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ABSTRACT

Identifying protein-coding regions in DNA se-
quences is an active issue in computational
biology. In this study, we present a self adaptive
spectral rotation (SASR) approach, which visualizes
coding regions in DNA sequences, based on inves-
tigation of the Triplet Periodicity property, without
any preceding training process. It is proposed to
help with the rough coding regions prediction
when there is no extra information for the training
required by other outstanding methods. In this
approach, at each position in the DNA sequence, a
Fourier spectrum is calculated from the posterior
subsequence. Following the spectrums, a random
walk in complex plane is generated as the SASR’s
graphic output. Applications of the SASR on real
DNA data show that patterns in the graphic output
reveal locations of the coding regions and the frame
shifts between them: arcs indicate coding regions,
stable points indicate non-coding regions and
corners’ shapes reveal frame shifts. Tests on
genomic data set from Saccharomyces Cerevisiae
reveal that the graphic patterns for coding and
non-coding regions differ to a great extent, so that
the coding regions can be visually distinguished.
Meanwhile, a time cost test shows that the SASR
can be easily implemented with the computational
complexity of O(N).

INTRODUCTION

It is well known that a significant function of DNA is to
instruct the synthesis of the proteins, which are basic
organic compounds made of amino acids arranged in a
linear chain. Detecting the protein-coding regions in the
DNA sequence has become an active issue in the field of
computational biology (1–10). The hidden Markov model
(HMM) based methods are most developed techniques for

this issue (11–14). They predict the coding regions with
extreme high accuracy, after the models are trained by
suitable training sets. However, the training dependence
may reduce adaptability of the methods, particularly for
new sequences from unknown organism with no or small
training sets (11). Therefore, it is significant to predict,
even roughly, locations of the coding regions without
training process, before any extra information can be
used. In this work, we developed an approach to visualize
the coding regions by investigating a coding related
property, i.e. the Triplet Periodicity (TP) property, so
that the rough locations of the coding regions can be
pointed out manually or computationally.
In the protein-coding regions, 20 different kinds of

amino acids are coded by triplets of DNA residues,
which are known as codons. Researchers suggest that
the usages of codons are highly non-random in the
coding regions (15). The biased appearance of codons
raises a universal property in the coding regions, called
the ‘TP’. Investigating the TP property can be a subject
of interest for developing the coding regions detection al-
gorithm (16,17), as well as some other significant gene
related issues. The TP property was first presented by
Fickett (18). It is said to be a simple and universal differ-
ence between coding and non-coding regions. After
Fickett’s work, the TP property was analyzed concerning
various theoretical tools, such as the hidden Markov
chains (19,20), the time series (21,22), the information
theory (15,16) and the Fourier transform (23–29). Using
the Fourier transform, Tiwari et al. (23) developed a
measure, known as Spectral Content Measure (SCM) to
investigate the intensity of TP and further construct a gene
predictor. A family of methods have grown from the
original SCM, since researchers extended and improved
Tiwari’s original method in many ways (27–38). Among
these methods, Anastassiou’s (27,28) Optimized Spectral
Content Measure (OSCM) and Kotlar and Lavner’s (29)
Spectral Rotation Measure (SRM) are said to be distinct-
ive. They consider not only the intensity of the TP
property, but also the fact that the TP property in the
coding regions varies from a certain organism to
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another, each organism may have its specific TP profile. In
OSCM and SRM, the specific TP profile for the target
organism is presented in different mathematical forms,
i.e. the four coefficients in OSCM (27) and the phase
angles’ expected values and variances in SRM (29). A
‘profile matching’ (see details in the ‘Materials and
Methods’ section), rather than considering only the inten-
sity of TP, makes the measures more powerful.
However, there are still some significant concerns. Most

of the TP based methods with high performance, such as
OSCM and SRM, need the known genes’ data from the
target organism, or its close relations, for training. They
are also training dependent, like the HMM based
methods, and it limits the application of these methods
on the unknown organisms, which cannot provide suffi-
cient known gene data for training. Moreover, most of the
SCM related methods are ‘measure-based’. In order to
detect the TP property and further find the potential
coding regions in the large DNA sequence, they employ
moving slide windows to investigate their measures in
local sections of the sequence (23,27,29). The sensitivity
of these methods highly depends on the length of the
slide window. A fixed length 351 bp has been used in
Tiwari et al.’s work (23), Anastassiou’s work (27) and
Kotlar and Lavner’s work (29). However, there is always
a trade-off in selecting a fixed window’s length or an
analysis scale (29), since the fixed scale is not always
suitable in all situations.
In this article, a new approach named self adaptive

spectral rotation (SASR) is proposed to visualize the
coding regions in the DNA sequence. A hidden TP
profile is automatically maintained in the SASR. So it is
not necessary to carry out any training, and the powerful
‘profile matching’ can be applied to the new and unknown
organisms, by using the SASR. Meanwhile, without using
the fixed slide window or analysis scale, the SASR obtains
a graphic output, called the TP walk, which visually
reveals the locations of the coding regions and the frame
shifts between them. The paper is organized as follows: In
the ‘Materials and Methods’ section, we first review some
coding region identification methods, which are based on
the TP property and the Fourier transform. Then the
newly proposed SASR approach is presented in detail.
The ‘Results’ section shows some applications of the
SASR on real DNA data sets. The practical output of
the SASR is discussed, to investigate the principle of the
graphic output for visualizing the TP property. The appli-
cations on genomic data sets from Saccharomyces
Cerevisiae reveal the high capability of the SASR’s
output, in discriminating coding and non-coding regions.
The ‘Discussion’ section compares the SASR with some
other methods, indicating its advantages and significant
features.

