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Abstract The molecular mechanisms by which environmental light conditions affect cerebellar

development are incompletely understood. We showed that circadian disruption by light-at-night

induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in

chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life

and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The

loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate

cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional

repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell

death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in

chicks.

DOI: https://doi.org/10.7554/eLife.45306.001

Introduction
Environmental stimuli (e.g., light–dark cycle, temperature, or nutrition) influence the development of

plants, animals, and humans. Especially, the light–dark cycle strongly affects development. Several

studies have reported that circadian disruption by light-at-night affects weight gain in vertebrates

during early neonatal or posthatch life (Brandon et al., 2002; Mann et al., 1986; Rozenboim et al.,

2013; Takahashi et al., 2016; Yang et al., 2015). In addition, previous studies have demonstrated

that a light–dark cycle promotes better brain development than does constant light or constant

darkness (Bakkum et al., 1991; Brooks et al., 2011; Dulcis and Spitzer, 2008; Li et al., 2012;

Ohta et al., 2006). However, little is known about the molecular mechanisms that control how envi-

ronmental light conditions affect brain development.
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The neuroendocrine system has a critical role in brain development in vertebrates, and its disrup-

tion induces abnormal development (Gore, 2008; León-Olea et al., 2014; Walker and Gore, 2017).

In the cerebellum, neuroestrogen promotes Purkinje dendritic growth, spinogenesis, and synapto-

genesis during neonatal life (Haraguchi et al., 2012a; Sakamoto et al., 2003; Sasahara et al.,

2007). The pituitary adenylate cyclase-activating polypeptide (PACAP) protects cerebellar granule

cells from apoptosis through the inhibition of caspase-3 activity during development (Falluel-

Morel et al., 2005; Vaudry et al., 2003). Thyroid hormones regulate differentiation of neural cells,

synaptogenesis, and myelination (Bernal, 2007; Koibuchi and Chin, 2000; Pasquini et al., 1967).

Therefore, for normal cerebellar development, the developmental stage-specific action of various

hormones is essential.

Multiple studies have suggested a link between light-at-night-induced circadian disruption and

disruption of the neuroendocrine system (Fonken and Nelson, 2014; Fonken et al., 2010). In the

brain, disruption of the neuroendocrine system is caused by exposure to light-at-night

(Fonken et al., 2009; Navara and Nelson, 2007; Reppert and Weaver, 2002). Thus, previous stud-

ies have suggested that exposure to inappropriate lighting during early life disrupts hormone syn-

thesis and causes abnormal development of the brain during early life. However, the molecular

mechanisms that modulate the expression of hormones depending on light conditions during early

life are still incompletely understood.

Recently, we have demonstrated that the pineal gland, a photosensitive organ, actively produces

a variety of steroids in birds (Haraguchi et al., 2012a; Hatori et al., 2011). Importantly, pineal allo-

pregnanolone (ALLO), a major pineal steroid, has been shown to prevent the death of cerebellar

Purkinje cells by suppressing apoptosis in chicks during development (Haraguchi et al., 2012a).

Thus, we hypothesized that pineal ALLO synthesis depends on environmental light conditions to

mediate cerebellar development during early posthatch life.

To test our hypothesis, we investigated whether light stimuli are involved in the development of

the cerebellum via pineal ALLO activity using chicks, an excellent model for studying the effects of

light stimuli because chicks show a marked response to changing light conditions.

Results

Light-at-night-induced disruption of diurnal variation in pineal ALLO
synthesis, followed by Purkinje cell death during early posthatch life
To investigate whether light conditions are involved in pineal ALLO synthesis in newly hatched male

chicks, the chicks were incubated under either a 12 hr light–12 hr dark (LD) cycle, constant light (LL),

or a 12 hr light–12 hr dark cycle followed by exposure to light for 1 hr from zeitgeber time (ZT) 14

(light-at-night) for 1 week. The mRNA expression of 5a-reductase (srd5a), a steroidogenic enzyme

catalyzing the formation of ALLO, showed a marked diurnal change and was high during dark times

(ZT16) in the pineal glands of LD chicks (Figure 1a). In contrast to the LD chicks, the LL chicks

showed consistently low srd5a mRNA levels in the pineal glands (Figure 1b). The elevation of srd5a

mRNA during ZT16 in LD chicks was suppressed by light during ZT16, 1 hr after the light was put

out in light-at-night chicks (Figure 1c). In addition, the ALLO concentration and synthesis were

higher during ZT16 in the pineal glands of LD chicks than during ZT16 in the pineal glands of LL and

light-at-night chicks (Figure 1d,e).

To investigate whether the disruption of ALLO synthesis by light-at-night is involved in Purkinje

cell survival in chicks during early life, male chicks were incubated under either LD, LL, or light-at-

night cycles for 1 week, and all groups were housed under the LD cycle for 2, or 9 weeks

(Figure 2a). Cerebellar anterior lobe is the region that is the most vulnerable to the reduction of

ALLO in the cerebellum (Haraguchi et al., 2012a). Compared with LD conditions, LL (lobule IV,

p=0.0027; lobule V, p=0.0304) and light-at-night (lobule III, p=0.0129; lobule IV, p=0.0011; lobule V,

p=0.0136) conditions increased the number of Purkinje cells that expressed active caspase-3 in

lobules III-V of cerebellar vermis on posthatch day 7 (P7) male chicks (Figure 2c,d and Figure 2—fig-

ure supplement 3). Active caspase-3 positive cells were also increased in lobule IV of female chicks

by light-at-night (Figure 2—figure supplement 1a). After 2 weeks of incubation of all groups under

an LD cycle, the effects of light conditions during early life on Purkinje cell number were investi-

gated. Compared with LD conditions, LL (lobule III, p=0.0001; lobule IV, p=0.0005) and light-at-night
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(lobule III, p<0.0001; lobule IV, p<0.0001; lobule V, p=0.0205) conditions decreased the number of

Purkinje cells in lobules III-V of cerebellar vermis at P21 chicks (Figure 2e,f and Figure 2—figure

supplement 3). Purkinje cell numbers were also decreased in lobule IV of female chicks by light-at-

night (Figure 2—figure supplement 1b). In contrast to the number of Purkinje cells, there was no

significant difference in the thickness of the molecular layer of Purkinje cells in lobule IV among LD,

LL, or light-at-night chicks (Figure 2—figure supplement 2). In addition, we investigate whether the

decrease in Purkinje cell numbers by light-at-night during the posthatch period persists into adult-

hood. In adulthood, Purkinje cell numbers were also decreased in lobules III-V of cerebellar vermis

by light-at-night during the P1–P7 period (Figure 2g and Figure 2—figure supplement 3). These

results suggest that light-at-night conditions induce disruption of diurnal variation in pineal ALLO

and lead to Purkinje cell death in the cerebellum.

Pineal ALLO prevented Purkinje cell death induced by light-at-night
during early life
To investigate whether pineal ALLO prevents Purkinje cell death induced by light-at-night during

early life, male chicks were incubated under light-at-night cycle and injected with either ALLO or

vehicle-only on a daily basis for 1 week. The chicks were then housed under an LD cycle for 2 weeks

(Figure 3a). Compared with light-at-night chicks, daily injection of ALLO in light-at-night chicks from

P1 to P7 decreased active caspase-3 expression in lobule IV at P7 and improved Purkinje cell survival

in lobule IV at P21 (Figure 3b,c). These results suggest that pineal ALLO suppresses the apoptosis

of Purkinje cells during early life.

