 9/24



®PLOS | one

Expression Pattern of Axin2 During Chicken Development

C.1 HH17

Fig 5. Axin2 expression during somitogenesis and in the developing neural tube. Transversal
sections: green bars in overviews indicate sectioning level. (A) HH 15, overview; (A.1) expression in medial
epithelial so(black arrow) and faintly all over the nt. (B) HH 16, overview; (B.1) increased expression in the
medial somitic epithelium. (C) HH 17, overview; (C.1) Axin2in dml (black arrow), in the mesenchyme
ventrally flanking the nt (red arrow) and predominantly in the dorsal nt. (C.2) Expression in dorso-medial
somitic epithelium (black arrow), ventrally in the mesenchyme (red arrow) and all over the nt. (C.3)
Expression in the medial epithelial so. (D) HH 19, overview; (D.1) expression in dm/and nt; (D.2) expression
restricted to dorsal nt (green arrow) and ventrally in the neighbouring tissue (red arrow). (E) HH 20, overview;
(E.1) expression throughout the dm; (E.2) Axin2transcripts in the dorsal nt (green arrow), in the ventro-
medially adjacent mesenchyme (red arrow) and weakly in the dml. (F) HH 22, overview; (F.1) Axin2in the
dorsal-most nt (green arrow) and in the overlying ectoderm (black arrow). (G) HH27, overview; (G.1) Axin2
expression in rp, fp (red arrow), drg (black arrow) and subectodermal space (green arrow). (H.1, H.2, H.3)
sntof the tail. (H.1) HH 24, faint expression in all parts of the snt; (H.2) HH 27, restricted and intensified
expression in the dorsal sntand in overlying subectodermal space; (H.3) HH 28, Axin2in dorsal most sntand
subectodermal space. so-somite, nt-neural tube, dml-dorso medial lip, dm-dermomyotome, rp-roof plate, fp-
floor plate, drg-dorsal root ganglion, snt-secondary neural tube.

doi:10.1371/journal.pone.0163610.9005

C.1 black arrow) and in a patch adjacent to the ventral neural tube (nt)(Fig 5, C.1 red arrow). In
stage HH 19, when the dermomyotome is fully established, transcripts are visible in the ventrally
facing margin of the dml, neighbouring the sclerotome (Fig 5, HH 19: D.1 black arrow). In HH
stage 20, at limb level Axin2 expression is detectable also in the ventro-lateral lip (vll) (Fig 5, E.1
wing level). In further development, this expression gets restricted to the dorsal half of the der-
momyotome (dm), the epaxial myotome and appears more faintly (Fig 5, E.2 interlimb level).
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In mice Axin2 expression was found to oscillate in the segmental plate mesoderm and to
occupy a central role for the segmentation of the presomitic mesoderm [50, 78]. We were able
to detect Axin2 expression in the posterior psm in chicken from stage HH 09 to HH 16 (Figs 1
and 3). In mice, the expression of Wnt-genes alternates with the expression of FGFs in the
PSM [78], indicating a similar mechanism in chicken. Interestingly Axin2 mutant mice still
undergo segmentation with slight to average deviation [55, 78]. Additionally, Axin2 transcripts
were found during the maturation of the somites. In this process, a network of many different
Wnt-molecules and other signals is described to play a role. The patterning of the somites is
controlled by dorsalizing Wnt1 and Wnt3a from the dorsal neural tube [79-81], such as Wnt6
from the overlying ectoderm [82]. Wnt11 was described to maintain the epithelial status of the
dml, while Wnt6 from the ectoderm maintains the epithelial ventro-lateral lip (VLL) [83].
Additionally, it was found that Wnt1 and Wht3a are required for the formation of the dml
[81]. Axin2 expression in the dml and its progenitors (Fig 5) indicate a potential role in the
proper development of the dml and the deriving dermis. This hypothesis is supported when
regarding the expression of Axin2 in the dermal derived feather buds (Fig 4, H.1,1.1).

