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Background: We mainly investigated how y-box binding protein 1 (YB-1) regulates liver lipid metabolism 
through the Wnt/β-catenin signaling pathway using multiple models. 
Methods: The LO2 cells were treated with palmitic acid (PA) to create an NAFLD model in vitro. 
Immunohistochemistry and Western blotting assays were used to detect the expression of YB-1, β-catenin, 
SREBP-1c, LXRa, FXR1 and PPARα protein, and RNAs of them was detected by qRT-PCR. Oil Red O assay 
was applied to observe lipid droplets in LO2 cells and liver tissues. H&E staining was performed to observe 
the degree of liver inflammation. Proteomics in LO2 cells were conducted by Tandem mass tag proteomics 
assay. Co-immunoprecipitation and Western blotting assays were used to verify YB-1 complexed pGSK3β. 
ELISA and Western blotting assays were used to detect the concentrations of TNFα and IL-6 in LO2 cells 
and liver tissues, respectively.
Results: We found that YB-1 and β-catenin were highly expressed in the LO2 cell NAFLD model, and 
that the expression of TNFα and IL-6 also increased. Lipid synthases (SREBP-1c and LXRa) expression 
were decreased, while β-oxidation-related factors (FXR1 and PPARα) expression were increased. The 
expression of SREBP-1c and LXRa were increased while FXR1 and PPARα were decreased, though such 
responses were rescued through inhibiting β-catenin expression. Finally, tandem mass tag proteomics, co-
immunoprecipitation, and Western blotting demonstrated that YB-1 could form a protein complex with 
phosphorylated glycogen synthase kinase 3 beta (pGSK3β) to regulate Wnt/β-catenin. In mouse NAFLD 
livers, immunohistochemistry and Western blotting validated the finding of YB-1 gene downregulation 
leading to the inhibition of Wnt/β-catenin pathway activation, ultimately inhibiting lipid synthesis and 
reducing the inflammatory response. Similar to the in vitro investigation, β-catenin overexpression reversed 
such YB-1 downregulation-induced downstream effects. Upregulation of the YB-1 gene promoted the 
activation of the Wnt/β-catenin pathway, thus increasing lipid synthesis and the inflammatory response. 
However, downregulation of β-catenin reversed this phenomenon caused by upregulating YB-1. 
Conclusions: In summary, these results demonstrate that YB-1 regulates liver lipid metabolism by 
regulating the Wnt/β-catenin signaling pathway.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) has emerged 
as the most prevalent condition that contributes to 
chronic hepatic ailments worldwide, and consists of a 
heterogeneous spectrum of diseases including simple 
steatosis, steatohepatitis, advanced fibrosis, and cirrhosis 
(1,2). Specifically, non-alcoholic steatohepatitis (NASH) 
can progress to liver cirrhosis and primary liver cancer, 
becoming the main cause of liver-related morbidity and 
mortality (3,4). Although the prevalence of NAFLD is 
closely associated with obesity, type 2 diabetes mellitus 
(T2DM), and insulin resistance, However, these researches 
mainly focus on the etiology, epidemiology and progression 
of lipid metabolism in NAFLD and the pathogenic 
mechanism of NAFLD is still poorly understood (5-7). The 
aim of this study is to investigate the molecular mechanism 
of NAFLD.

Y-box binding protein 1 (YB-1), as a member of the 
family of DNA/RNA-binding proteins, can regulate gene 
expression in the cytoplasm and the nucleus. Generally, 
YB-1 is recruited to mRNAs in the cytoplasm or it can 
bind to Y-box elements (CCAAT-box) in the promoter 
regions of some genes in the nucleus, thereby regulating 
their translation and transcription (8,9). Recently, an 
investigation demonstrated that YB-1 is involved in the 
progression of fatty acid synthesis (10). However, there is 
currently minimal research focused on the role of YB-1 in 
NAFLD pathogenic mechanisms.

Recently, some investigations have shown that Wnt/
β-catenin signaling plays a pivotal role in liver inflammation 
and liver fibrosis development, together with chronic 
liver injury progression (11-13). In addition, some studies 
demonstrated that the Wnt/β-catenin signaling pathway can 
regulate lipid metabolism in the liver (14,15). We present 
the following article in accordance with the ARRIVE 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-5767).

Methods

Animals and the NAFLD mouse model

Thirty-five-day-old C57BL/6 mice were procured 
through Sino-British Sippr/BK Laboratory. Under specific 
pathogen-free conditions, they were housed at a constant 
temperature (22±2 ℃) and 60% relative humidity, with 
12:12-h light-dark cycle in the Animal Experimental 
Center of Bengbu Medical College (Bengbu, China). All 

the animal procedures were performed in accordance 
with the Guidelines for the Care and Use of Laboratory 
Animals of Bengbu Medical College and were approved by 
the Animal Ethics Committee of Bengbu Medical College 
(Bengbu, China) under a project license (No. 2021-096). 
Wild type C57BL/6 mice were divided into a normal diet 
group and a high-fat diet group (HFD—comprising 60% 
fat-derived calories) (BioServ™, Frenchtown, NJ, USA). 
The mice in the HFD group were fed in this manner for 
an uninterrupted timespan of 12 weeks. Meanwhile, the 
normal diet group was treated with a healthy balanced 
dietary intake (Keaoxieli™, Beijing, China). 