Pineal ALLO prevents apoptosis of Purkinje cells through the mPRa
mechanism
To elucidate the mechanism of pineal ALLO action on Purkinje cell survival, we investigated the

receptor associated with ALLO action. ALLO acts as an agonist of the g-aminobutyric acid type A

(GABAA) receptor and may act as an agonist of the membrane progesterone receptors a (mPRa),

mPRb, and mPRg , and the pregnane X receptor (PXR) (Belelli and Lambert, 2005; Frye et al., 2011;

Langmade et al., 2006; Pang et al., 2013; Schumacher et al., 2014). To investigate the expression

of the GABAA receptor, mPRs, and PXR in chick cerebella, RT-PCR analyses were performed. The

RT-PCR analyses demonstrated the expression of the a1-subunit of the GABAA receptor, mPRa,

mPRb, and mPRg but did not detect the expression of PXR in chick cerebella (Figure 4a). Further-

more, to investigate the identified putative receptors that mediate the neuroprotective action of

pineal ALLO, we delivered either mPR siRNA or isoallopregnanolone (isoALLO), an antagonist of

ALLO, into lobule IV of the cerebellum of newly hatched chicks. Silencing of mPRa increased the

Figure 1. Light-at-night-induced disruption of diurnal variation of pineal ALLO synthesis during early life. Diurnal changes in srd5a mRNA expression in

the pineal gland under LD (a), LL (b), or light-at-night (c) conditions at P7 chicks (n = 10). ALLO synthesis (d) and concentration (e) in the pineal gland of

ZT16 at P7 chicks (n = 10). LAN, light-at-night.

DOI: https://doi.org/10.7554/eLife.45306.002

The following source data is available for figure 1:

Source data 1. Source data for diurnal changes in srd5a mRNA expression, and ALLO synthesis and concentration in the pineal gland.

DOI: https://doi.org/10.7554/eLife.45306.003
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Figure 2. Light-at-night-induced Purkinje cell death during early life. (a–g) Male chicks were incubated under LD, LL, or light-at-night cycle for 1 week,

and then, all groups were housed under LD cycle for 2 or 9 weeks (a). (b) The lobular structure of the whole cerebellum of chick. Scale bar, 3 mm. (c)

Number of Purkinje cells expressing active caspase-3 in each lobule at P7 (n = 10). (d) Purkinje cells expressing active caspase-3 in lobule IV at P7. (e)

Figure 2 continued on next page
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number of Purkinje cells that expressed active caspase-3 in lobule IV of P7 chicks relative to the num-

ber in the control siRNA (Figure 4b). A daily injection of ALLO did not prevent the activation of cas-

pase-3 in Purkinje cells in mPRa siRNA-transfected chicks (Figure 4b). By contrast, transfection of

siRNAs for mPRb and mPRg into the cerebellum of newly hatched male chicks did not change the

expression of active caspase-3 in Purkinje cells from that of the control siRNA-transfected chicks

(Figure 4c,d). A daily injection of isoALLO did not change the number of Purkinje cells that

expressed active caspase-3 in lobule IV of P7 chicks relative to the number in the control chicks

(Figure 4e). These results suggest that mPRa may function as a receptor for pineal ALLO in the

developing cerebellum.

Immunohistochemical (IHC) analysis using anti-goldfish mPRa antiserum was performed to ana-

lyze the cellular localization of mPRa in the chick cerebellum. To confirm that this antibody recog-

nizes the chicken mPRa protein, we first performed a western blot analysis on the extracts of COS-7

cells transfected with chicken mPRa cDNA. A single immunoreactive band (approximately 42 kDa)

was detected (Figure 4—figure supplement 1). When the cerebellum extracts were analyzed, a sin-

gle band (approximately 42 kDa) was detected at the same position (Figure 4—figure supplement

1). Distinct mPRa immunoreactivity was observed in the Purkinje cells (Figure 4f).

To investigate the binding of radiolabeled ALLO to chicken mPRa, radioreceptor assays were per-

formed. Saturation analysis and Scatchard plots show the presence of a high-affinity (dissociation

constant, 11.8 ± 3.1 nM), limited-capacity (maximal binding capacity, 0.91 ± 0.29 nM), saturable, sin-

gle-binding site for [3H]-ALLO in the membrane fraction of the COS-7 cells transfected with chicken

mPRa cDNA (Figure 4g). Furthermore, to test the binding of ALLO to chick mPRa, we developed

fluorescein-labeled ALLO (Figure 4h). COS-7 cells expressing mPRa were stained with fluorescein-

labeled ALLO. Confocal fluorescence microscopy revealed that fluorescein-labeled ALLO bound to

COS-7 cells expressing mPRa and that an excess of ALLO competed with fluorescein-labeled ALLO

for binding to COS-7 cells expressing mPRa (Figure 4i and Figure 4—figure supplement 2).

Pineal ALLO-induced expression of PACAP, an endogenous
neuroprotective factor, in cerebellar Purkinje cells
ALLO acts as a neuroprotective factor; however, the molecular mechanisms behind this neuroprotec-

tion are currently unknown. To clarify the neuroprotective mechanisms of ALLO in Purkinje cells, we

investigated the effect of ALLO on the expression of neuroprotective and neurotoxic factors (Ber-

nal, 2007; Falluel-Morel et al., 2005; Haraguchi et al., 2012a; Koibuchi and Chin, 2000;

Pasquini et al., 1967; Sakamoto et al., 2003; Sasahara et al., 2007; Vaudry et al., 2003) in the

whole cerebellum. Pinealectomy (Px) at P1 decreased the expression of PACAP and brain-derived

neurotrophic factor (BDNF) mRNAs at P7 (Figure 5a). On the other hand, Px did not influence the

expression of neurotrophin-3 (NT-3), cytochrome P450 aromatase (P450arom), 3b-hydroxysteroid

dehydrogenase (3b-HSD), type II deiodinase (Dio2), and insulin-like growth factor I (IGF-1) mRNAs

Figure 2 continued

Number of Purkinje cells in each lobule at P21 (n = 10). (f) Purkinje cells in lobule IV at P21. (g) Number of Purkinje cells in each lobule at P70 (young

adult; n = 10). LAN, light-at-night.

DOI: https://doi.org/10.7554/eLife.45306.004

The following source data and figure supplements are available for figure 2:

Source data 1. Numbers of active caspase-3 positive cells, and Purkinje cells in male.

DOI: https://doi.org/10.7554/eLife.45306.010

Figure supplement 1. Light-at-night-induced Purkinje cell death during early life in female.

DOI: https://doi.org/10.7554/eLife.45306.005

Figure supplement 1—source data 1. Numbers of active caspase-3 positive cells, and Purkinje cells in female.

DOI: https://doi.org/10.7554/eLife.45306.006

Figure supplement 2. Effect of pineal ALLO on the thickness of the molecular layer.

DOI: https://doi.org/10.7554/eLife.45306.007

Figure supplement 2—source data 1. Source data for the thickness of the molecular layer of Purkinje cells.

DOI: https://doi.org/10.7554/eLife.45306.008

Figure supplement 3. Estimation plots of the effects of light-at-night on cerebellar Purkinje cells.

DOI: https://doi.org/10.7554/eLife.45306.009
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(Figure 5a). In addition, a daily injection of ALLO in Px chicks increased the expression of PACAP rel-

ative to that in Px chicks (Figure 5a).

To investigate whether light conditions are also involved in the expression of PACAP during early

life, male chicks were incubated under either LD or light-at-night conditions for 1 week. The expres-

sion of PACAP mRNA showed a marked diurnal change in the cerebellum and was high during dark

times (ZT16 and ZT20) in LD chicks (Figure 5b). The elevation of PACAP mRNA at ZT16 in LD chicks

was suppressed at ZT16 in light-at-night chicks (Figure 5b). These changes were in parallel with

those in srd5a mRNA in the pineal gland (Figure 1a,c). Px increased the number of Purkinje cells

Figure 3. Light-at-night-induced Purkinje cell death was rescued by ALLO injection during early life. (a) Male chicks were incubated under LD or light-

at-night cycle for 1 week, and then, all groups were housed under LD cycle for 2 weeks. Half of the light-at-night chicks were treated with a daily

injection of ALLO from P1 to P7. (b) Number of Purkinje cells expressing active caspase-3 in lobule IV at P7 (n = 10). (c) Number of Purkinje cells in

lobule IV at P21 (n = 10). LAN, light-at-night.

DOI: https://doi.org/10.7554/eLife.45306.011

The following source data is available for figure 3:

Source data 1. Numbers of active caspase-3 positive cells, and Purkinje cells in male.

DOI: https://doi.org/10.7554/eLife.45306.012
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that expressed active caspase-3 in lobule IV of P7 chicks relative to those in the control (Figure 5c).