MATERIALS AND METHODS

The DNA sequences’ data set

The DNA sequence data involved in this work were col-
lected from NCBIs Entrez Nucleotide database
(http://www.ncbi.nlm.nih.

gov/sites/entrez?db=nucleotide), which is a combined
source database, including GenBank, RefSeq, TPA and
PDB. The mitochondrial DNA sequences from Homo
sapiens (Human), Gallus gallus (Chicken) and
Halichoerus grypus (Gray Seal) were collected on 18
March 2009, and the S. cerevisiae chromosome sequences
were collected on 12 August 2009. Fragments and
complete sequences of the mitochondrial DNA were
used to investigate the practical behavior of the SASR’s
output in various cases. In the capability evaluations, the
single-exon genes with ‘experimental evidence’ from the
first 15 chromosomes of S. cerevisiae were extracted as
the positive sample set and the inner sequences between
genes from these chromosomes were extracted as the
negative sample set. The single-exon genes, which are
with ‘experimental evidence’ and in the forward reading
direction, from the 16th chromosome of S. cerevisiae were
extracted as the training set to obtain the coefficients used
in the SRM.

Identifying coding regions based on the TP property,
with the Fourier transform

In Tiwari et al.’s work (23), a DNA sequence was repre-
sented as four binary sequences of the Voss model (39), i.e.
uA(t), uT(t), uG(t) and uC(t) for t=1, 2, 3, . . . , N. N stands
for the length of the sequence. u�(t)=1 if and only if the
nucleotide base � (�=A, T, C or G) appears at the
position t. Consider the Fourier Transform on the four
sequences, which is:

U�ð f Þ ¼
XN
t¼1

u�ðtÞe
�ið2�=NÞtf

Four complex spectrums can be obtained at frequency
f=N/3, i.e. UA(N/3), UT(N/3), UG(N/3) and UC(N/3).
The SCM is the square sum of these four components:
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The measure is said to be the same as the sum of the four
position asymmetry measures (up to a 3/2 multiplicative
factor) (29), which were proposed by Fickett and Tung
(40). A high value of SCM suggests a high intensity of
TP, and further reveals a coding region.

In 2000, Anastassiou introduced the OSCM by assign-
ing four optimized weights to the four complex compo-
nents (27,28):
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The weights a, t, g and c are obtained by training on
the known genes from the target organism, in order to
optimize the prediction specifically for this organism.
It has been reported that the OSCM is more signifi-
cant than the original SCM for predicting genes in
S. cerevisiae (27).
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Kotlar and Lavner (29) further proposed a SRM by
considering the statistical property of the four complex
components’ arguments, i.e. arg[UA(N/3)], arg[UT(N/3)],
arg[UG(N/3)] and arg[UC(N/3)]. They suggested that, in
coding regions from a given organism, the TP property
implies a bell-shaped distribution of each component’s
argument, i.e. arg[U�(N/3)], and the distribution is close
to uniform in the non-coding regions without the TP
property. Hence, in the coding regions, the four compo-
nents can be rotated to a same direction by four
multiplications:

U�
N

3

� �
! e�i��U�

N

3

� �
ð� ¼ A,T,G or CÞ

�� is the expected value of arg[U�(N/3)] obtained from
the known genes of the target organism. Then the SRM is
defined by the rotated components:
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Here, �� stands for the variance of arg[U�(N/3)], also
obtained from the known genes, and it is used in the
measure to give more weights to narrower distributions
(29). A high value of SRM reveals a coding region,
since only in the coding regions can the four components
be rotated to a same direction and produce a high
summation. Kotlar and Lavner (29) suggested that
considering the arguments of the Fourier spectra yields
more information than the corresponding magnitudes
alone.

Introducing the TP vector

The TP profile was presented in Frenkel and Korotkov’s
work (15) using a Triplet Periodicity Matrix (TPM). The
TPM is a 4� 3 matrix, each row i (i=1, 2, 3, 4) stands for
a nucleotide base (A, T, C or G), each column stands for a
position j (j=1, 2, 3) in the period and the entry mij is the
count by which the base i appears at the position j. Here,
we also consider the TPM as a representation of the TP
profile.

Considering the Tiwari’s method (23), the Fourier
spectrum at N/3 for the base � (�=A, T, C or G) is:

U�
N
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For each nucleotide base �, the triplet row vector
M={m�1, m�2, m�3} from Frenkel and Korotkov’s
TPM is an equivalence of the Fourier spectrum U�(N/
3). In this work, this triplet row vector M is called a TP

vector and its corresponding Fourier spectrum is con-
sidered as its complex form. The TP vector of a given
DNA sequence X for the nucleotide base � is then
denoted here in a function form: M�(X).
Here, we define two cyclic shifts, i.e. left cyclic shift

(LCS) and right cyclic shift (RCS), on the TP vector.
The shift operations are to shift the values among the
three elements. An LCS shifts the original TP vector
{m1, m2, m3} into {m2, m3, m1}, and an RCS shifts the
vector into {m3, m1, m2}. The shift operations are
denoted by two symbols ‘<<’ and ‘>>’: M << k stands
for k times LCS on M, and M >> k stands for k times
RCS. According to Equation 1, it is easy to find that a
2�k/3 counter clockwise rotation on the Fourier spectrum
can be easily implemented by k times LCS on its corres-
ponding TP vector M, i.e. M << k, while M >> k is
equivalent to a 2�k/3 clockwise rotation. It is also
noticed that, the addition, subtraction and multiplication
on a TP vectorM are equivalent to the same operations on
its corresponding Fourier spectrum U, i.e. M±M0 $
U±U0 and cM $ cU (c is a real number). Besides, the
length of a TP vector L(M) is defined here as the norm of
its corresponding Fourier spectrum, i.e. L(M)= |U|.