Cell culture and establishment of the NAFLD model

LO2 hepatocytes were used in this study. The cell cultures 
were expanded in Dulbecco’s modified Eagle’s medium 
(DMEM) (Thermo Fisher™, USA), supplemented with 
10% fetal bovine serum (Thermo Fisher™, USA), 100 U/
mL penicillin, and 100 μg/mL streptomycin. For steatosis 
induction, the cells were treated with 0.4 mM palmitic 
acid (PA) to create an NAFLD model in vitro. The culture 
medium and PA were replaced every 24 h for 72 h.

Construction of YB-1 lentiviruses and β-catenin plasmid

A lentiviral vector LV-3 carrying a green fluorescent 
protein (GFP) reporter (GenePharma, Shanghai , 
China) was employed for expressing short hairpin 
RNA (shRNA) that  targeted  the  YB-1  sequence 
(5'-GCCTAGAGAGGATGGCAATGA-3'),  and an 
additional lentiviral vector LV-5/GFP reporter delivery 
system was employed for overexpressing RNA that targeted 
the YB-1 sequence (ID: 22608, NM_011732.2), with LV3 
and LV5 (vector) as the control. pGMLV-SC5 RNAi 
carrying a GFP reporter (Genomeditech™, Shanghai, 
China) was employed for expressing shRNA that targeted 
β-catenin (5'-GCACCATGCAGAATACAAATG-3'), with 
PGMLV-6395 (vector) serving as the control plasmid. 
A PGMLV-6395/GFP reporter delivery system was 
employed for overexpressing RNA that targeted β-catenin 
(CTCGAGGCCACCGGATCC).

In brief, LO2 cells in medium were transfected using 
shYB-1, shβ-catenin, overexpressed YB-1, overexpressed 
β-catenin, and its corresponding vector with Lipofectamine 
3000 ® ( Inv i t rogen™,  Car l sbad ,  CA)  a s  pe r  the 
manufacturer’s protocol. After an incubation period of  
72 h, transcriptomic/proteomic quantitative LO2 cell 
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analyses, from all experimental arms, were conducted using 
qRT-PCR and Western blotting.

Immunohistochemistry (IH)

For the IH process, formalin-fixed paraffin-embedded liver 
samples were cut into 4 μm sections, then deparaffinized 
and rehydrated. Antigen retrieval was performed using 
sodium citrate (20 min). Samples were then incubated 
in 3% H2O2 (15 min), pretreated by boiling in 10 mM 
sodium citrate buffer (pH 6.0) (20 min), and then washed 3 
times with phosphate-buffered saline (PBS). Blocking was 
performed in 5% bovine serum albumin (BSA) for 0.5 h 
at room temperature. The primary antibodies in 1% BSA 
were incubated overnight at 4 ℃ in a humid chamber. After 
horseradish peroxidase-conjugated secondary antibody 
incubation for 0.5 h at room temperature, the specimens 
were counter-stained using 4',6-diamidino-2-phenylindole 
(DAPI). Staining of each liver tissue sample was repeated 
3 times. Lastly, the Barnes method was employed as the 
immune scoring system. Details of the primary/secondary 
antibodies are listed in Table 1.

Hematoxylin and eosin (H&E) and Oil Red O staining

H&E staining was performed to observe the degree of liver 
inflammation. Formalin-fixed paraffin-embedded liver 

samples were cut into 3 µm sections and stained with H&E 
(Beyotime™, China), followed by light microscopy-based 
visualization. In addition, hepatic cryosections were stained 
using an Oil Red O kit (Sigma, USA) and counter-stained 
using hematoxylin in order to observe lipid droplets under 
light microscopy. 

Quantitative Real-time PCR (qRT-PCR)

Total RNA was extracted from liver tissues using TRIzol™ 
reagent (Thermo Fisher, USA) and then reverse transcribed 
into cDNA using Hieff™ First Strand cDNA Synthesis 
Super Mix for qRT-PCR (Yeasen, China). Hieff qPCR 
SYBR Green Master Mix® (Applied Biosystems™, CA, 
USA) together with Hieff First Strand cDNA Synthesis 
Super Mix for qRT-PCR® (Applied Biosystems™) were 
employed for qPCR. All experiments were repeated 3 
separate times. GAPDH served as a normalization/reference 
gene. Primer sequences are illustrated in Table 2.