A daily injection of ALLO or PACAP in Px chicks decreased the number of Purkinje cells expressing

active caspase-3 in lobule IV at P7 (Figure 5c). Px at P1 decreased the number of Purkinje cells in

lobule IV at P21 (Figure 5d). A daily injection of ALLO or PACAP in Px chicks from P1 to P7

improved Purkinje cell survival in lobule IV at P21 (Figure 5d). Clear PACAP and PAC1 immunoreac-

tivities were observed in Purkinje cells (Figure 5e,f). These results suggest that PACAP mediates the

neuroprotective action of pineal ALLO during early life.

The neuroprotective actions of pineal ALLO on Purkinje cells are
restricted during the first week posthatch
The postnatal development of the cerebellar cortex irreversibly leads to the maturation of the cere-

bellum, including the maturation of Purkinje cells. For normal cerebellar development, the develop-

mental stage-specific actions of various hormones in the developing cerebellum are essential. Thus,

to investigate whether the neuroprotective actions of pineal ALLO on Purkinje cells are a stage-spe-

cific role of ALLO during early life, male chicks were housed under LD cycle for 1 week during the

first week posthatch and then incubated under the light-at-night cycle and injected with either ALLO

or a solvent daily for 1 week during the second week posthatch. Thereafter, the chicks were housed

Figure 4. Pineal ALLO prevented Purkinje cell death through mPRa in cerebellar Purkinje cells. (a) Shown are the expressions of the a1-subunit of the

GABAA receptor, mPRa, mPRb, mPRg , and PXR in the cerebellum of P1 chicks (similar results were obtained in repeated experiments using three

different samples). (b–e) Number of Purkinje cells expressing active caspase-3 in lobule IV at P7 by receptor gene silencing as a candidate of the ALLO

receptor in the cerebellar cortex at P1 (n = 10). (f) Immunohistochemistry of mPRa in the cerebellum of P1 chicks (similar results were obtained in

repeated experiments using three different samples). (g) Representative saturation curve and Scatchard plot of specific [3H]-ALLO binding to plasma

membranes of mPRa transfected cells (n = 4). (h) Structure of fluorescein-labeled ALLO. (i) Confocal images of mPRa-expressing cells stained with

fluorescein-labeled ALLO under permeabilized conditions in the absence (upper panel) or presence (lower panel) of excess competing ALLO (similar

results were obtained in repeated experiments using three different samples). ML, molecular layer; PCL, Purkinje cell layer; GCL, granule cell layer.

DOI: https://doi.org/10.7554/eLife.45306.013

The following source data and figure supplements are available for figure 4:

Source data 1. Numbers of active caspase-3 positive cells in male.

DOI: https://doi.org/10.7554/eLife.45306.016

Figure supplement 1. Western blot analysis with the anti-goldfish mPRa antibody.

DOI: https://doi.org/10.7554/eLife.45306.014

Figure supplement 2. Synthetic scheme for the synthesis of the Fluorescein-labeled ALLO.

DOI: https://doi.org/10.7554/eLife.45306.015
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under LD cycle for 1 week during the third week posthatch (Figure 6a). Light-at-night chicks showed

a decreased Purkinje cell number at P21 relative to that in the control, but daily injections of ALLO

in light-at-night chicks from P8 to P14 did not rescue Purkinje cells from death in lobule IV at P21

and, furthermore, did not suppress the expression of active caspase-3 in lobule IV at P14 (Figure 6b,

c). In summary, the neuroprotective actions of pineal ALLO on Purkinje cells are restricted during the

first week posthatch.

Figure 5. Pineal ALLO-induced expression of PACAP, an endogenous neuroprotective factor, in cerebellar Purkinje cells. (a) Shown are the effects of Px

or Px plus ALLO on the expression of neuroprotective and neurotoxic factors (n = 10). (b) Diurnal changes in PACAP mRNA expression in the

cerebellum under LD or light-at-night conditions in P7 chicks (n = 10). (c) Number of Purkinje cells expressing active caspase-3 in lobule IV at P7

(n = 10). (d) Number of Purkinje cells in lobule IV at P21 (n = 10). Immunohistochemistry of PACAP (e) and PAC1 (f) in the cerebellum of P1 chicks

(similar results were obtained in repeated experiments using three different samples). Calbindin is used as a marker for Purkinje cells. ML, molecular

layer; PCL, Purkinje cell layer; GCL, granule cell layer; LAN, light-at-night.

DOI: https://doi.org/10.7554/eLife.45306.017

The following source data is available for figure 5:

Source data 1. source data for mRNA expressions (a), diurnal changes in PACAP mRNA expression (b), and numbers of Purkinje cells (c and d) in male.

DOI: https://doi.org/10.7554/eLife.45306.018
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The neuroprotective actions of PACAP on Purkinje cells are not
restricted during early life
To investigate whether the neuroprotective actions of PACAP on Purkinje cells are restricted, as

were those of pineal ALLO, during early life, male chicks were incubated under light-at-night cycle

and injected with either PACAP or solvent daily for 1 week. These chicks were then housed under

LD cycle for 2 weeks (Figure 7a). Daily injection of PACAP in light-at-night chicks from P1 to P7

decreased active caspase-3 expression in lobule IV at P7 relative to that in light-at-night chicks and

improved Purkinje cell survival in lobule IV at P21 (Figure 7b,c). Subsequently, male chicks were

housed under LD cycle for 1 week during the first week posthatch and then incubated under light-

at-night cycle and injected with either PACAP or solvent daily for 1 week during the second week

posthatch. Subsequently, these chicks were housed under LD cycle for 1 week during the third week

posthatch (Figure 7d). Compared with the control, light-at-night chicks were found to have a

decreased Purkinje cell number at P21, and daily injection of PACAP in light-at-night chicks from P8

to P14 suppressed the expression of active caspase-3 expression in lobule IV at P14 and rescued

Purkinje cells in lobule IV at P21 (Figure 7e,f). In summary, the neuroprotective actions of PACAP on

Purkinje cells were not restricted during the first week posthatch.

Pineal ALLO did not induce the expression of PACAP in the cerebellum
during the second week posthatch
In terms of the difference between the neuroprotective actions of pineal ALLO and PACAP (Fig-

ures 6 and 7), we hypothesized that pineal ALLO did not induce the expression of PACAP in the cer-

ebellum during the second week posthatch. To test this hypothesis, ALLO was injected daily from P8

to P14 in Px at P8 chicks. Px at P8 decreased PACAP expression in the cerebellum at P14 relative to

that in the control (Figure 8a). A daily injection of ALLO in Px at P8 chicks from P8 to P14 did not

induce the expression of PACAP mRNA (Figure 8a). In addition, we demonstrated that PACAP

expression decreased gradually according to the maturation of the cerebellum during early life

(Figure 8b).

Figure 6. ALLO did not rescue Purkinje cells from death during the second week posthatch. Male chicks were housed under LD cycle for 1 week during

the first week posthatch. They were then incubated under light-at-night cycle and injected with ALLO or a solvent daily for 1 week during the second

week posthatch. Finally, the chicks were housed under LD cycle for a week during the third week posthatch (a). (b) Number of Purkinje cells expressing

active caspase-3 in lobule IV at P14 (n = 10). (c) Number of Purkinje cells in lobule IV at P21 (n = 10). LAN, light-at-night.

DOI: https://doi.org/10.7554/eLife.45306.019

The following source data is available for figure 6:

Source data 1. Numbers of active caspase-3 positive cells, and Purkinje cells in male.

DOI: https://doi.org/10.7554/eLife.45306.020
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H3K9me3 levels at the Adcyap1 gene promoter increased in Purkinje
cells according to the maturation of the cerebellum
Histone modification is a major form of epigenetic gene regulation that is critical in many neuronal

processes (Kundakovic and Champagne, 2015; Montgomery et al., 2009; Toyoda et al., 2014).

Trimethylation of lysine 9 or 27 on histone H3 and lysine 20 on histone H4 (H3K9me3, H3K27me3,

and H4K20me3) is associated with transcriptional repression.