The SASR

The SASR starts with a transformation from the DNA
sequence to a TP vector’s sequence, named TP sequence.
Consider a given DNA sequence, which is a sequence of
nucleotide bases X={xt | t=1, 2, 3 . . . , N}. The posterior
subsequence of X at position t0 is denoted as PX(t0)= {xt |
t0< t�N}. The TP sequence, transformed from X, is
defined as a sequence of TP vectors S(X)={st | t=1, 2,
3, . . . , N}, obtained as: st=Mxt(PX(t)). That is for each
position t, calculate the TP vector st of the posterior sub-
sequence PX(t) for the nucleotide base xt. Figure 1 shows
an example explaining the transformation from the DNA
sequence to the TP sequence.
According to this description of the TP sequence, for

each position t, the posterior subsequence is considered
and a TP vector is calculated. It reveals that, in practice,
generating a TP sequence from a DNA sequence is time
consuming with the computational complexity of O(N2).
In order to reduce the computational complexity, a recur-
sive algorithm is developed here.
It is noticed that PX(t+1) is a posterior subsequence of

PX(t). Then the algorithm is to recursively calculate

Figure 1. Transforming the DNA sequence into the TP sequence.
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M�(PX(t)) from M�(PX(t+1)), with the recurrence
equation:

M�ðPXðtÞÞ ¼
M�ðPXðt+1ÞÞ >> 1 xt+1 6¼ �

M�ðPXðt+1ÞÞ >> 1+f1, 0, 0g xt+1 ¼ �

�
ð2Þ

The recursive process is with the initial value
M�(PX(N))= {0, 0, 0}. Hence, M�(PX(t)) can be
calculated recursively from the 30- to 50-end. In other
words, we maintain a TPM of the posterior subsequence
from position N to 1. Consequently, the TP sequence can
be generated by choosing st, at each position t, from the
four vectors, i.e. MA(PX(t)), MT(PX(t)), MC(PX(t)) and
MG(PX(t)). The algorithm is described in the pseudo
code as below.

TP sequence generation algorithm
Input: DNA sequence x[1 . . .N]
Output: TP sequence s[1 . . .N]
1 For each � do M[�]={0, 0, 0};
2 t=N;
3 While(t>0) do{
4 s[t]=M[x[t]];
5 For each � do{
6 M[�]=M[�] >> 1;
7 If(x[t]==�) M[�]=M[�]+{1, 0, 0};
8 }
9 t––;
10 }

An example is given in Figure 2. Obviously, the com-
putational complexity is reduced to O(N) by using this
algorithm.
After the transformation from the DNA sequence to the

TP sequence, a graphic output of SASR can be obtained.
The output is a random walk in the TP vector’s space,
called the TP walk. The TP walk starts from the zero
point {0, 0, 0}, and generates a moving trace according
to the TP sequence. The trace can be considered as a
sequence W = {wt | t=0, 1, 2, . . . ,N} with an initial
value w0={0, 0, 0}, and for each step t> 0:

wt ¼
wt�1+

st
LðstÞ

LðstÞ 6¼ 0

wt�1 LðstÞ ¼ 0

(
ð3Þ

This definition of the TP walk is described in the TP
vector’s space. However, since the TP vector and the
Fourier spectrum are equivalent according to equation

1, it is safe to consider that it also defines the TP walk
in the complex plane. Hence, the TP walk can be also
presented in the complex plane. In the complex plane,
the recurrence equation 3 means to move a unit length
toward the direction of the TP vector’s corresponding
complex number, for each step t.

RESULTS

TP walk in different cases

We first applied the SASR to simple DNA sequences, con-
taining only a single coding or non-coding region, to in-
vestigate the behavior of the TP walk in these two special
cases. Figure 3 shows the TP walk result of the first coding
region (3307–4260) from the H. sapiens (Human) mito-
chondrial DNA sequence (No. J01415) and Figure 4 is
the TP walk of the sequence before this region (1–3306,
non-coding region without TP). In Figure 3a, the walk
moves rightward from (0, 0) to around (200, 0) in the
complex plane within only 954 steps, but in Figure 4a,
the walk move around the zero point (Real part: �25–
40; Imaginary part: �30–15) in the total 3306 steps.
Meanwhile in Figure 3b, the real part keeps increasing
with the growth of the t-value and the imaginary part
keeps relatively constant. But in Figure 4b, both the real
part and the imaginary part oscillate without a fixed
pattern. Similar observations were found in experiments
on other simple DNA sequences and it can be concluded
that the TP walk of the single coding sequence has a trend
moving rightward, while the walk of the non-coding
sequence appears random. It is noticed that this principle
is reasonable and is universally satisfied for such simple
sequences, because it can be proved theoretically, as
shown in Appendix 1.

Consider a longer DNA sequence, which is a chain con-
taining two coding regions with a non-coding region
between them. This kind of chains is denoted as C0-I-C1

as shown in Figure 5. The two coding regions C0 and C1

are from a same organism, therefore share a same TP
profile. Because we consider the coding regions’ general
locations and the frame shift, rather than the exact
boundaries, it is safe to assume that the lengths of C0

and C1 are multiples of 3, excluding the incomplete
periods. Therefore the non-coding region I between
them indicates a frame shift caused by insertions or dele-
tions. The difference between the coding regions’ reading
directions indicates a frame shift caused by an inversion.
According to the definition of the TP sequence, which only

Figure 2. The TP sequence generation algorithm.
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takes the posterior subsequence into consideration, the
walk in C1 is not influenced by I or C0, and it will be
with the positive real direction as usual. However, walks
in C0 and I are influenced by their posterior parts, which
are I-C1 and C1, respectively. From the detailed discussion
in Appendix 2, we found that the walk in C0 and I follows
a fixed pattern. The walk in the I part is random around a
relatively stable point, and the walk trace of the C0 part is
an arc. Therefore, it shows an obvious corner between the
walk traces of C0 and C1. If C0 and C1 are in a same
reading direction, there is a strong relationship between
the frame shift value � and the corner’s shape, which is

called here the ‘corner rule’ (Figure 6). Specifically, the
change of the walk direction on the corner depends on �:

�=0: The direction keeps unchanged (go straight)
�=1: The direction rotates 2�/3 counterclockwise
(turn left)

�=2: The direction rotates 2�/3 clockwise (turn
right)

We applied the SASR to real C0-I-C1 chains with �=0,
1, 2 (without inversion) to check whether the practical
behavior conforms to the above discussion. Figure 7
shows the TP walk of a chain from the Gallus Gallus
(Chicken) mitochondrial DNA sequence, which is with
�=0. Figure 8 shows the walk of a chain with �=1,
from the Halichoerus Grypus (Gray Seal) mitochondrial
DNA and Figure 9 is for a chain with �=2, from the
H. sapiens (Human) mitochondrial DNA. Table 1 shows
more details about these three chains. The (a) parts of
Figures 7–9 indicate that the practical walk traces
coincide with the corner rule. The (b) parts of
Figures 7–9 show that the walks keep relatively constant
in the non-coding regions compared with the high speed
moving in the coding regions.
The practical TP walk for the complete DNA sequence

was also investigated. Figure 10 shows the TP walk trace
of the complete H. sapiens (Human) mitochondrial DNA
sequence (No. J01415). The total 13 coding regions are
marked in different colors and the �-value between each
two of them is shown as well. It is clear in the figure that
the coding regions stay on the arcs while the non-coding
regions stay on the corners or around relatively stable
points. The corners’ shapes follow the corner rule for all
of the first 11 coding regions. The corner rule is not ap-
plicable for the two corners among 11th, 12th and 13th
coding regions, because the 12th coding region is in the
reverse reading direction. However, the 12th coding region
also stays on an arc. Meanwhile, the top-right of Figure 10
shows that the curves of the real part and the imaginary
part fluctuate up and down with the alternation of the
coding regions and stay relatively constant in the

Figure 4. The TP walk of the sequence before the first coding region (1–3306, non-coding region without TP property) of the H. sapiens (Human)
mitochondrial DNA. (a) Walk trace in the complex plane. (b) Plot of the real part (black) and imaginary part (gray) of the points in the trace against
the growing value of position t.

Figure 3. The TP walk of the first coding region (3307–4260) from the
H. sapiens (Human) mitochondrial DNA sequence. (a) Walk trace in
the complex plane. (b) Plot of the real part (black) and imaginary part
(gray) of the points in the trace against the growing value of position t.
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non-coding regions. Actually, this behavior for the
complete DNA sequence is raised by an accumulated
effect of its short C0-I-C1 sub-chains from 30 to 50. It is
easy to find that the TP walk of a complete sequence
should follow the rules:

(i) The walk traces of coding regions are arcs and the
walk in the last coding region is with the positive
real direction.

(ii) The walk in the non-coding regions is always
random and moves around relatively stable points.

Figure 8. The TP walk of 3654–5862 Halichoerus grypus (Gray Seal) mitochondrial DNA sequence (�=1). (a) Walk trace in the complex plane.
(b) Plot of the real part (black) and imaginary part (gray) of the points in the trace against the growing value of position t and the dark areas stand
for the coding regions.

Figure 7. The TP walk of 4050–6281 Gallus Gallus (Chicken) mito-
chondrial DNA sequence (�=0). (a) Walk trace in the complex
plane. (b) Plot of the real part (black) and imaginary part (gray) of
the points in the trace against the growing value of position t and the
dark areas stand for the coding regions.

Figure 6. A sketch of the TP walk trace of the C0-I-C1 chain, when the
two coding regions are in a same reading direction. (a) �=0. (b)
�=1. (c) �=2.

Figure 5. C0-I-C1 Chain. N* is the length of sub-sequence *.
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(iii) If two neighboring coding regions are in a same
reading direction, the shape of the corner between
them follows the corner rule.

The rule 3 is briefly proved in Appendix 3.

Performance and capability evaluations

Performance of the TP sequence’s generation algorithm. In
order to test the practical computational complexity in
generating a TP sequence from a DNA sequence, a
simple program was written in the C++ language, and
executed on a personal computer with Xeon(TM) CPU
2.8GHz and 2.0 GB memory. We randomly generated
1000 artificial DNA sequences with random lengths
(ranging from 20 000 to 2 00 000) and transformed them
into TP sequences by using the algorithm mentioned in the
‘Materials and Methods’ section. The time cost of the 1000
transformations is plotted in Figure 11. It shows that the
practical time cost rises from nearly 0ms to 4200ms with
the sequence’s length N increasing from 20 000 to 2 00 000
linearly. It reveals that the practical computational com-
plexity is O(N).

The capability in discriminating coding and non-coding
region. The TP walk visually discriminates the coding

regions from the non-coding regions and also reveals the
frame shift. However, it is significant to quantitatively in-
vestigate, to what extent, the TP walk’s patterns of the
coding and non-coding regions are different, in order to
check whether the coding regions can be further pointed
out from the graph manually or computationally. Hence,
we analyzed the difference between the walk’s patterns of
two typical data sets. The data sets were extracted from
the first 15 chromosome DNA sequences of the
S. cerevisiae (no. NC_001133–NC_001147). One is called
here the coding set or the positive set, containing all of the
single-exon genes with ‘experimental evidence’. The other
one is called the non-coding set or the negative set, con-
taining all the inner sequences between genes. For a quan-
titative investigation, it needs to extract a measure from
the SASR’s visualization result, as a numerical represen-
tation of the walk’s pattern. For this reason, we present
here a Rightward Rate (RR) measure. For a given DNA
sequence, a RR measure is calculated from its TP walk
W={wt | t=0, 1, 2, . . . ,N}:

RR ¼
1

N
maxfReðwtÞjt ¼ 1, 2, . . . ,Ng ð4Þ

Here, Re(w) stands for the real part of the complex
number w. This measure reveals the speed by which the

Figure 9. The TP walk of 3307–5510 H. sapiens (Human) mitochondrial DNA sequence (�=2). (a) Walk trace in the complex plane. (b) Plot of the
real part (black) and imaginary part (gray) of the points in the trace against the growing value of position t and the dark areas stand for the coding
regions.