0.4 Expression pattern in the developing neural tube

Regarding the development of the neural tube, Axin2 is expressed from neurulation to the dif-
ferentiated mature neural tube (nt)(Figs 2 and 5). In Fig 5, the maturation of the neural tube
(nt) is depicted. First, Axin2 mRNA was detected in a sprinkled distribution all over the neural
tube (nt)(Fig 5, HH 15: A.1, HH 16: B.1, HH 17: C.1 and HH 19: D.1), with an intensified
region at the medio-dorsal neuroepithelium (Fig 5, HH 17: C.1, HH 19: D.1). More cranially in
HH 19, this expression appears more intense at the dorsal third (Fig 5, D.2 green arrow), while
faint sprinkled expression remains in the ventral half of the neural tube (nt)(Fig 5, D.2). By HH
stage 20, predominantly the dorsal expression domain increases even more (Fig 5, E.2 green
arrow). Further, the faint expression site in the neighbouring tissue at left an right ventral side
of the neural tube (nt) expands dorsally (Fig 5, E.2 red arrow). When maturating, the neural
tube (nt) expresses Axin2 strongly in the dorso-medial neuroepithelium (Fig 5, HH 22: E1
green arrow). Additionally, Axin2 transcripts are found in the overlying ectoderm and the sub-
ectodermal mesenchyme flanking the dorsal neural tube (nt)(Fig 5, HH 22: E1 black arrow). In
HH 27, Axin2 expression was observed in the dorsal most part of the neural tube (nt) and in
the roof- and floor plate (rp)(fp)(Fig 5, G.1). The black arrow in G.1 (Fig 5) reveals to the tip of
the dorsal root ganglion (drg) that heavily expresses Axin2. Further, the dorsal ectoderm and
subectodermal space overlying the neural tube (nt) are intensively stained (Fig 5, G.1 green
arrow).

Axin2 transcripts were also found in secondary neurulation in the tail bud (Fig 2, C.2, C.3,
C.4). After secondary neurulation, the differentiating secondary neural tube (snt) heavily
expresses Axin2 (Fig 5, H.1, H.2, H.3). First, this expression is well distributed over the entire
neuroepithelium (Fig 5, HH 24: H.1). During maturation, transcripts were observed in HH 27,
(Fig 5, H.2) mainly in the dorsal half of the secondary neural tube (snt) as in the overlying sub-
ectodermal mesenchyme and ectoderm. By HH 28 the Axin2 is missing in the ventral two
thirds of the secondary neural tube (snt), but is expressed intensively in the dorsal third, such
as in the ectoderm and subectodermal mesenchyme (Fig 5, H.3).

During the development and maturation of the neural tube, the establishment of a dorso-
ventral axis through ventralizing Shh activity versus dorsalizing Wht-signals has been
described [84, 85]. The main Wnt-genes expressed in the dorsal neural tube and roof plate are
Wntl and Wnt3a [84, 86]. These promote neural proliferation [84, 87]. Therefore, after activa-
tion of dorsal Wnt-signalling in the chick, dorso-ventral patterning of the neural tube was
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perturbed and mitogenic activity of neural progenitors was increased [88]. Wntl and Wnt3a
inhibition in mice, besides incomplete closure of the neural folds, displayed phenotypic alter-
ations throughout the neural tube including partially absent basal-, roof- and floor plates [89].
In addition, Whts have been identified to play a role in ventrally specified neural progenitors
[86, 90]. The countless signalling molecules interacting with the Wnt-signalling pathway dur-
ing neural tube maturation imply that Axin2 expression and its negative-feedback-loop in
canonical Wnt-signalling impact this neural development and the basic molecular functions
will be of special interest in future research.

0.5 Expression pattern of cAxin2 during limb development

Limb development in chicken starts from an out-bulged ridge of the somatic lateral plate meso-
derm by stage HH 15. At HH stage 17 the wing bud heavily express Axin2 predominantly in
the dorsal mesenchyme (Fig 6, A.1 black arrow). The hind-limb bud at the same stage is slightly
further developed and transcripts of Axin2 are present in the thickened ectoderm, which gives
rise to the apical ectodermal ridge (aer)(Fig 6, A.2), as well as at proximo-ventral margin of the
lateral plate mesoderm (Fig 6, A.2 black arrow). In stages HH 18 to HH 20 Axin2 is expressed
in the dorsal mesenchyme of the rapidly outgrowing limb buds (Fig 6, B.1, C.1, D.1, D.2).
Moreover, the apical ectodermal ridge (aer) is heavily stained for Axin2 (Fig 6, B.1, C.1, D.1
black arrow, D.2). By stage HH 23, the transcripts in the dorsal mesenchyme are reduced,
though the ectoderm and apical ectodermal ridge (aer) still express Axin2 (Fig 6, E.1 black
arrow). This expression was is consistent in further developed stages (Fig 6, HH 25: F.1; HH

26: G.1; HH 27: H.1 black arrow; HH 28: 1.1, 1.2 and 1.3). Moreover, when regarding the devel-
oping bones (bo) in HH stage 26 and 28, we verified Axin2 mRNA at the marginal perichon-
drium (Fig 6, G.1 and 1.3 black arrows).