Thus, to reveal the molecular mechanisms underlying the difference in actions of pineal ALLO on

the expression of PACAP between the first and second weeks after hatch, we investigated histone

Figure 7. Neuroprotective effects of PACAP were not restricted during early life. (a) Male chicks were incubated under LD or light-at-night cycle for 1

week during the first week posthatch and injected either with PACAP or solvent daily, and then, all groups were housed under LD cycle for 2 weeks

during the second and third weeks posthatch. (b) Number of Purkinje cells expressing active caspase-3 in lobule IV at P7 (n = 10). (c) Number of

Purkinje cells in lobule IV at P21 (n = 10). Male chicks were housed under LD cycle for 1 week during the first week posthatch and then incubated under

light-at-night cycle and injected PACAP or solvent daily for 1 week during the second week posthatch. Finally, chicks were housed under LD cycle for 1

week during the third week posthatch (d). (e) Number of Purkinje cells expressing active caspase-3 in lobule IV at P14 (n = 10). (f) Number of Purkinje

cells in lobule IV at P21 (n = 10). LAN, light-at-night.

DOI: https://doi.org/10.7554/eLife.45306.021

The following source data is available for figure 7:

Source data 1. Numbers of active caspase-3 positive cells, and Purkinje cells in male.

DOI: https://doi.org/10.7554/eLife.45306.022
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modifications associated with the transcriptional repression of PACAP. Purkinje cell layer sections

were microdissected, and the samples were analyzed by chromatin immunoprecipitation and quanti-

tative PCR (ChIP-qPCR). The association levels of H3K9me3 at the Adcyap1 gene promoter were

higher at P2 than those at P8 in the Purkinje cell layer of the cerebellum (Figure 9a), whereas

H3K27me3 and H4K20me3 levels did not change between the first and second weeks posthatch

(Figure 9a). These results suggested that H3K9me3 may have an important role in Adcyap1 gene

expression, so we measured the levels of H3K9me3 in Purkinje cell nuclei. H3K9me3 immunoreactiv-

ity in the nuclei of Purkinje cells was measured using ImageJ. The intensity was found to be high at

P2 relative to that at P8 in Purkinje cells (Figure 9b,c).

Light-at-night and Px increased H3K9me3 levels at the Adcyap1 gene
promoter
It is known that environmental factors affect the developing brain through epigenetic mechanisms.

Various environmental stimuli cause changes in the profile of histone modification (Roth and Sweatt,

2011).

Thus, we investigated the effects of light-at-night or ALLO on histone modification in the

Adcyap1 gene promoter. Male chicks were incubated under LD or light-at-night cycle during the first

week posthatch, and the resulting histone modifications on the Adcyap1 gene promoter were inves-

tigated. light-at-night was found to increase the levels of H3K9me3 in the Adcyap1 gene promoter

in the Purkinje cell layer of the cerebellum (Figure 10a). In addition, a daily injection of ALLO in

Figure 8. Pineal ALLO did not induce the expression of PACAP in the cerebellum during the second week

posthatch. (a) The effects of Px or Px plus ALLO on the expression of PACAP in the cerebellum during the second

week posthatch (n = 10). (b) Changes in the expression of PACAP during early life.

DOI: https://doi.org/10.7554/eLife.45306.023

The following source data is available for figure 8:

Source data 1. Source data for mRNA expressions.

DOI: https://doi.org/10.7554/eLife.45306.024
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light-at-night chicks from P1 to P7 suppressed methylation of H3K9me3 in the Adcyap1 gene pro-

moter in the Purkinje cell layer of lobule IV at P7 relative to that in light-at-night chicks (Figure 10a).

Px at P1 increased the levels of H3K9me3 at the Adcyap1 gene promoter in the Purkinje cell layer

of lobule IV at P7 (Figure 10b). A daily injection of ALLO in Px chicks from P1 to P7 suppressed

methylation of H3K9me3 at the Adcyap1 gene promoter in the Purkinje cell layer of lobule IV at P7

relative to that in Px chicks (Figure 10b).

Discussion
Circadian rhythms are present in almost all plants and animals. However, modern life induces chronic

circadian disruption through artificial light and such disruption is associated with a decline in mental

and physical health (Kantermann and Roenneberg, 2009; Wu et al., 2011; Smarr et al., 2017). The

most potent cue in circadian rhythm disruption is inappropriately timed bright light (e.g., light-at-

night). To understand the influences of light-at-night, as a model of modern life induced chronic cir-

cadian disruption, on mental and physical health in humans, many studies have been conducted

using laboratory mice. However, it is important to bear in mind that laboratory mice are mainly noc-

turnal animals, while humans are diurnal. Thus, in this study we used birds to provide a diurnal animal

model to understand the influence of light-at-night on the development of the cerebellum in mam-

mals including humans.

Autism spectrum disorder is a complex neurodevelopmental disorder. Autism spectrum disorder

is characterized by early-onset difficulties in social interaction, repetitive behavior, and verbal and

non-verbal communication (Lai et al., 2014). A number of neurobiological hypotheses have been

put forward to account for autism behaviors that implicate neural and network abnormalities in the

cerebellum that include the cerebellar vermis area (Piochon et al., 2014). Therefore, chronic circa-

dian disruption by artificial light may involve autism spectrum disorder by decreasing the number of

Purkinje cells in the vermis area by light-at-night. Further studies are needed to investigate the con-

nection between a decrease in Purkinje cells caused by light-at-night and autism spectrum disorder.

Light-at-night-induced circadian disruption alters the synthesis and secretion of various hormones,

such as melatonin (a pineal hormone) and cortisol (an adrenal steroid hormone), particularly in verte-

brates, including humans (Klein, 2006). These disruptions of the synthesis and release of hormones

by inappropriate timed bright light increase the risk of breast cancer, prostate cancer, obesity, dia-

betes, and depression (Kantermann and Roenneberg, 2009; Shi et al., 2013; Smarr et al., 2017;

Wu et al., 2011). Circadian disruptions by bright light have also been shown to affect the health of

infants (Mann et al., 1986). Inappropriate light conditions reduce weight gain in preterm infants in a

Figure 9. H3K9me3 levels at the Adcyap1 promoter increased in Purkinje cells during development. (a) Changes in the levels of histone modification

between the first and second weeks of posthatch. (b) Immunohistochemistry of H3K9me3 in the cerebellum of P1 chicks. Calbindin is used as a marker

for Purkinje cells. (c) The relative intensity of H3K9me3 in the nucleus of Purkinje cells (n = 10).

DOI: https://doi.org/10.7554/eLife.45306.025

The following source data is available for figure 9:

Source data 1. Source data for the levels of histone modification.

DOI: https://doi.org/10.7554/eLife.45306.026
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newborn nursery via circadian disruption of hormone synthesis (Brandon et al., 2002; Mann et al.,

1986). Bright light can be a stress factor. It has been shown that stress in the early life of rats delays

development and accounts for a number of abnormalities in the brain (Ellenbroek et al., 2005). As

part of the organization process, natural apoptotic cell death occurs in rodents and birds just after

birth and around the second postnatal week (Prakash and Wurst, 2006). In the human brain, the

developmental processes of proliferation and migration are generally finalized after 24 weeks of ges-

tation, but apoptotic cell death, synaptogenesis, and neuronal differentiation take place up until the

three year of life (Huppertz-Kessler et al., 2012). Thus, previous and present studies have both sug-

gested that inappropriate lighting disrupts hormone synthesis and causes abnormal development of

the brain during early life (Figure 11).