Table 1. Three C0-I-C1 chains in real mitochondrial DNA sequences

Organism Interval C0 C1 �

Gallus Gallus (X52392) 4050–6281 4050–5024 (+) 5241–6281 (+) 0
Halichoerus Grypus (X72004) 3654–5862 3654–4610 (+) 4819–5862 (+) 1
Homo Sapiens (J01415) 3307–5510 3307–4260 (+) 4470–5510 (+) 2
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walk moves rightward (with the positive real direction) in
the complex plane. A single coding sequence has a TP
walk moving rightward, causing the RR value being rela-
tively high correspondingly. We applied the SASR on the
sequences in the two data sets, and calculated their RR
values. The Cumulative Distribution Function (CDF) and
the Probability Density Functions (PDF) of the RR dis-
tributions in the two data sets are plotted in Figure 12. As
expected, the non-coding sequences occupy the low RR
area and the coding sequences tend to be with higher
RR values. The sample means m and the sample
standard deviations d are listed in Table 2. An independ-
ent 2-sample t-test was conducted on these two distribu-
tions, in which we got the t value at 107.069, and the

P-value is �0. It indicates extreme high statistical signifi-
cance of the difference between the two distributions.

The OSCM (27) and SRM (29) were also applied on the
sequences in the two data sets. For the OSCM, the four
coefficients have been set up, in Anastassiou’s work
(27), as a=0.1+0.12i, t=�0.3�0.2i, c=0 and g=
0.45�0.19i, for the S. cerevisiae DNA. Meanwhile, we
trained the SRM using the single-exon genes, which are
with ‘experimental evidence’ and in the forward reading
direction, from the 16th chromosomes of S. cerevisiae
(no. NC_001148). Consider that, the OSCM and the
SRM, set up from the genes in the forward direction,
may miss the TP property in the reverse coding sequences,
which are also contained in the positive set. To recognize
such reverse TP property, in Anastassiou’s work (27) and
Kotlar and Lavner’s work (29), the complementary
measures were involved. According to Anastassiou (27),
the four coefficients in the complementary measure are:
a~= t0e�i2�/3, t~= a0e�i2�/3, c~= g0e�i2�/3 and g~= c0e�i2�/3.
Here a0, t0, c0 and g0 are the complex conjugates of the origin-
al coefficients a, t, c, and g. In Kotlar and Lavner’s work
(29), the complex coefficients of the four spectrums were
also transformed in the same way to form the complemen-
tary measure. Therefore, the practical OSCM (or SRM)
measure for discriminating the coding (in both reading dir-
ections) and non-coding sequences is the greater one
between the original measure and its complementary
measure. We calculated the OSCM and the SRM of each
entire sequence in the two data sets and obtained the dis-
tributions of the measures’ values. The sample means and
the sample standard deviations are also listed in Table 2.
The t-tests obtained P-values at 6.18� 10�178 (OSCM) and

Figure 10. The TP walk trace of the complete H. sapiens (Human) mitochondrial DNA sequence in the complex plane with coding regions marked
in different colors. The top-right is the plot of the real part (red) and imaginary part (blue) against the position value t and the dark areas stand for
the coding regions.

Figure 11. Plot of the time cost against the sequence’s length N. The
horizontal axis stands for the sequence’s length and the vertical axis
stands for the time cost in millisecond.

e3 Nucleic Acids Research, 2011, Vol. 39, No. 1 PAGE 8 OF 14



2.00�10�201 (SRM) for the difference between the distri-
butions of the positive and negative sets. Although they
also show extreme high statistical significance of the differ-
ence, the P-values are higher and the t-values are much less
than the corresponding values obtained by using the RR
measure. It reveals that more obvious difference is obtained
between the two data sets by using the SASR than using the
OCSM and the SRM.

From another point of view, we investigated a classifi-
cation of the sequences using a RR threshold, in which a
sequence is classified to coding if its RR value is beyond
the threshold x and non-coding otherwise. The sensitivity
(Sn=number of correctly classified coding sequences/
number of coding sequences) and the specificity (Sp=
number of correctly classified non-coding sequences/
number of non-coding sequences) (6,10,33) of this clas-
sification can be easily derived from the CDF of the two
RR distributions mentioned above. That is Sn(x)=1 –
Fp(x) and Sp(x)=Fn(x), where Fp(x) and Fn(x) are the
CDF of the RR distributions in the coding set and the
non-coding set, respectively. The sensitivity and specificity
are plotted in Figure 13a. It shows that, both the sensitiv-
ity and specificity can reach �90.5% at the RR threshold
of �0.05, over all the samples. Meanwhile, the OSCM and

the SRM were also used, instead of the RR measure, for
the same classification. The sensitivity and specificity are
also derived from the CDF of corresponding distributions.
The averages of Sn and Sp by using these two measures
are plotted in Figure 13b, as well as the corresponding
value obtained by using the RR measure. It shows that,
the peaks can reach only 83.5% and 85% by using the
OSCM and the SRM, respectively, which show less
accuracy, compared with using the RR measure.
We catalogued the sequences by their length, and fixed

the RR threshold at 0.05. It is found that the sensitivity in
recognizing the long coding sequences is higher than in
recognizing the short ones (Table 3), and the specificity
shows a similar change over catalogs, except for a signifi-
cant drop at the longest catalog, i.e. > 3300 bp. However,
when the threshold is raised to 0.075, the coding regions in
this catalog can be well discriminated with the Sn/Sp of
92.8/98.7%. It shows that the walk patterns of the very
long (>3300 bp) coding and non-coding sequences still
differ enough for the discrimination, and the low specifi-
city when using the threshold of 0.05 may be caused by
other periodicity patterns (not related to genetic coding).
Beside, the precision (Pr=number of correctly classified
coding sequences/number of classified coding sequences)

Figure 12. The RR distributions in the coding set (black) and the non-coding set (gray). (a) The CDF. (b) The PDF.