Several members of the Wnt family are expressed in the developing limb ([37] for review).
The outgrowth of the limb bud is mediated by the apical ectodermal ridge (aer) [91]. Wt
genes are described to initiate the formation of the limb bud (Wn#2b) from the lateral plate
mesoderm as well as the aer (Wnt3a) [92]. The aer in chicken expresses Wnt3a that, by initiat-
ing fibroblast growth factor (FGF) expression, mediates the rapid cell proliferation in the mes-
enchymal progress zone (PZ) underlying the aer [93]. Non-canonical Wnt7a is expressed in
the dorsal ectoderm of the chicken limb, being responsible for dorsalization [94, 95]. Its expres-
sion site overlaps an additional expression site for Wnt3a in the ectoderm during early limb
growth [96]. As Wnt7a target genes are expressed in the mesenchyme underlying the dorsal
ectoderm, it was suggested that their signalling ranges as far as the target gene expression [97].
We postulate a similar distance of signalling for the canonical Wnt3a from early dorsal limb
ectoderm as a source for early Axin2 expression in the dorsal limb mesenchyme. Mutations of
Wnt3a and Wnt7a and FGFs in chicken embryo induced the expression of a gene responsible
for a form of polydactyly in human, the Townes-Brock-Syndrome [98]. Later in the limb devel-
opment, canonical Wht-signalling is described to promote cell proliferation and the differentia-
tion of connective tissue [99]. Axin2 expression in accordance to our results was reported in
the perichondrium of mice [99]. By describing the expression of Axin2 in the chicken develop-
ing limb, we want to reveal its presumable function in regulating Wnt-signals that are involved
in outgrowth, proliferation and differentiation.

0.6 Expression patten of Axin2 during chicken nephrogenesis

The kidney development in birds and mammals takes place in three generations of nephric
precursors [100]. In this study, an Axin2 expression in mesonephric development is described
(Fig 7). In stage HH 19 the mesonephric duct (md) at leg level faintly expresses Axin2 (Fig 7,
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w - wing
1-leg

Fig 6. Expression of Axin2in chicken limb development. (A.1, wing bud, w) HH 17, strong expression of
Axin2in the limb, predominantly in the dorsal most part (black arrow). (A.2) The leg bud (I) shows less
staining, a patch in the ventro-proximal tissue expresses Axin2 (black arrow). (B.1, leg bud) HH 18,
transcripts in the dorsal mesenchyme and in the distal ectoderm. (C.1) HH 19, expression in the dorsal and
most proximal mesenchyme of the wing bud. (HH 19, C.1; HH 20, D.1 black arrow; D.2) Axin2 expression
aer. (C.1) HH 19 and (D.1) HH 20, Axin2in dorsal subectodermal mesenchyme, in ectoderm and in the aer.
(E.1, E.2) HH 28; (F.1) HH 25: Transcripts in the ectoderm and aer of the limb buds. (E.2-1.3) HH 23 to HH
28: the ectoderm expresses high levels of Axin2. (G.1) HH 26, black arrow; (1.3) HH 28, black arrow: the
margins of the developing bo show transcripts of Axin2. aer-apical ectodermal ridge, bo-bones.

doi:10.1371/journal.pone.0163610.9006

A.1 black arrow). By HH 20 at interlimb level, the staining expands to the overlying coelomic
epithelium (coe)(Fig 7, B.1 black arrow).

At leg level in HH 20, intense Axin2 expression in the nephric duct (md-mesonephric duct)
and coelomic epithelium (coe) is observed (Fig 7, B.2 black arrow). When further differentiating,
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Fig 7. Expression of Axin2in nephric duct. Axin2 mRNA expression in the md (HH 19: A:1, leg level,
black arrow; HH 20: B.1, interlimb level, black arrow and B.2, leg level; HH23: C.1, caudal interlimb level,
black arrow). The overlying thickened ectoderm strongly expresses Axin2from HH stage 20 (B.1 & B.2,
black arrows). Pictures D.1 and E.1 demonstrate detectable transcripts in the cloacal ectoderm (HH 26: D.1,
HH 28: E.1 black arrows). md-mesonephric duct.

doi:10.1371/journal.pone.0163610.9007

transcription of Axin2 decreases, but is still detectable in mesonephric duct (md) and overlying
coelomic epithelium (coe)(Fig 7, HH 23: C.1 black arrow). In addition, Fig 7 shows transversal
sections of the cloaca, where Axin2 is expressed predominantly in the coelomic epithelium (Fig
7, D.1, E.1. black arrows).