Western blotting (WB) assay 

Total protein was extracted with RIPA lysis buffer (Thermo 
Fisher, USA). Equivalent protein sample quantities 
(70 µg) were separated through 10% SDS-PAGE and 
then transferred onto PVDF membranes (0.22 μm).  
Subsequently, membranes were blocked using 5% skimmed 

Table 1 Antibodies for Western blotting (WB), co-immunoprecipitation (Co-IP), and immunohistochemistry (IH)

Antibody Dilution Supplier Product ID

YB-1 1:1,000 (WB), 1:20 (IP), 1:250 (IH) Abcam ab76149

LXRa 1:5,000 (WB) Abcam ab176323

pGSK3β 1:40 (IP), 1:500 (WB) Abcam ab68476

IgG 1:15 (IP) Abcam ab6728

GAPDH 1:5,000 (WB) Abcam ab8245

β-catenin 1:10,000 (WB), 1:250 (IH) Abcam ab32572

FXR1 1:10,000 (WB) Abcam ab129089

PPARα 1:500 (WB) Abcam ab3484

TNFα 1:1,000 (WB) Abcam ab183218

SREBP-1c 1:1,000 (WB), 1:200 (IH) Thermo Fisher PA5-99371

IL-6 1:1,000 (WB) Abcam ab259341

YB-1, y-box binding protein 1; LXRa, Liver X Receptor α; pGSK3β, phosphorylation glycogen synthase kinase 3 beta; IgG, immunoglobulin 
G; GAPDH, reduced glyceraldehyde-phosphate dehydrogenase; FXR1, farnesoid X receptor1; PPARα, peroxisome proliferator-activated 
receptor-alpha; TNFα, tumor necrosis factor α, SREBP-1c, sterol regulatory element binding protein-1c; IL-6, interleukin 6.
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Table 2 Primer sequences for RT-PCR analysis 

Target Forward primer Reverse primer

YB-1 TAGACGCTATCCACGTCGTAG ATCCCTCGTTCTTTTCCCCAC

SREBP-1c ACAGTGACTTCCCTGGCCTAT GCATGGACGGGTACATCTTCAA

LXRa ACACCTACATGCGTCGCAAG GACGAGCTTCTCGATCATGCC

FXR1 CTGCGACAGATTGGTTCTAGG TGTACCATAACCGGAGGTGTAA

PPARα TTCGCAATCCATCGGCGAG CCACAGGATAAGTCACCGAGG

β-catenin AGCTTCCAGACACGCTATCAT CGGTACAACGAGCTGTTTCTAC

YB-1, y-box binding protein 1; SREBP-1c, sterol regulatory element binding protein-1c; LXRa, Liver X Receptor α; FXR1, farnesoid X 
receptor1; PPARα, peroxisome proliferator-activated receptor-alpha.

milk + 0.1% Tris Buffered Saline Tween (TBST) for 
1 h at room temperature, followed by incubation with 
primary antibodies at 4 ℃ overnight. Membranes were 
washed 3 times with TBST and then incubated with 
the corresponding secondary antibody for 1 h at room 
temperature. Bands were identified through the enhanced 
chemiluminescence (ECL) (Thermo Fisher, USA) system, 
followed by X-ray radiation (LAS MINI 4000®, Japan). The 
protein expression levels of individual bands were assessed 
through ImageJ (National Institute of Health, Bethesda, 
MD, USA). Each assay was performed in triplicate across 
individual experiments. GAPDH served as a normalization 
protein for protein expression assessments. Details of 
primary antibodies are listed in Table 1.

Tandem mass tag proteomics

SDT pyrolysis methods were used to extract proteins 
for proteomics, and the bicinchoninic acid (BCA) kit 
(Pierce™ BCA, Thermo Fisher, USA) was used to test 
sample concentrations. The loading buffer (6x) was added 
to 20 μg protein samples, which were then boiled for 
5 min, separated by 12% SDS-PAGE, and stained by 
Coomassie bright blue. Enzymatic hydrolysis was then 
performed through FASP, tagged by TMT, and separated 
through High PH RP. Subsequently, mass spectrometry 
was performed using the Easy nLC system and mass 
spectrum identification was performed by Q Exactive. 
Using Blast2 Gene Ontology (GO) to annotate the target 
protein, the process consisted of sequence alignment 
(blast), GO item extraction (mapping), GO annotation 
(annotation), and supplementary annotation augmentation. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis was performed through KOALA (KEGG 

Orthology And Links Annotation), and enrichment analysis 
of GO/KEGG annotations was performed by Fisher’s exact 
test. Protein cluster analysis was performed using matplotlib 
software.

Co-immunoprecipitation (Co-IP)

Pierce Co-IP kits (Thermo Fisher, USA) were applied 
to extract total protein from LO2 cells, and the protein 
levels were evaluated using a BCA protein quantification 
kit (Thermo Fisher, USA). The experiment was conducted 
according to the Pierce Co-IP kit guidelines. In brief, 
pre-cleared lysate was set using control agarose resin. 
Subsequently, immobilized anti-YB-1 (20 µg/mg lysate) 
and anti-pGSK3β (40 µg/mg lysate), together with control 
IgG antibodies (20 µg/mg lysate), were introduced into the 
amino link/coupling resin solution. A 400 µg sample of pre-
cleared lysate was incubated with various immobilization 
antibodies at 4 ℃ for 12 h and then the mixture was washed 
with 60 µL of elution buffer. All immune precipitates 
were boiled for 10 min and evaluated through a WB assay. 
Details of the primary antibodies are illustrated in Table 1.