Table 2. Statistics of measures for the two DNA sequences data sets

Size RR OSCM SRM

m d m d m d

Coding set (positive) 4144 0.10255 0.04444 0.00150 0.00099 0.04646 0.03289
Non-coding set (negative) 5594 0.02103 0.02401 0.00053 0.00221 0.01493 0.06558
Two-sample t-test

t-value 107.069 29.132 31.075
Degree of freedom 5924 8685 8207
P-value 0 6.18� 10�178 2.00� 10�201
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(41) is also calculated. This value reflects the reliability of
the classified coding sequences, which is impacted from
the capability of the classification method as well as the
coding/non-coding proportion of the data set. Table 3
shows that the precision is low in classifying sequences
<600 bp, compared with the high value in the long
length catalogs, although the very biased coding/
non-coding proportion of the data set should also be
noticed in the shortest and longest catalogs. In general,
this test reveals that the TP walk is more capable in
discriminating longer regions than the shorter ones,
despite in the view of sensitivity, specificity or precision.
This result is reasonable, because this approach is essen-
tially to visualize the intensity of local TP and it requires a
sufficient length to show such intensity, in statistics.
The discussions presented above indicate that TP walk’s

patterns of the coding and non-coding regions are

different to a large extent for roughly distinguishing the
coding regions manually or computationally.

DISCUSSION

There have been many studies visualizing various
properties hidden in the DNA sequence, such as GC-AT
walk (42), Z-curve representation (43) and Spider repre-
sentation (44). Compared with these, the SASR’s output,
namely the TP walk, shows a better visual effect specific-
ally for the TP property, which is strongly related to
the protein coding. Therefore, the coding regions’ loca-
tions can be revealed directly from the TP walk trace
(Figures 3 and 7–10). Meanwhile, according to Frenkel
and Korotkov (15), most of the current Fourier
transform-based methods do not allow revealing the

Figure 13. The accuracy in classifying sequences. (a) The sensitivity (black) and specificity (gray) in the classification by using the RR measure. (b)
The averages of the sensitivity and specificity in the classification by using the OSCM (red), the SRM (green) and the RR measure (blue).

Table 3. The sensitivity (Sn), specificity (Sp) and precision (Pr) in recognizing coding sequences with different lengths using the fixed RR

threshold 0.05

Length I II (Sn) (%) III IV V (Sp) (%) VI Pr (%)

1–300 89 66 (74.2) 23 2176 1813 (83.3) 363 15.4
301–600 463 364 (78.6) 99 1940 1602 (92.6) 338 51.8
601–900 612 524 (85.6) 88 710 694 (97.7) 16 97.0
901–1200 656 581 (88.6) 75 295 293 (99.3) 2 99.7
1201–1500 552 513 (92.9) 39 156 156 (100) 0 100
1501–1800 493 472 (95.7) 21 98 96 (98.0) 2 99.6
1801–2100 340 324 (95.3) 16 59 57 (96.6) 2 99.4
2101–2400 232 227 (97.8) 5 40 40 (100) 0 100
2401–2700 190 183 (96.3) 7 29 29 (100) 0 100
2701–3000 122 121 (99.2) 1 16 16 (100) 0 100
3001–3300 103 102 (99.0) 1 18 18 (100) 0 100
3301–1 292 291 (99.5) 1 57 33 (57.9) 24 92.4
*3301–1 292 271 (92.8) 21 57 56 (98.7) 1 99.6

I, Number of the coding sequences; II, number of the coding sequences classified as coding sequences; III, number of the coding sequences classified
as non-coding sequences; IV, number of the non-coding sequences; V, number of the non-coding sequences classified as non-coding sequences; VI,
number of the non-coding sequences classified as coding sequences. In the row with ‘asterisk’, threshold 0.075 is used.
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frame shift between coding regions caused by insertions
and deletions. In contrast, the SASR’s output reveals such
frame shift by the special corner’s shape (Figures 7–10).

As mentioned in the ‘Introduction’ section, most of the
currently used methods, with outstanding performance in
predicting coding regions, persistently depend on the
preceding training process. They require a set of sufficient
and suitable training data to obtain their high accuracies,
otherwise, the methods may fail. Compared with them, the
SASR does not require any extra information for training,
since the vectors are rotated automatically with an
auto-maintained TPM and the special selection process.
Therefore, this approach is called ‘self adaptive’ and it
facilitates the applications of the ‘TP profile matching’
on unknown organisms, which cannot provide sufficient
known genes for the training. Moreover, as mentioned in
the part of the capability evaluations, the OSCM and the
SRM require another complementary predictor to detect
the coding regions in the reverse reading direction (27,29).
It is because the reverse coding regions contain the ‘reverse
complementary’ TP profile. Using a single predictor may
miss such TP property, if the trained profile is obtained
from the forward reading genes. However, in the SASR,
since the TPM is not obtained from any known genes, but
automatically maintained, the reverse coding regions can
be also visualized in a same TP walk with the forward
regions (see the 12th region in Figure 10).