The role of Wat in the developing kidney has been extensively studied in the past. Wnt4
and Wnt9b were described to be expressed in the nephric duct and coeloemic epithelium [101-
103]. The initiation of tubulogenesis of the developing kidney requires canonical Wnt4 and
Wnt9b signals from the nephric duct [101, 102]. Later in development both Wnt-ligands were
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described to act through the PCP and the Ca2+-dependent pathway as well [104-107]. As the
Wht-ligands partially activate different intracellular responses in the course of kidney develop-
ment, the research faces a challenging aim in understanding this network. In Xenopus a model
mediating the switch from canonical to non-canonical Wat-signalling during nephrogenesis
was proposed [108, 109]. However, canonical Wnt-signalling is known to mediate not only
nephron induction, but also its orientation, cell proliferation, specification and differentiation
[107, 110-113]. Alterations in canonical and non-canonical Wnt-signalling are known to cause
polycystic kidney diseases [114, 115]. Taken together, we suggest that Axin2 might impact kid-
ney development by regulating Wht-signalling as indicated, through its expression in the neph-
ric duct and coelom epithelium. The Axin2 expression in the coelomic epithelium could
possibly hint a role for Axin2 in the development of the derived Mullerian-duct that develops
to form the female genitals. As male gonads develop from the nephric or Wolffian-duct, Axin2
might be involved in this developmental process as well.

0.7 cAxin2 expression in developing chicken eye

The chicken eye initially develops, as the prosencephalon out-pockets and the optic vesicle (ov)
invaginates to the head mesenchyme. Axin2 in this process is expressed in the proximal layer of
the bi-layered optic vesicle (ov)(Fig 8, HH 15: A.1, black arrow). By stage HH 16 the lens vesicle
(Iv) has formed from the ectoderm (Fig 8, B.1). Axin2 transcripts are still detectable mainly in
the proximal layer of the optic cup (oc)(Fig 8, B.1, HH 17: C.1 black arrow). An additional
expression in the subectodermal mesenchyme overlying the optic cup (oc) and surrounding the
lens vesicle (Iv) is established at stage HH 18 (Fig 8, D.1 black arrow). While the lens vesicle (Iv)
expresses little Axin2 in the inner lens epithelium (Fig 8, HH 19: E.1 and HH 20: E1, E2. E3 red
arrows), transcripts in the optic cup (oc) are found in both proximal and distal layer at the epi-
thelial margins facing towards the vesicular space (Fig 8: HH 19: E.1 black arrow, HH 20: F.4
black arrow). In the following observed stages, the proximal layer of the optic cup (oc) has
formed the retinal pigmented epithelium (rpe), whereas the distal layer differentiates into the ret-
ina [116]. Axin2 expression was found only in the lens (Fig 8, HH 24: H.3 red arrow), ectoderm
and subectodermal mesenchyme covering the eye (Fig 8, HH 24: H.1 and H.2 black arrows).
Regarding the formation of the optic nerve (on) and optic chiasm (och), Axin2 expression is
observable in the approaching and fusing neuroepithelial layers (Fig 8, HH 25: 1.1, HH 26: ].1,
HH 27: K.1 black arrows). Further, Axin2 is expressed in the future cornea covering the eye (Fig
8, HH 25: 1.1, HH 26: J.1, HH 27: K.2 black arrow, HH 28: L.1 and L.2 black arrows) and in the
posterior lens epithelium (Fig 8, HH 26: ].2 and J.3; HH 27: K.1 and K.2 red and green arrows).