Enzyme-linked immunosorbent assay (ELISA)

The supernatants of non-steatosis and steatosis LO2 
cells grown in 12-well plates were harvested on day 3 
and frozen at −20 ℃ until assay. A quantitative ELISA 
kit for TNFα (Murine TNF-α ELISA Kit, PeproTech, 
USA, BGK06804) was used to detect the concentration 
of TNFα in supernatants according to the manufacturer’s 
protocol. A quantitative ELISA kit for IL-6 (IL-6 Mouse 
ELISA Kit, Thermo Fisher, USA, BMS603-2) was used 
to detect the concentration of IL-6 in supernatants, as per 
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the manufacturer’s protocol. A histogram of the TNFα and 
IL-6 concentration was created using GraphPad Prism® 
(GraphPad Software Inc.™, USA, version 8.0).

Statistical analysis

Data were presented as mean ± SE. All statistical analyses 
were conducted through SPSS 20.0® software (IBM™ 
SPSS; Armonk, NY, USA). Two-way ANOVA was applied 
to interpret the differences between treatment groups. 
P<0.05 indicated a statistically significant result.

Results

The expression levels of YB-1 and β-catenin were higher in 
NAFLD liver tissues 

After mice were fed with a HFD or normal diet for  
12 weeks continuously, the liver samples were collected 
and used in experiments. Lipid deposits were increased in 
NAFLD liver tissues compared with normal liver tissues 
(Figure 1A). The degree of inflammatory response was 
more serious compared to that of normal liver tissues 
(Figure 1B). Subsequently, we found that the expression 
of YB-1  protein was higher in the NAFLD group  
(Figure 1C,1D). Furthermore, qRT-PCR/WB indicated 
that YB-1 mRNA and protein expression was upregulated 
in the NAFLD group (Figure 1E-1G). Interestingly, we 
found that the protein and gene expression of β-catenin 
was also higher in the NAFLD group (Figure 1H-1J). At 
the same time, the expression levels of TNFα and IL-6 
were higher in the NAFLD group compared with the 
normal liver group (Figure 1K,1L).

The expression levels of YB-1 and β-catenin were increased 
in the LO2 cell NAFLD model in vitro

To further explore the correlation between YB-1 and 
β-catenin in hepatocyte steatosis, we established an LO2 
cell NAFLD model in vitro through cultured LO2 cells 
in DMEM induced by PA (Figure 2A). We found that the 
expression levels of genes and proteins related to lipid 
synthesis (SREBP-1c and LXRa) were higher in steatosis 
LO2 cells, but the expression levels of genes and proteins 
related to β-oxidation (FXR1 and PPARα) were lower 
(Figure 2B-2D). Furthermore, we also found that the gene 
and protein expression levels of YB-1 and β-catenin were 
elevated in steatosis LO2 cells (Figure 2E-2G). Finally, the 

inflammation factors TNFα and IL-6 were also increased in 
steatosis LO2 cells (Figure 2H,2I).

YB-1 regulated lipid synthesis and the expression of 
β-catenin in LO2 cells

In order to investigate the effect of YB-1 on LO2 cell 
lipid synthesis and the expression of β-catenin, a YB-1 
lentivirus was constructed to regulate the gene and protein 
expression levels of YB-1. Subsequently, non-steatosis 
and steatosis LO2 cells were transfected with the YB-1 
lentivirus and its corresponding vector, and the RNA and 
protein were collected for experiments at the indicated 
time. First, we confirmed that shYB-1 lentivirus could 
effectively inhibit and overexpression YB-1 lentivirus could 
effectively increase the gene and protein expression levels 
of YB-1 (Figure 3A,3B). Second, in steatosis LO2 cells, 
we demonstrated that downregulation of YB-1 inhibited 
lipid synthesis, but upregulation of YB-1 promoted 
lipid synthesis (Figure 3C). Furthermore, we found that 
downregulation of YB-1 inhibited the expression of 
SREBP-1c and LXRa mRNA, but increased the expression 
of FXR1 and PPARα mRNA. However, upregulation of 
YB-1 promoted the expression of SREBP-1c and LXRa 
mRNA, but inhibited the expression of FXR1 and PPARα 
mRNA (Figure 3D-3G). Third, the WB assay showed 
that the protein expression levels of SREBP-1c, LXRa, 
FXR1, and PPARα were consistent with their mRNA 
expression levels. At the same time, we also found that 
downregulation of YB-1 inhibited the expression level 
of β-catenin protein, but upregulation of YB-1 increased 
the expression level of β-catenin protein (Figure 3H,3I). 
Finally, the results showed that inhibited lipid synthesis 
by shYB-1 downregulated the contents of TNFα and IL-6 
in the corresponding supernatant, but increased lipid 
synthesis induced by overexpression of YB-1 upregulated 
the contents of TNFα and IL-6 (Figure 3J,3K). 