As mentioned in the ‘Introduction’ section, most of the
‘measure-based’ methods have limitations caused by the
fixed analysis scale. Compared with the ‘measure-based’,
the visualization is another way to analyze the TP
property, providing opportunities to analyze sequences
in various scales. The prediction of the coding regions
can be obtained manually, taking advantages of human’s
‘auto-scale analysis ability’ or computationally, with some
well developed time series theory or image processing
methods.

CONCLUSION

This work proposes a new approach, named SASR,
providing a visualized presentation of unannotated
protein-coding regions in DNA sequences. This
approach is based on the TP property, and using the
Fourier transform. The graphic output (the TP walk)
visually reveals the locations of the coding regions and
the frame shifts between them: Arcs indicate the coding
regions, stable points indicate the non-coding regions and
the corners’ shapes reveal the frame shifts. Based on these
visualized patterns, some computational methods can be
further developed for various gene analysis purposes. In
this work, we develop a preliminary TP score (the RR
measure) based on the SASR, suitable in fast discrimin-
ation between relatively long coding and non-coding
genomic sequences. Although our application on previ-
ously annotated genomic sequences shows clear potential
of RR in the classification, further investigations are
required in order to characterize the extent at which it
can be applied in classical whole genome ab initio gene
prediction analyses, concerning problems such as the
choice of a proper threshold value.

In general, the SASR has some significant advantages
including: (i) The SASR does not require any preceding
training process, so it can work before any extra informa-
tion is available, especially helpful when dealing with
new sequences from unknown organisms; (ii) Without a
fixed analysis scale, the visualization output provides
opportunities to analyze sequences in various scales and
take advantages of human’s ‘auto-scale analysis ability’;
(iii) The SASR can be easily implemented with the compu-
tational complexity O(N). Hence, the SASR could be an
efficient tool in investigation of the local TP property of
genomic sequences, and further help in the ‘early stage’
gene prediction for new species having no annotated rela-
tives. It is also helpful in the refinement of existing
protein-coding regions annotation, because of its ability
to detect frame shifts by mean of a visual inspection of
the graphic output.
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APPENDIX 1

Consider the DNA sequence X with a TPM={MA(X),
MT(X), MC(X), MG(X)}

T. For each step t, the increment
in equation 3 is:

st
LðstÞ

¼
Mxt ðPXðtÞÞ

LðMxtðPXðtÞÞÞ
�

Mxt ðXÞ << t

LðMxt ðXÞÞ

Here, the ‘approximation &’ is because, in a single
coding or non-coding DNA sequence, most of the
posterior subsequences share the same entries’ proportions
of TPM only with a shift caused by the position value t.
Meanwhile, according to Frenkel and Korotkov (15), a
certain base � appears at position j in the period with
the probability:

Prfxt ¼ � and t mod 3 ¼ jg ¼
m�j

N

Hence, for each step t, the increment of the TP walk is
expected to be:

E
st

LðstÞ

� �
� E

Mxt ðXÞ << t

LðMxt ðXÞÞ

� �

¼
X

�¼A,T,C,G

X3
j¼1

m�j

N
�
M�ðXÞ << j

LðM�ðXÞÞ

¼
X

�¼A,T,C,G

m�1 � fm�2,m�3,m�1g

+m�2 � fm�3,m�1,m�2g

+m�3 � fm�1,m�2,m�3g

8<
:

9=
;

N � LðM�ðXÞÞ

¼
X

�¼A,T,C,G

m�1m�2+m�2m�3

+m�3m�1,m�1m�2+m�2m�3

+m�3m�1,m
2
�1+m2

�2+m2
�3

8><
>:

9>=
>;

N � LðM�ðXÞÞ

ðA:1Þ
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Kotlar and Lavner’s work (29) shows that the entries in
the TP vectors are biased in the single coding sequence,
and uniformly random in the non-coding sequence.
That is:

The single coding sequence: m�1 6¼ m�2 6¼ m�3

The non-coding sequence: m�1 � m�2 � m�3

Then we have:

The single coding sequence: m2
�1+m2

�2+m2
�3

> m�1m�2+m�2m�3+m�3m�1

The non-coding sequence: m2
�1+m2

�2+m2
�3

� m�1m�2+m�2m�3+m�3m�1

It shows that, in Equation A.1, for the single coding
sequence, the third element of the expected increment
dominates over the other two. According to equation 1,
it causes the TP walk moving rightward in the complex
plane. On the other hand, since the three vector’s elements
are balanced for the non-coding sequence, the walk
appears random around the zero point.

APPENDIX 2

First, we consider the walk in I, which is influenced by the
posterior part C1. Suppose that a base � appears at
position t in the I part (Figure 5). Thus we have:

st ¼M�ðPI�C1
ðtÞÞ ¼M�ðPIðtÞÞ+M�ðC1Þ >> ðNI � tÞ

ðA:2Þ

Here NI means the length of the non-coding region I.
According to the discussion in Appendix 1, the first term
in the right hand side M�(PI(t)) is a complex random
variable with the expected value of 0, since I is without
TP property, and the three elements in this vector are
balanced. Meanwhile M�(C1) is a non-zero constant
vector, since C1 is a coding region with TP property.
However, because I is non-coding, the position where
base � appears is uniformly random (29). It means that
t is uniformly random, and so is NI � t. Therefore, the
second term M�(C1) >> (NI � t) should be also random
with the expected value of 0. So, in view of the total effect,
the walk in this part should be random around a relatively
stable point.