We previously reported that the pineal gland is an important steroidogenic organ, and pineal

ALLO may have an important role in the prevention of Purkinje cell death for the normal develop-

ment of the cerebellum (Haraguchi et al., 2012a; Hatori et al., 2011). The pineal gland of verte-

brates responds to light via direct and indirect mechanisms (Klein, 2006; Maronde and Stehle,

2007) and has important roles in the circadian organization of vertebrates. However, the influence of

light-at-night on the production of pineal ALLO has yet to be elucidated. In this study, we demon-

strated that light-at-night-induced circadian disruption abolished the diurnal rhythm of pineal ALLO

synthesis. In addition, the disruption of diurnal variations of pineal ALLO-induced Purkinje cell death

in the developing cerebellum of chicks. These results suggest that the disruption of diurnal variations

of pineal ALLO causes a constant low level of pineal ALLO synthesis, which induces the death of Pur-

kinje cells during development. A number of studies have found that stage-specific actions of various

hormones are essential for normal cerebellar development. For instance, thyroid deficiency during

Figure 10. Light-at-night and Px increased in H3K9me3 levels at the Adcyap1 promoter. (a) The effects of light-at-

night and light-at-night plus ALLO on the level of H3K9me3 at the Adcyap1 gene promoter (n = 10). (b) The

effects of Px and Px plus ALLO on the level of H3K9me3 at the Adcyap1 gene promoter (n = 10). LAN, light-at-

night.

DOI: https://doi.org/10.7554/eLife.45306.027

The following source data is available for figure 10:

Source data 1. source data for H3K9me3 levels at the Adcyap1 promoter.

DOI: https://doi.org/10.7554/eLife.45306.028
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the perinatal periods has been shown to cause significant impairments to the structural development

and organization of the brain (Bernal, 2007; Koibuchi and Chin, 2000; Pasquini et al., 1967).

PACAP has important roles in the regulation of the cell cycle by enhancing cellular survival and by

enhancing or inhibiting cellular proliferation and differentiation in the developing cerebellum (Fall-

uel-Morel et al., 2005; Vaudry et al., 2003). Cytochrome P450 aromatase knock-out (ArKO) mice

exhibited decreased Purkinje dendritic growth, spinogenesis, and synaptogenesis, and these

changes were rescued by injection of estradiol into the cerebellum (Haraguchi et al., 2012a;

Sasahara et al., 2007). Thus, a delicate balance is necessary for the proper development of the

brain. It seems reasonable that the diurnal rhythm of pineal ALLO synthesis and its release under LD

conditions are essential for the normal development of the cerebellum during early life (Figure 11).

In the developing cerebellum, PACAP was expressed not only by Purkinje cells but also by the

cells of the molecular layer. However, mPRa, a receptor for ALLO, was only expressed in Purkinje

cells. This result suggested that pineal ALLO mainly affects the Purkinje cells through mPRa in the

developing cerebellum (Figure 11). PACAP secreted from Purkinje cells affects the PAC1-expressing

Purkinje and granule cells. In Purkinje cells, PACAP mediates the neuroprotective effects of ALLO in

the developing cerebellum of chicks (Figure 11). However, the effect of PACAP on granule cells is

unclear in the developing cerebellum of chicks, although the neuroprotective effects of PACAP on

cerebellar granule cells have been reported in mammals (Vaudry et al., 2000; Vaudry et al., 2003).

Several lines of evidence indicate that ALLO has neuroprotective effects in the developing and

mature brain and in neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and Hunting-

ton’s disease (Griffin et al., 2004; Irwin and Brinton, 2014; Melcangi and Panzica, 2014). Numer-

ous studies have found that ALLO exerts its various physiological functions through the GABAA

receptors in the brain (Belelli and Lambert, 2005; Guennoun et al., 2015); however, the results of

Figure 11. A schematic model of the effect of pineal ALLO on Purkinje cell survival during the first week posthatch under LD or light-at-night

conditions. (Left panel) A schematic model of normal development of the cerebellum under LD during the first week posthatch (that is early posthatch

life-stage). Pineal ALLO-induced the expression of PACAP, a neuroprotective factor, through mPRa mechanism in Purkinje cells. Then, PACAP inhibited

the expression of active caspase-3 that may facilitate the apoptosis of Purkinje cells in the cerebellum. (Right panel) A schematic model of the abnormal

development of the cerebellum under light-at-night conditions during the first week posthatch (that is early posthatch life-stage). Light-at-night

conditions disrupted the diurnal rhythm in pineal ALLO synthesis. Decreased pineal ALLO synthesis induced H3K9me3 histone tail modifications of the

Adcyap1 gene promoter and then decreased the expression of PACAP in Purkinje cells. Following this, increased amounts of caspase-3 facilitated the

apoptosis of Purkinje cells in the cerebellum.

DOI: https://doi.org/10.7554/eLife.45306.029
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the present study show that GABAA receptors did not mediate the neuroprotective effects of ALLO

in developing Purkinje cells in chicks during early life. Other studies have also suggested that GABAA

receptors do not contribute to the neuroprotective effects of ALLO. Recent investigations have sug-

gested that ALLO binds to mPRs (Pang et al., 2013; Schumacher et al., 2014). Thus, we investi-

gated whether mPRs can function as a receptor for ALLO to mediate the neuroprotective action of

ALLO in the cerebellum. The results showed that ALLO had an important role in developing Purkinje

cells through the mPRa mechanism in chicks during early life.

The neuroprotective mechanisms of ALLO are poorly understood, although numerous studies

have found that ALLO prevents apoptotic neuronal cell death in the brain of vertebrates. In contrast

to ALLO, the neuroprotective mechanisms of PACAP are well documented. The neurotrophic effects

of PACAP are mediated through the cAMP/PKA signaling pathway and involve the ERK MAP kinase

(Vaudry et al., 2000). Caspase-3 is also a key enzyme involved in the neuroprotective action of

PACAP (Vaudry et al., 2000). We previously reported that the neuroprotective action of pineal

ALLO was associated with a reduction in caspase-3 activity during the early stage of cerebellar

development (Haraguchi et al., 2012a). In this study, we showed that PACAP expression showed

clear diurnal changes in the developing cerebellum. Previously, PACAP levels in the brain have been

shown to undergo daily variations (Józsa et al., 2001). Here, we showed that Px decreased the

expression of PACAP in the developing cerebellum. In addition, previous studies have also reported

that the expression levels of PACAP in the brain were affected by Px (Somogyvári-Vigh et al.,

2002). These previous findings are in agreement with the present findings indicating that PACAP, a

neuroprotective hormone, mediated the neuroprotective action of ALLO during early life.

Histone modifications store epigenetic information that mainly controls heritable states of gene

expression. Environmental factors affect the developing brain through epigenetic mechanisms

(Bale, 2015). In this study, we demonstrated that light-at-night and pineal ALLO changed the repres-

sive mark (H3K9me3) of the Adcyap1 gene promoter in the developing cerebellum. Our results indi-

cated that inappropriate light conditions induced an abnormal epigenetic status in the developing

cerebellum, which suggests that light conditions and pineal hormones have important roles in brain

development via epigenetic regulation of hormone genes.

In conclusion, our results show that light-at-night-induced circadian disruption led to cerebellar

Purkinje cell death through pineal ALLO-dependent mechanisms during early posthatch life (Fig-

ure 11). Thus, the results suggest that modern nighttime artificial light exposure also affects devel-

opment of the human brain.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Cell line
(Cercopithecus
aethiops)

COS-7 JCRB Cat# JCRB9127
RRID:CVCL_0224

Recombinant
DNA reagent

membrane progesterone
receptor a (mPRa)-Histag

This study Materials and methods
subsection ‘Conformation
of the specificity of
mPRa antisera’

Antibody Anti-Cleaved
Caspase-3 (Asp175) ,
(Rabbit polyclonal)

Cell Signaling
Technology

Cat# 9661,
RRID:AB_2341188

1:300, IHC

Antibody Anti-Calbindin D-28k,
(Mouse monoclonal)

Swant Swiss antibodies Cat# 300,
RRID:AB_10000347

1:1000, IHC

Antibody Anti-Pituitary adenylate
cyclase-activating
polypeptide (PACAP),
(Chicken polyclonal)

Nakamachi et al., 2018 DOI: 10.1016/j.peptides.
2018.03.006

1:100, IHC

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody Anti-membrane
progesterone receptor
a (mPRa),
(Rabbit polyclonal)

This study Materials and methods
subsection ‘Conformation
of the specificity of mPRa
antisera’; Against Goldfish
mPRa aa 19–34 and
53–66; 1:100, IHC

Antibody Anti-ADCYAP1R1 (PAC1),
(Mouse monoclonal)