YB-1 combined with pGSK3β to regulate the expression of 
β-catenin in LO2 cells

In order to examine the molecular mechanisms of YB-1 
in regulating β-catenin levels in LO2 cells, we conducted 
a tandem mass tag proteomics assay. LO2 cells were 
transfected with shYB-1 lentivirus and cultured in DMEM 
+ PA for 72 h, and then total protein was extracted 
for experiments. The results showed that a total of 
300 proteins were upregulated and 376 proteins were 
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Figure 1 The expression levels of YB-1 and β-catenin were elevated in liver samples of mouse NAFLD livers. (A) Oil Red O staining showing 
lipid deposits (scale bar =100 µm, n=20 per group); (B) H&E staining indicating the degree of inflammation and steatosis in liver tissues (scale 
bar =100 µm, n=20 per group); (C,D) immunohistochemical staining and histogram presenting quantification of the immune score for YB-1 
in the above liver tissue (scale bar =100 µm, n=20 per group; *, P<0.05 compared with the normal liver group, n=3 per experiment); (E-G) 
the gene and protein expression levels of YB-1 in the above groups (*, P<0.05 compared with the normal liver group, n=3 per experiment); 
(H) the gene expression levels of β-catenin in the above groups (*, P<0.05 compared with the normal liver group, n=3 per experiment); (I,J) 
immunohistochemical staining and histogram presenting quantification of the immune score for β-catenin in the above liver tissues (scale 
bar =50 µm, n=20 per group); (K,L) WB assays demonstrated the expression of TNFα and IL-6 in the above groups (*, P<0.05 compared with 
the normal liver group, n=3 per experiment). NAFLD, Non-alcoholic fatty liver disease; YB-1, y-box binding protein 1; WB, Western blot.
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Figure 2 The expression levels of YB-1 and β-catenin were higher in steatosis LO2 cells in vitro. (A) Oil Red O staining showing lipid deposits 
(scale bar =100 µm, n =3 per group); (B) qRT-PCR detected the expression levels of the genes related to lipid synthesis (SREBP-1c and LXRa) 
and β-oxidation (FXR1 and PPARα) (*, P<0.05 compared with the control group, n=3 per experiment); (C,D) WB showing the expression levels 
of SREBP-1c, LXRa, FXR1, and PPARα, and histogram presenting quantification of the immune score for the corresponding proteins in the 
above groups (*, P<0.05 compared with the control group, n=3 per experiment); (E-G) qRT-PCR and WB assays showing the gene and protein 
expression levels of YB-1 and β-catenin (*, P<0.05 compared with the control group, n=3 per experiment); (H,I) ELISA assay measured the 
contents of TNFα and IL-6 in the supernatants of each group (*, P<0.05 compared with the control group, n=3 per experiment). YB-1, y-box 
binding protein 1; WB, Western blot; qRT-PCR, Quantitative Real-time PCR; ELISA, Enzyme-linked immunosorbent assay; SREBP-1c, sterol 
regulatory element binding protein-1c; LXRa, Liver X Receptor α; FXR1, farnesoid X receptor1; PPARα, peroxisome proliferator-activated 
receptor-alpha; TNFα, tumor necrosis factor α, IL-6, interleukin 6.
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downregulated upon downregulation of YB-1 (Figure 4A). 
GO analysis of the upregulated proteins revealed that YB-1 
downregulation promoted proteins associated with oxide 
synthase activity and glucose homeostasis (Figure 4B).  

KEGG pathway analysis demonstrated enrichment 
in the complement and coagulation, ferroptosis, and 
PI3K-AKT pathways (Figure 4C ) .  WB confirmed 
that the downregulation of YB-1 upregulated pGSK-
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Figure 3 YB-1 could regulate lipid synthesis and the expression of β-catenin in LO2 cells in vitro. (A,B) The gene and protein expression 
levels of YB-1 (*P<0.05 compared with LV3, #P<0.05 compared with LV5, n=3 per experiment); (C) lipid deposits were detected by Oil Red 
O staining (scale bar =100 µm, n=3 per group); (D-G) the mRNA expression levels of SREBP-1c, LXRa, FXR1, and PPARα in each group (*, 
P<0.05 compared with LV3; #, P<0.05 compared with LV5, n=3 per experiment); (H,I) the protein expression levels of SREBP-1c, LXRa, FXR1, 
and PPARα in each group (*, P<0.05 compared with LV3; #, P<0.05 compared with LV5, n=3 per experiment); (J,K) ELISA assay measured 
the contents of TNFα and IL-6 in the supernatants of each group (*, P<0.05 compared with LV3; #, P<0.05 compared with LV5, n=3 per 
experiment). YB-1, y-box binding protein 1; SREBP-1c, sterol regulatory element binding protein-1c; LXRa, Liver X Receptor α; FXR1, 
farnesoid X receptor1; PPARα, peroxisome proliferator-activated receptor-alpha; TNFα, tumor necrosis factor α, IL-6, interleukin 6.
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Figure 4 YB-1 combined with pGSK3β regulated the expression of β-catenin. (A) Protein quantitative results showing the number of 
upregulated and downregulated proteins (the expression difference was greater than 1.2 times (up and down) and P value (t-test) was less than 
0.05); (B) GO enrichment analysis showing the biological functions of the affected proteins; (C) KEGG pathway enrichment analysis showing 
significantly affected metabolic and signaling transduction pathways. (D,E) Relative protein expression levels of pGSK3β and β-catenin were 
analyzed by WB (*, P<0.05 compared with LV3; #, P<0.05 compared with LV5, n=3 per experiment). (F) LO2 cell lysates were co-precipitated 
with anti-pGSK3β and anti-YB-1 antibodies and normal IgG as a negative control antibody, and then detected by YB-1 and pGSK3β antibodies, 
with 20% of total cell lysates used as input. (G,H) WB detected the effect of TDZD-8 (GSK3β-specific inhibitor) and rGSK3β (recombinant 
mouse GSK3β protein) on the expression levels of β-catenin and its target protein CyclinD1 in LO2 cells cultured in DMEM + PA for 72 h. 
Histogram showing WB quantification (*, P<0.05 compared with blank, n=3 per experiment). (I,J) RT-PCR and WB demonstrated the effect of 
shYB-1 on the expression of YB-1 (*, P<0.05 compared with the scramble group, n=3 per experiment). (K,L) RT-PCR and WB demonstrated 
the effect of OE-YB-1 on the expression of YB-1 (*, P<0.05 compared with the scramble group, n=3 per experiment). (M,N) WB showing 
the expression level of β-catenin and its target protein CyclinD1 (*, P<0.05 compared with groups without any treatment; #, P<0.05 compared 
with groups without any treatment, n=3 per experiment). YB-1, y-box binding protein 1; WB, Western blot; qRT-PCR, Quantitative Real-
time PCR; GSK3β, glycogen synthase kinase 3 beta; pGSK3β, phosphorylation glycogen synthase kinase 3 beta; rGSK3β; recombinant murine 
GSK3β protein.