For the TP walk in C0 part, we also suppose that a base
� appears at position t in C0 part (Figure 5). Thus we
have:

st ¼M�ðPC0�I�C1
ðtÞÞ

¼M�ðPC0
ðtÞÞ+M�ðIÞ >> ðNC0

� tÞ+M�ðC1Þ

>> ðNI+NC0
� tÞ

¼M�ðPC0
ðtÞÞ+M�ðIÞ << t+ðM�ðC1Þ << tÞ

>> NI ðNC0
mod 3 ¼ 0Þ

ðA:3Þ

Obviously, the first term in equation A.3 just indicates
the original behavior of the TP walk in C0 without the
influence from I and C1, and it is expected to be with

the positive real direction as mentioned before. The
second term is nearly 0, since there is no dominant
element in M�(I).
Now we focus on the third term in equation A.3. The

difference between the coding regions’ reading directions
reveals a frame shift caused by an inversion. There are two
reading directions, i.e. the forward and reverse directions
(43). There is no harm to assume that C1 is in the forward
direction, because if not, the derivation below is similar. It
is noticed that, according to Kotlar and Lavner’s work
(29), for a certain organism, base � has its preference
position r� (a real number in (0, 3] as an expected value)
in the period. It causes M�(C1) to be with the expected
phase angle of �2�r�/3 in the complex plane. Then the
behavior of the TP walk in C0 is discussed in two cases as
follows.
If C0 is also in the forward direction, the preference

position of � in C0 is also r�. Since t is just a position
that � appears at, in view of the total effect, M�(C1) << t
likely causes a same effect as M�(C1) << r� does. It
means a 2�r�/3 counter clockwise rotation on M�(C1),
which is with the expected phase angle of �2�r�/3, and
the production is with the expected phase angle of 0. In
other words, M�(C1) << t is expected to be a positive real
number. Then the direction of the third term only depends
on the length of I, i.e. NI. The frame shift between the two
coding regions (without inversion) is �=NI mod 3. It is
easy to find that: if �=0, the walk in C0 will still be with
the positive real direction, which is the same direction as in
C1. Otherwise, there will be a corner between the two
coding regions, and the walk trace in C0 will be an arc
since the first term in equation A.3, M�(PC0(t)), becomes
weaker and weaker with the growth of t, until the third
term totally dominates in the st value at the end of C0. At
the end of C0, the walk direction should only depend on
the value of �. Accordingly, there is a strong relationship
between � and the corner’s shape, which is called here the
‘corner rule’ (Figure 6). When the two neighboring coding
regions (C0 and C1) are in a same reading direction, the
change of the walk direction on the corner depends on �:

�=0: The direction keeps unchanged (go straight)
�=1: The direction rotates 2�/3 counterclockwise
(turn left)

�=2: The direction rotates 2�/3 clockwise (turn
right)

The corner rule satisfies only if the two coding regions
are in a same reading direction. If C0 is in the reverse
reading direction (different from C1), the triplets in C0

are read from the complementary strand in the reverse
direction (43). So the preference position of � in C0

turns to be 4 � r�0 (as the mirror image of r�0 with the
symmetry centre 2). Here �0 denotes the complementary
base of �, i.e. A0=T, T0=A, G0=C and C0=G. Then
in view of the total effect, M�(C1) << t is as the same as
M�(C1) << (4 � r�0)=M�(C1) << (1 � r�0). It means a
2�(1 � r�0)/3 counterclockwise rotation on M�(C1),
and the production is with the expected phase angle of
2�(1 � r� � r�0)/3. In view of the total effect, the third
term (M�(C1)<< t)>>NI has an expected direction.
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It reveals that the walk in C0 part has its trend, and the
walk trace also follows an arc. But the expected direction
depends on some statistics of the organism besides a
simple � value, including the proportions and the
preference positions of the bases.

APPENDIX 3

Number the coding regions from the 50-end to the 30-end
as C0, C1, . . . ,CK�1,CK. Consider the corner between two
neighbouring coding regions Ck�1 and Ck, which are both
in the forward direction (the situation is similar if they are
both in the reverse direction). Suppose that a base �
appears at position t� in Ck-1 and t+ in Ck, and these
two positions are closed to the corner (t�and t+ are local
index numbers for Ck�1 and Ck, namely t� is nearly the
length of Ck�1 and t+ is close to 0). Then we calculate the
expected walk directions at these two positions.
Ignore the influence from the inner I parts since it is

nearly 0 as discussed before, and also ignore the very
short posterior subsequence at t� in Ck�1 since position
t� is close to the corner (the end of Ck�1). Then we have:

st� �
XK
i¼k

ðM�ðCiÞ << t�Þ >> �ðCk�1,CiÞ

�
XK
i¼k

ðM�ðCiÞ << r�Þ >> �ðCk�1,CiÞ

ðr�is the preference position of �Þ

¼
XK
i¼k

ðM�ðCiÞ << r�Þ >> �ðCk,CiÞ

" #
>> �ðCk�1,CkÞ

st+ �M�ðPCk
ðt+ÞÞ+

XK
i¼k+1

ðM�ðCiÞ << t+Þ >> �ðCk,CiÞ

�M�ðPCk
ðt+ÞÞ+

XK
i¼k+1

ðM�ðCiÞ << r�Þ >> �ðCk,CiÞ

Since t+is close to the corner (the start of Ck), posterior
subsequence at t+in Ck is nearly the entire Ck with a shift.
That is:

M�ðPCk
ðt+ÞÞ �M�ðCkÞ << t+�M�ðCkÞ << r�

Accordingly,

st+ �M^ðCkÞ � r^+
XK
i¼k+1

ðM^ðCiÞ � r^Þ 	 �ðCk,CiÞ

¼
XK
i¼k

ðM^ðCiÞ � r^Þ 	 �ðCk,CiÞ

[ st� ¼ st+ 	 �ðCk�1,CkÞ

It reveals that the walk direction rotates on the corner
depending on �(Ck�1, Ck).
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