Anterijorly expressed inhibitors of canonical Wat signals are required for the initiation of
the eye as described in zebrafish [117, 118]. Later, Wnt2b is expressed in the proliferative lens
epithelium [119], retinal pigmented epithelium (rpe) and periphery of the optic cup [120-122].
Further, Wnt3 and Wnt11 were found to be expressed in the outer layer of the chicken optic
cup [122]. Wnt2b was described to be responsible for maintaining the proliferative state of neu-
ral progenitors in the retina in chick [123]. Previous studies have reported a depigmentation of
the retinal pigmented epithelium (rpe) after disruption if Wn#2b signalling in the chicken eye
[120]. Our observeded Axin2 expression in the lens overlaps with regions of increased cell pro-
liferation, which express Wnt-ligands as well [122, 124, 125]. The chicken developing cornea
and corneal stroma cells express Wnt3a and Wnt9b [126]. Interestingly, a subgroup of the dis-
ease familial adenomatous poliposis coli (FAP), which is caused by a truncation in APC or
Axin2, the Gardner syndrome, includes a congenital hypertrophy of the rpe [127]. Addition-
ally, some cases of tetra amelia, which is the result of homozygous Wnt3 mutations, exhibit
optic malformations [128].
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Fig 8. Axin2transcripts in optic development. Transversal sections through the developing eye in in-situ
hybridized embryos. (A.1) HH 15: the primary ov expresses Axin2in the proximal layer (black arrow). (B.1)
HH 16: Axin2 expression in both layers of the bi-layered secondary oc. (C.1) HH 17: Axin2 expression in the
proximal epithelium of the oc (black arrow). (D.1) HH 18: Axin2 expression in the proximal layer of the oc (red
arrow). The ectoderm surrounding the invaginating, /v (black arrow) expresses Axin2. (D.2) HH 18: A section
through the rostral most part of the oc, with highest expression rate in these margins. (E.1) HH 19: the
proximal layer of the Ivexpresses Axin2 (red arrow) as well as the ocin both layers adjacent to the vesicular
space (black arrow). (F.1, F.2, F.3, F.4) HH 20: expression in the ectoderm surrounding the eye, in the
directly underlying mesenchyme, in the epithelium of the oc towards the lumen (F.1, black arrow; F.4, black
arrow) and in the lens epithelium (F.1, F.2, F.3, red arrows). (HH 23: G.1; HH 24: H.1 and H.2, black arrows;
HH 25: 1.1; HH 26: J.1, J.2, J.3; HH 27: K.2, black arrow, HH 28: L.1, L.2, black arrows) Axin2 expression in
the ectoderm and subectodermal mesenchyme (future cornea). (HH 25: I.1, black arrow; HH 26: J.1, black
arrow, HH 27: K.1, black arrow) cAxin2 expression in the developing onand och. (H.3, HH 24; K.2, HH 27)
expression of Axin2in the developing lens (red and green arrows). ov-optic vesicle, oc-optic cup, Iv-lens
vesicle, on-optic nerve, och-optic chiasm, rpe-retinal pigmented epithelium.

doi:10.1371/journal.pone.0163610.9008

Conclusion

In the present study, we describe the expression pattern of avian Axin2 during embryonic
development. We found a dynamic, temporally and spatially restricted expression pattern in
many developing structures and tissues. In the early development of the chick, Axin2 was
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expressed in the primitive streak and underlying mesoderm, in the neural folds and in the head
fold. It was additionally expressed during secondary neurulation in the tailbud mesenchyme.
Here, the pre-somitic mesoderm as well transcribes Axin2. We were able to detect such expres-
sion in the posterior psm and during the maturation of the somites in its medial epithelium
and in the dml. By this developmental stage, transcripts were also detectable in the brain and
differentiating neural tube. In the developing limb a dynamic expression was found. Further-
more, we detected Axin2 mRNA in the nephric duct and coelomic epithelium. Regarding the
head of the chicken embryo, Axin2 was expressed in branchial arches and sensory anlagen.
Later in development, expression in feather buds, interdigital spaces, external ear and scleral
ossicles on the eye was observed.

The expression of Axin2 in mice was previously found in the primitive streak, head folds,
neural tube, branchial arches I and II (maxillary and mandibular arch), psm and dml, tailbud,
limbs, kidney and brain [45, 78].

These findings are mainly consistent to the expression we found in the chick. Additionally,
we were able to show Axin2 expression in the developing eye and in the otic vesicle. With this
study we want to point out the often neglected impact of Axin2 in many Whnt-dependant devel-
opmental processes. While Wnt-ligands are extensively studied, investigating their regulation
through Axin2 in the respective tissues might help understanding the interactions of different
signalling factors.
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