3β and downregulated β-catenin, but upregulation of 
YB-1 led to pGSK-3β downregulation and upregulated 
β-catenin (Figure 4D,4E). Subsequently, a Co-IP assay 
showed that YB-1 complexed pGSK3β (Figure 4F). Such 
findings suggest that the YB-1-regulated Wnt/β-catenin 
signaling pathway could be orchestrated through pGSK3β 
degradation. Consequently, the LO2 cell l ine was 
exposed to a GSK3β inhibitor (TDZD-8; f.c. 2.5 µM) and 
activator (recombinant murine GSK3β protein (rGSK3β)) 

at 90 ng/mL once daily in DMEM + PA for 72 h. WB 
demonstrated that TDZD-8 effectively led to pGSK3β 
downregulation, together with inducing β-catenin (and 
its target protein CyclinD1) upregulation. In contrast, 
rGSK3β demonstrated contrasting influences on the Wnt/
β-catenin signaling pathway, suggesting that β-catenin is a 
downstream target of pGSK3β (Figure 4G,4H). Therefore, 
we constructed shβ-catenin and a corresponding scramble, 
and OE-β-catenin together with empty-vector plasmids. 
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Study outcomes indicated that shβ-catenin and OE-
β-catenin regulate β-catenin at the transcriptomic and 
proteomic levels (Figure 4I-4L). Moreover, we confirmed 
that downregulation of β-catenin and its target CyclinD1 
by shYB-1  could be rescued by OE-β-catenin, and 
upregulation of β-catenin and its target CyclinD1 by OE-
YB-1 could be inhibited by shβ-catenin (Figure 4M,4N).

Reverse regulation of β-catenin reversed the effect of YB-1 
on lipid synthesis in LO2 cells

To further investigate whether the effect of YB-1 on LO2 
cell lipid synthesis was realized by regulating β-catenin, 
Oil Red O staining was applied to observe lipid synthesis 
in LO2 cells cultured in DMEM + PA for 72 h. The 
results showed that downregulation of YB-1 impeded 
lipid synthesis, although this effect was reversed through 
β-catenin overexpression. In addition, upregulation of 
YB-1 increased lipid synthesis, but this phenomenon could 
be abolished by downregulation of β-catenin (Figure 5A). 
Then, WB assays demonstrated that downregulation of 
YB-1 inhibited the expression levels of SREBP-1c and 
LXRa, and increased the expression levels of FXR1 and 
PPARα. However, this phenomenon could be reversed by 
overexpression of β-catenin. Furthermore, the results also 
indicated that upregulation of YB-1 increased the expression 
levels of SREBP-1c and LXRa, and decreased the expression 
levels of FXR1 and PPARα, but this phenomenon could also 
be reversed by downregulation of β-catenin (Figure 5B,5C). 
RT-PCR showed that the relative gene expression levels of 
SREBP-1c, LXRa, FXR1, and PPARα were consistent with 
the protein expression levels (Figure 5D). Finally, ELISA 
assays confirmed that the concentrations of TNFα and 
IL-6 in the supernatants were consistent with the degree of 
steatosis in the above groups (Figure 5E,5F).