Santa Cruz Biotechnology Cat# sc-100315,
RRID:AB_1126992

1:100, IHC

Antibody Anti-trimethyl-
Histone H3 (Lys9),
(Rabbit polyclonal)

Merck Millipore Cat# 07–442,
RRID:AB_310620

1:50, ChIP

Antibody Anti-trimethyl-
Histone H3 (Lys27),
(Rabbit polyclonal)

Merck Millipore Cat# 07–449,
RRID:AB_310624

1:50, ChIP

Antibody Anti-trimethyl-
Histone H4 (Lys20),
(Rabbit polyclonal)

Merck Millipore Cat# 07–463,
RRID:AB_310636

1:50, ChIP

Antibody Anti-Mouse IgG (H+L),
F(ab’)2 Fragment,
Alexa Fluor 555
Conjugate

Cell Signaling
Technology

Cat# 4409,
RRID:AB_1904022

1:1000, IHC

Antibody Anti-rabbit IgG (H+L),
F(ab’)2 Fragment,
Alexa Fluor 488
Conjugate

Cell Signaling
Technology

Cat# 4412,
RRID:AB_1904025

1:1000, IHC

Peptide,
recombinant
protein

Chicken PACAP This study

Commercial
assay kit

SimpleChIP plus
sonication
chromatin IP kit

Cell Signaling
Technology

Cat# 56383

Chemical
compound

Allopregnanolone Cayman Chemical 16930,
CAS RN: 516-54-1

Chemical
compound, drug

Fluorescein-labeled
allopregnanolone

This study CAS RN: 2294937-67-8 Materials and methods
subsection ‘Fluorescein-
labeled ALLO synthesis’

Software,
algorithm

GraphPad Prism6 GraphPad
Software

RRID:SCR_002798

Animals
Domestic chickens (Gallus gallus) of both sexes at various ages were used in this study. Chicks were

incubated under either a 12 hr light–12 hr dark (LD) cycle, constant light (LL), or a 12 hr light–12 hr

dark cycle followed by exposure to light for 1 hr from ZT14 to ZT15 (light-at-night) with the light pro-

vided by white fluorescent lamps. The experimental protocols (2011-A090, 2012-A003, 2013-A010,

2014-A063, 2015-A012, 29M050, 30M047) were in accordance with the Guide for the Care and Use

of Laboratory Animals of Waseda University or Showa University, Japan.

Quantification of mRNAs
To measure the level of mRNA expressions, real-time PCR was performed using the StepOnePlus

system (Applied Biosystems, Foster City, CA) as described previously (Haraguchi et al., 2010;

Haraguchi et al., 2012b; Haraguchi et al., 2012b; Haraguchi et al., 2015; Nozaki et al., 2018).

The sequence of each primer is shown in Table 1. Gapdh was used as the internal standard. The

reaction mixture contained SYBR Green Real-Time PCR Mix (Toyobo, Osaka, Japan), 400 nM of for-

ward and reverse primers, and 30 ng of cDNA in a final volume of 20 mL. PCR was run with a stan-

dard cycling program: 95˚C for 3 min; 40 cycles of 95˚C, 15 s; 60˚C, 15 s; and 72˚C, 15 s. An external
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standard curve was generated by a serial 10-fold dilution of cDNA obtained from the salmon brain,

which had been purified, and its concentration was measured. To confirm the specificity of the

amplification, the PCR products were subjected to melting curve analysis and gel electrophoresis.

The results were normalized to the expression of gapdh using StepOnePlus 2.0 software (Applied

Biosystems).

Measurement of ALLO synthesis
To assess ALLO formation in the chick pineal gland, the conversion of progesterone, a substrate of

ALLO, was measured biochemically using pineal gland homogenates. The biochemical analyses in

this study were performed as described previously (Doi et al., 2010; Haraguchi et al., 2010;

Haraguchi et al., 2012a; Haraguchi et al., 2012b; Haraguchi et al., 2015; Nozaki et al., 2018). In

brief, 10 mg of pineal gland homogenates was incubated in phosphate-buffered saline (PBS) contain-

ing 106 cpm [3H] progesterone for 0 or 60 min at 37˚C. After incubation, steroids were extracted by

ethyl acetate and subjected to high-performance liquid chromatography analysis using a reversed-

phase column, LiChrospher 100 RP-18 (Kanto Kagaku, Tokyo, Japan). Tritiated ALLO was used as

the standard to detect the elution positions. All tritiated steroids were purchased from PerkinElmer

(PerkinElmer Japan, Yokohama, Japan).

Measurement of ALLO concentration
ALLO concentration in the chick pineal gland was measured by liquid chromatography-electrospray

ionization-tandem mass spectrometry (LC-ESI-MS/MS; QTRAP 4500 LC-MS/MS System; AB Sciex,

Foster City, CA). In brief, 5 mg of pineal gland tissue was homogenized in 1 mL methanol/H2O

(75:25; vol/vol) on ice. The homogenate was loaded on Isolute SLE+ cartridges (Biotage, Uppsala,

Sweden) for supported liquid–liquid extraction, and the steroid fractions were eluted with dichloro-

methane and subjected to LC-ESI-MS/MS analysis.

Quantification of the number of Purkinje cells and the thickness of the
molecular layer
To investigate whether ALLO and PACAP are involved in Purkinje cell survival in birds, light-at-night

or Px chicks were injected daily with either ALLO or PACAP.

Table 1. Oligonucleotide sequence of PCR.

Target genes Forward primer 5’- > 3’ Reverse primer 5’- > 3’

Srd5a AGAAAACCCGGGGAAGTCAC AGCGATGGCAAAACCAAACC

a1-subunit of GABAAR TCGTGGCAGTCTCCTTTGTC CTCATGCCCACAAGTGTCCT

mPRa TCTGCCCTGTGTGTCTTCAC TTTGTCCCTCACCTTCCGTG

mPRb AGGGCCTTGTGGGAAAGATG TGCCAGATTCAAAGCCCCAT

mPRg CGTGCGCTCGATGAGAAATG TTTCATAACCCACCCCCAGC

PXR CCCATAACCAAAGCCAAGCG ATCATGTCCTTCCGCATCCC

PACAP CACGCCGATGGGATCTTCA GTGCAGGTATTTCCTTGCGG

BDNF ACATCACTGGCGGACACTTT CAGCATGACTCGGGATGTGT

NT-3 ACCACCACCACTGTACCTCA TCGGTGGCTCTTGTGTTCTG

3b-HSD CACTCTGCTGAACACCCCTT GCTGGTGTACCTCTTTGCCT

P450arom CGGGGCTGTGTAGGAAAGTT TGTCTGTACTCTGCACCGTC

Dio2 TGACCACCATTCACAAGCCA CAACAGAAAGTCAGCCACGC

IGF-1 ATGGATCCAGCAGTAGACGC GCCTCCTCAGGTCACAACTC

Adcyap1 gene promoter CAGTTTCATGGTAAGGACCCG ACGACCCACCGAGCG

DOI: https://doi.org/10.7554/eLife.45306.030
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Light-at-night chicks
Daily injection of ALLO (30 ng/5 mL sesame oil) into light-at-night chicks was performed into the

pineal gland region of the brain from ZT11 to ZT12 once per day for 7 days during the P1–P7 period.

Control treatment consisted of an equal volume of vehicle-only.

Px chicks
Px and sham operations on P1 chicks were performed under isoflurane anesthesia as described pre-

viously (Haraguchi et al., 2012a). After surgery, either ALLO (30 ng/5 mL) dissolved in sesame oil or

PACAP (10�8 M/5 mL) dissolved in physiological saline was injected into the pineal gland region of

the brain in chicks from ZT11 to ZT12 once per day for 7 days during the P1–P7 period. Control ani-

mals were treated with an equal volume of vehicle-only.

The injection site was determined by visually inspecting the brain of a chick injected with 5 mL of

0.15% methylene blue dissolved in saline. After decapitation under deep anesthesia, the cerebella of

the control, Px, or ALLO- or PACAP-treated chicks at P21 were dissected. Cerebellar sections from

4% paraformaldehyde-fixed cerebella were processed and stained with anti-calbindin D-28k (300;

Swant Swiss antibodies, Bellinzona, Switzerland) as described previously (Haraguchi et al., 2012a).

The number of calbindin-immunoreactive cell bodies of Purkinje cells was counted in each lobule at

P21 or P70. All analyses were performed in the cerebellar vermis area. The number of Purkinje cells

in the vermis area was calculated from 10 sections (20 mm thickness, every three sections in the ver-

mis area) per animal. The length of the molecular layer in the parasagittal section was evaluated as

the thickness of the molecular layer as described previously (Haraguchi et al., 2012a).

Assessment of neuronal cell death
Parasagittal cerebellar sections of chicks at P7 were examined by immunostaining with an antibody

against cleaved caspase-3 (Asp175; #9661; Cell Signaling Technology, Danvers, MA) to detect apo-

ptotic cells immunoreactive to the active form of caspase-3 as described previously

(Haraguchi et al., 2012a). The number of cleaved caspase-3-positive Purkinje cells in the vermis

area was calculated from 10 sections (20 mm thickness, every three sections in the vermis area) per

animal.

RT-PCR analysis
Total RNA was extracted from the chick cerebellum using Sepazol-RNA I Super (Nacalai Tesque,

Kyoto, Japan) and reverse transcribed as described previously (Haraguchi et al., 2010;

Haraguchi et al., 2012a; Haraguchi et al., 2012b; Haraguchi et al., 2015; Nozaki et al., 2018). All

PCR amplifications (for mPRa, mPRb, mPRg, PXR, and a1-subunit of the GABAA receptor) were per-

formed in a reaction mixture containing Ex Taq polymerase (Takara, Shiga, Japan). Forward and

reverse primers (Table 1) were designed according to the nucleotide sequence of chicken mRNAs.

The following PCR conditions were used for the thermal cycler: 1 cycle of 1 min at 94˚C, 30 cycles of

30 s at 94˚C, 30 s at 60˚C, 30 s at 72˚C, and finally, 1 cycle of 10 min at 72˚C. The identities of the

PCR products were confirmed by sequencing.

In ovo transfection by electroporation
For the intracerebellar injection of siRNAs, in ovo transfections were performed using chick embryos.

The sequence of each siRNA is shown in Table 2. In vivo transfection by electroporation for chick

embryos was performed as described previously (Katahira and Nakamura, 2003). Each siRNA

reagent was injected into the cerebellar cortex of lobule IV. Subsequently, a pair of stainless steel

Table 2. Oligonucleotide sequence of siRNA.

Target genes Sequence-sense Sequence-anti-sense

mPRa CGGAGCUGGGCUGGUUUCUUCCCA UGGGAAGAAACCAGCCCAGCUCCG

mPRb GAGGAGGAUGCUGCUUGGUACCAU AUGGUNCCAAGCAGCAUCCUCCUC

mPRg CCGACAGAGUUUGGCUGCUGCGAU AUCGCAGCAGCCAAACUCUGUCGG

DOI: https://doi.org/10.7554/eLife.45306.031
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electrodes was inserted into the neural tube and then transfected with an electroporator (NEPA21

Electroporator; NEPA Gene, Chiba, Japan).

Conformation of the specificity of mPRa antisera
To confirm that the mPRa antiserum recognized the appropriate antigen, western blot analysis was

performed on extracts of COS-7 cells transfected with chicken mPRa cDNA as described previously

(Haraguchi et al., 2010; Haraguchi et al., 2012a; Haraguchi et al., 2012b; Haraguchi et al., 2015;

Nozaki et al., 2018). COS-7 cells (Cat# JCRB9127, RRID:CVCL_0224) were grown in DMEM with

10% fetal bovine serum. Cell line authentication and mycoplasma-free certification was performed

by JCRB. The extract of COS-7 cells transfected with chicken mPRa cDNA was separated on a

12.5% SDS-polyacrylamide gel under reducing conditions and transferred to PVDF membranes (GE

Healthcare, Madison, WI). The membrane was incubated with anti-goldfish mPRa antiserum at 4˚C

overnight and then for 1 hr with goat-anti-rabbit IgG-horseradish-peroxidase conjugate diluted

1:1000. An intense immunoreaction band was detected using an ImmunoStar LD western blotting

detection system (Wako Pure Chemicals, Osaka, Japan).

IHC staining
IHC localizations of mPRa, PACAP, or PAC1 were performed as described previously

(Haraguchi et al., 2010; Haraguchi et al., 2012a; Haraguchi et al., 2012b; Haraguchi et al., 2015;

Nozaki et al., 2018). The cerebella were fixed in 4% (vol/vol) paraformaldehyde solution overnight

and then soaked in a refrigerated 30% (vol/vol) sucrose solution in 0.1 M PB. Cerebella were frozen

in OCT compound (Miles, Elkhart, IN) and then sectioned transversely at 10 mm thickness on a cryo-

stat at �20˚C. After blocking nonspecific binding with Protein Block, serum-free (Agilent Technolo-

gies, Palo Alto, CA), the sections were immersed overnight at 4˚C in either a 1:100 dilution of rabbit

anti-goldfish mPRa antiserum, a 1:1000 dilution of chicken anti-PACAP antibody (Nakamachi et al.,

2018), or a 1:100 dilution of mouse anti-PAC1 antibody (sc-100315; Santa Cruz Biotechnology, Santa

Cruz, CA). The sections were then incubated for 60 min with Alexa Fluor 555-labeled second anti-

body (Cell Signaling Technology) at a dilution of 1:1000. After washing, the sections were mounted

with mounting medium and visualized using a fluorescence microscope.

Binding assay
To investigate the binding of ALLO to chicken mPRa, a radioreceptor assay was performed as

described previously (Ito et al., 2011). The membrane fractions extracted from COS-7 cells trans-

fected with chicken mPRa cDNA were incubated for 30 min at 4˚C with 1–25 nM [3H] ALLO in the

presence or absence of cold ALLO competitor. At the end of the incubation, the samples were cen-

trifuged at 10,000 g for 10 min at 4˚C. The supernatant was aspirated out, and the radioactivity of

the pellets was counted using a liquid scintillation counter.

In addition, the cellular localization of fluorescein-labeled ALLO in COS-7 cells transfected with

chicken mPRa cDNA was analyzed as described previously (Haraguchi et al., 2010;

Haraguchi et al., 2012a; Haraguchi et al., 2012b; Haraguchi et al., 2015; Nozaki et al., 2018).

The COS-7 cells were treated with fluorescein-labeled ALLO in the presence or absence of cold

ALLO for 1 hr at 4˚C. At the end of the incubation, the cells were fixed for 1 hr in 4% paraformalde-

hyde and then washed 3 times for 5 min in PBS. After washing, the cells were mounted with mount-

ing medium and visualized using a confocal microscope.

Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR)
Chromatin immunoprecipitation (ChIP) was performed using the SimpleChIP plus sonication chroma-

tin IP kit (Cell Signaling Technology) according to the manufacturer’s protocol. Briefly, the Purkinje

cell layer, including Purkinje cells, was laser-microdissected (LS-AMD; Leica Microsystems, Bensheim,

Germany). The crosslinked cells of the Purkinje cell layer were sonicated to shear the chromatin to

200–1,000 bp. Each IP was performed using rabbit polyclonal anti-trimethyl-histone H3 (Lys9) anti-

body (07–442; Merck Millipore, Schwalbach, Germany), rabbit polyclonal anti-trimethyl-histone H3

(Lys27) antibody (07–449; Merck Millipore), or rabbit polyclonal anti-trimethyl-histone H4 (Lys20)

antibody (07–463; Merck Millipore). qPCR analyses were performed using the StepOnePlus 2.0 soft-

ware (Applied Biosystems) as described above. The sequence of each primer is shown in Table 1.
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Statistical analysis
GraphPad Prism (GraphPad) and Estimation statistics (http://www.estimationstats.com) were used

for statistical analysis. Student’s two-tailed t-test, or one-way ANOVA followed by post hoc analysis

with Tukey’s test for multiple comparisons test were performed. P values of the relevant post hoc

multiple comparisons are shown in the figures. The statistical significance cutoff was set at p<0.05.