YB-1 regulated lipid synthesis in hepatocytes through 
orchestrating the Wnt/β-catenin signaling pathway in a 
mouse model

The results of the in vivo study indicated that YB-1 was 
highly expressed in NAFLD livers, but YB-1 expression 
was effectively inhibited by downregulation of YB-1, and 
YB-1 expression was higher with upregulation of YB-1 
(Figure 6A,6B). In addition, this study also identified 
β-catenin upregulation in NAFLD livers, although the 
expression of β-catenin was significantly inhibited by 
downregulation of YB-1, and the expression of β-catenin 

was significantly increased by upregulating β-catenin 
(Figure 6C,6D). However, reverse regulation of β-catenin 
could reverse the effect of YB-1 on the β-catenin expression 
(Figure 6E,6F ) .  Furthermore, Oil  Red O staining 
demonstrated that downregulation of YB-1 inhibited lipid 
synthesis in NAFLD mouse livers, but upregulation of 
YB-1 promoted lipid synthesis (Figure 6G). Interestingly, 
the effect of YB-1 on lipid synthesis in NAFLD mouse 
livers could be reversed by reverse regulation of β-catenin 
(Figure 6H). WB indicated that the inhibited expression 
of SREBP-1c and LXRa by downregulating YB-1 could be 
rescued by upregulation of β-catenin, and the increased 
expression of FXR1 and PPARα by downregulating YB-1 
could also be inhibited by upregulation of β-catenin. 
The increased expression of SREBP-1c and LXRa by 
upregulating YB-1 could be rescued by downregulation 
of β-catenin, and the inhibited expression of FXR1 and 
PPARα by upregulating YB-1 could also be increased by 
downregulation of β-catenin (Figure 6I,6J). Finally, we also 
confirmed that the expression levels of TNFα and IL-6 in 
NAFLD livers were consistent with the degree of steatosis 
(Figure 6K,6L).

Discussion

NAFLD is increasing year by year, posing a great burden 
to human health and society, and affecting 20–30% of the 
population worldwide (16). Excessive accumulation of 
triglycerides in hepatocytes is the hallmark of NAFLD, 
which is due to the imbalance between lipid deposition 
and clearance (17). Although investigators have recently 
reported  the  molecu lar  mechani sms  o f  NAFLD 
pathogenesis (18-20), they still require further research. In 
this study, we first found that the expression levels of YB-1 
and β-catenin were elevated in mouse NAFLD livers. Then, 
in vitro analysis confirmed that the effect of YB-1 on lipid 
synthesis and β-oxidation in LO2 cells was facilitated by 
regulating the Wnt/β-catenin signaling pathway. Additional 
analyses identified that YB-1 develops a complex with 
pGSK3β to regulate the Wnt/β-catenin signaling pathway 
and its target CyclinD1 in steatosis LO2 cells. Finally, we 
also confirmed that the effect of YB-1 on lipid synthesis 
and β-oxidation in mouse NAFLD livers was facilitated by 
regulating the Wnt/β-catenin signaling pathway.

Recent investigations have confirmed that YB-1, as a 
member of the cold shock protein family, plays a pivotal 
role in the progression of liver injury and fibrosis, and the 
initiation and development of hepatic carcinoma (21-23). In 
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Figure 5 Reverse regulation of β-catenin reversed the effect of YB-1 on lipid synthesis in LO2 cells. (A) Oil Red O staining showing lipid 
deposits in each group (scale bar =100 µm, n =3 per group); (B,C) the expression levels of SREBP-1c, LXRa, FXR1, and PPARα (*, P<0.05 
compared with groups without any treatment, n=3 per experiment); (D) RT-PCR indicating the gene expression of SREBP-1c, LXRa, FXR1, and 
PPARα (*, P<0.05 compared with groups without any treatment, n=3 per experiment); (E,F) ELISA assay detected the contents of TNFα and 
IL-6 in the supernatants of the above groups (*, P<0.05 compared with groups without any treatment, n=3 per experiment). YB-1, y-box binding 
protein 1; qRT-PCR, Quantitative Real-time PCR; ELISA, Enzyme-linked immunosorbent assay; SREBP-1c, sterol regulatory element binding 
protein-1c; LXRa, Liver X Receptor α; FXR1, farnesoid X receptor1; PPARα, peroxisome proliferator-activated receptor-alpha; TNFα, tumor 
necrosis factor α, IL-6, interleukin 6.
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Figure 6 YB-1 regulates lipid synthesis by regulating the Wnt/β-catenin signaling pathway in vivo. (A,B) IH and histogram presenting 
quantification of the immune score for YB-1 in each group (scale bar =100 µm, n=20 per group; *, P<0.05 compared with the control and blank 
group, n=3 per experiment); (C,D) IH and histogram presenting quantification of the immune score for β-catenin in each group (scale bar =50 µm,  
n=20 per group; *, P<0.05 compared with the control and blank group, n=3 per experiment); (E,F) IH showing the relative expression levels 
of β-catenin (scale bar =50 µm, n=20 per group; *, P<0.05 compared with the control and blank group, n=3 per experiment); (G,H) Oil Red O 
staining showing lipid deposits in each group (scale bar =50 µm, n =20 per group); (I,J) WB indicating the relative expression levels of SREBP-1c, 
LXRa, FXR1, and PPARα in each group (*, P<0.05 compared with groups without any treatment, n=3 per experiment). (K,L) WB showing the 
relative expression levels of TNFα and IL-6 in each group (*, P<0.05 compared with groups without any treatment; #, P<0.05 compared with 
groups without any treatment n=3 per experiment). YB-1, y-box binding protein 1; IH; Immunohistochemistry; WB, Western blot; SREBP-1c,  
sterol regulatory element binding protein-1c; LXRa, Liver X Receptor α; FXR1, farnesoid X receptor1; PPARα, peroxisome proliferator-
activated receptor-alpha; TNFα, tumor necrosis factor α, IL-6, interleukin 6.

our previous study, we found that YB-1 regulated Collagen 
I secretion in hepatic progenitor cells via PDGFR-β/
ERK/p90RSK Signalling, and influenced the progression 
of liver fibrogenesis (24). Liu and colleagues found that t 
YB-1 augments sorafenib resistance through the PI3K/Akt 
signaling pathway in HepG2, a human hepatocarcinoma 
cell line (25). Wang and colleagues demonstrated that in 
acute liver injury model in C57BL/6J mouse induced by 
Lipopolysaccharide/D-galactosamine, phosphorylation 
YB-1 inhibition could downregulate the expression of 
Nlrp3 inflammasome, and protecting acute liver injury (23). 
Interestingly, McCauley et al. found that YB-1 participated 
in fatty acid synthesis in clear cell renal carcinoma (10). 
However, up to now, there have been few studies on the 
effects of YB-1 on lipid metabolism in hepatocytes. This 
investigation demonstrated YB-1 upregulation in mouse 
NAFLD livers and steatosis LO2 cells induced by PA.

To investigate the correlation between the expression 
level of YB-1 and lipid metabolism, we established an 
LO2 cell NAFLD model in vitro, and confirmed that 
YB-1 was highly activated in the progression of LO2 cell 
lipid synthesis. Meanwhile, fat synthetases SREBP-1c and 
LXRa were also highly activated, while β-oxidation-related 

enzymes FXR1 and PPARα were inhibited. We also found 
that the concentrations of inflammatory cytokines TNFα 
and IL-6 were higher in the supernatants of the steatosis 
LO2 cell group. Follow-up investigations revealed that 
inhibiting YB-1 through YB-1 gene silencing decreased lipid 
synthesis and the expression levels of SREBP-1c and LXRa, 
but increased the expression levels of FXR1 and PPARα. 
However, YB-1 upregulation by YB-1 gene overexpression 
increased lipid synthesis and the expression levels of SREBP-
1c and LXRa, but decreased the expression levels of FXR1 
and PPARα. Finally, we also found that the concentrations 
of TNFα and IL-6 were lower in the supernatants of LO2 
cells transfected with a lentivirus of YB-1 gene silencing, but 
the concentrations of TNFα and IL-6 were higher in the 
supernatants of LO2 cells transfected with a lentivirus of 
YB-1 overexpression. These data indicated that YB-1 could 
participate in LO2 cell lipid metabolism.

GSK3β is a main protein of the multi-protein destruction 
complex. In unstimulated cells, the ubiquitin proteases 
after phosphorylation by GSK3β were shown to degrade 
β-catenin, which resulted in β-catenin not being able to 
translocate to the cell nucleus, and the Wnt/β-catenin 
signaling pathway was inactivated. In unstimulated cells, 
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non-phosphorylated cytoplasmic β-catenin translocated/
accumulated within the nucleus to enable downstream gene 
regulatory activity (26,27). Recently, a series of investigations 
indicated that the activation of the Wnt/β-catenin signaling 
pathway contributes to liver injury induced by alcohol 
consumption (13), and its downregulation increased the 
levels of proteins involved in glucose aerobic metabolism 
and β-oxidation in a mouse swimming training model (28).  
The above data demonstrate that the Wnt/β-catenin 
signaling pathway plays an important role in inflammation 
and metabolism, though the involvement of Wnt/β-catenin 
signaling in lipid metabolism and the inflammatory response 
of the liver remains uncertain. This investigation confirmed 
that enhanced triggering of Wnt/β-catenin took place in the 
process of liver and LO2 cell steatosis in vivo and in vitro, 
and that inhibiting the expression of YB-1 by downregulating 
the YB-1 gene suppressed the activation of this pathway 
and then decreased lipid synthesis and inflammatory 
responses. These findings were reversed through β-catenin 
overexpression. Next, we confirmed that promoting the 
expression of YB-1 by upregulating YB-1 gene expression 
increased the activation of this pathway and then increased 
lipid synthesis and inflammatory responses. However, this 
phenomenon was reversed by inhibition of β-catenin.

These results were similar to previous studies which 
indicated that the accumulation of β-catenin in the 
nucleus promoted lipogenesis in fish, and pGSK3β, a 
phosphorylated form of GSK3β, could form a destruction 
complex with other proteins to regulate Wnt/β-catenin 
triggering (29,30). In addition, this investigation also 
revealed that the inhibition of pGSK3β could activate 
the Wnt/β-catenin signaling pathway, but that increased 
pGSK3β suppressed the activation of this pathway, similar 
to the findings of previous studies (31-33). Recently, 
some investigations found that YB-1 could form protein 
complexes with other proteins to perform a series of 
physiological functions (34,35). In this study, we also 
found that YB-1 could form a complex with pGSK3β to 
regulate the Wnt/β-catenin signaling pathway. Although 
this investigation of the molecular mechanisms underlying 
liver lipid metabolism and inflammatory responses did not 
bring about extensive evidence, such results can certainly 
provide further insights into the mechanisms of liver lipid 
metabolism.
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