Fluorescein-labeled ALLO synthesis
1H NMR and 13C NMR spectra were recorded with CDCl3 as the solvent using tetramethylsilane as

an internal standard on JEOL AL-400 spectrometers (JEOL, Akishima, Japan). Multiplicities are indi-

cated as br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). High-resolu-

tion mass spectrometry spectra were recorded on JMS-SX102A (JEOL). All of the isolated materials

were shown to be pure by NMR (free of obvious impurities) and thin-layer chromatography (homo-

geneous material).

First, we prepared ALLO (2) as described previously (Comin et al., 2004). Then, we followed

Schemes 1–6 to synthesize fluorescein-labeled ALLO (12).

3-p-Toluenesulfonyloxy-ALLO (3)
To the solution of ALLO 2 (1.00 g, 3.14 mmol) in pyridine (10 mL) was added p-toluenesulfonyl chlo-

ride (1.20 g, 6.28 mmol) at room temperature, and the mixture was stirred for 12 hr. The aqueous

phase was extracted with ethyl acetate. The combined organic layers were dried (MgSO4), and the

solvent was evaporated. The residue was purified by column chromatography (silica gel) using hex-

ane–EtOAc (2:1) as eluent to afford 1.19 g (80% yield) of tosylate 3.
1H NMR (400 MHz, CDCl3) d: 7.68–7.75 (d, J = 8.2 Hz, 2H, Ar-H), 7.21–7.29 (d, J = 8.6 Hz, 2H, Ar-

H), 4.30–4.40 (m, 1H, 3 C-H), 2.39–2.47 (m, 1H, 17 C-H), 2.37 (s, 3H, Ts-Me), 2.03 (s, 3H, 19C-Me),

0.70 (s, 3H, 10C-Me), 0.51 (s, 3H, 13C-Me).

3b-acetoxy ALLO (4)
To the solution of tosylate 3 (47 mg, 0.0995 mmol) in 2-butanone (2 mL) was added tetra-n-butylam-

monium acetate (105 mg, 0.34 mmol), and the mixture was stirred at reflux for 20 hr. The reaction

mixture was quenched with water and extracted with ether. The extracts were washed with brine,

dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by flash column

chromatography on silica gel (hexane:ethyl acetate, 2:1) to give acetate 4 (20 mg, 56%).
1H NMR (400 MHz, CDCl3) d 5.00 (s, 1H, 3 C-H), 2.48–2.54 (t, J = 9.1 Hz, 1H, 17 C-H), 2.10 (s, 3H,

Ac-Me), 2.05 (s, 3H, 19C-Me), 0.78 (s, 3H, 10C-Me), 0.60 (s, 3H, 13C-Me).

Alyl 3-((3R,5S,8S,10S,13S,14S,17S)�3-acetoxy-10,13-
dimethylhexadecahydro-1H- cyclopenta[a]phenanthren-17-yl)�3-
oxopropanoate (5)
To a solution of 4 (6.40 g, 11.82 mmol) in THF (14.6 mL) was added LHMDS (1.3 M in THF, 22.75

mL) at �78˚C. After 1 hr, allyl chloroformate (1.38 mL, 13.0 mmol) was added, and the mixture was

stirred at �78˚C for 2 hr. To the reaction was added saturated aqueous NH4Cl, and the organic layer

was partitioned. The aqueous phase was extracted with ether, and the combined organic extracts

were dried with MgSO4, filtered, and concentrated in vacuo. The residue was purified by flash col-

umn chromatography on silica gel (hexane/ethyl acetate = 95:5) to give 5 (3.78 g, 6.054 mmol, 51%)

as a white solid.
1H NMR (400 MHz, CDCl3) d 8.02 (d, J = 6.3 Hz, 4H, Ar-H), 7.57 (dd, J = 6.3 Hz, 1H, Ar-H), 7.54

(dd, J = 6.3 Hz, 1H, Ar-H), 7.46 (dd, J = 6.3 Hz, 2H, Ar-H), 7.42 (dd, J = 6.3 Hz, 2H, Ar-H), 5.92 (m,

1H), 5.78 (d, J = 4.8 Hz, 1H, 6 C-H), 5.33 (dd, J = 17, 1.5 Hz, 1H), 5.28 (br, 1H, 7 C-H), 5.24 (dd,

J = 10, 1.5 Hz, 1H), 4.90 (m, 1H, 3 C-H), 4.63 (dt, J = 5.8, 1.2 Hz, 2H), 3.47 (s, 1H, 21C-CH), 1.12 (s,

3H, 19C-CH3), 0.68 (s, 3H, 18C-CH3).

(3R,5S,8S,10S,13S,14S,17S)�10,13-Dimethyl-17-(pent-4-enoyl)
hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (6)
To a solution of 5 (3.78 g, 6.05 mmol) in dioxane (60 mL) were added Pd2(dba)3.CHCl3 (0.313 g,

0.303 mmol) and DPPE (241.2 mg, 0.605 mmol), and the mixture was stirred at room temperature
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for 4 hr. The reaction mixture was filtered through a pad of Celite, and the filtrates were concen-

trated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/ethyl

acetate = 97:3) to give 6 (2.92 g, 5.03 mmol, 83%) as a white solid.
1H NMR (400 MHz, CDCl3) d 8.02 (d, J = 6.3 Hz, 4H, Ar-H), 7.57 (dd, J = 6.3 Hz, 1H, Ar-H), 7.54

(dd, J = 6.3 Hz, 1H, Ar-H), 7.46 (dd, J = 6.3 Hz, 2H, Ar-H), 7.42 (dd, J = 6.3 Hz, 2H, Ar-H), 5.81 (m,

1H, 23 C-H), 5.77 (d, J = 3.6 Hz, 1H, 6 C-H), 5.27 (t, J = 4.1 Hz, 1H, 7 C-H), 5.02 (ddd, J = 17, 3.4,

1.7 Hz, 1H, 24 C-H), 4.96 (ddd, J = 10, 2.9, 1.2 Hz, 1H, 24 C-H), 4.90 (m, 1H, 3 C-H), 1.11 (s, 3H,

19C-CH3), 0.67 (s, 3H, 18C-CH3).

6-Amino-3-oxo-3H-spiro[isobenzofuran-1,90-xanthene]�30,60-diyl bis(2,2-
dimethylpropanoate) (8)
To a stirred solution of 5-aminofluorescein 7 (0.10 g, 0.288 mmol) in DMF (3.0 mL) were added

Cs2CO3 (0.28 g, 0.864 mmol) and pivalic anhydride (0.13 mL, 1.90 mmol), and the mixture was

stirred at room temperature for 1 hr. The reaction mixture was filtered through a pad of Celite, and

the filtrates (DMF layer) were extracted with ether. The extracts were concentrated in vacuo, and the

residue was purified by flash column chromatography on silica gel (CH2Cl2:water, 4:1) to give 8 (87.4

mg, 0.17 mmol, 59%) as a white solid.
1H NMR (400 MHz, CDCl3) d 7.76 (d, J = 8.3 Hz, 1H, Ar-H), 7.01 (d, J = 2.2 Hz, 2H, Ar-H), 6.96 (s,

1H, Ar-H), 6.94 (s, 1H, Ar-H), 6.78 (dd, J = 8.5, 2.2 Hz, 2H, Ar-H), 6.76 (dd, J = 8.3, 1.9 Hz, 1H, Ar-H),

4.21 (brs, 2H, NH2), 1.36 (s, 18H, C(CH3)3).

3-Oxo-6-(undec-10-enamido)�3H-spiro[isobenzofuran-1,90-xanthene]�
30,60-diyl bis(2,2-dimethylpropanoate) (9)
To a stirred solution of 8 (0.10 g, 0.288 mmol) in CH2Cl2 (1.0 mL) were added DMAP (37 mg, 0.305

mmol), DIC (0.048 mL, 0.305 mmol), and undecenoic acid (0.0513 mL, 0.254 mmol), and the mixture

was stirred at room temperature for 50 hr. To the reaction mixture was added saturated aqueous

NaHCO3, and the organic layer was partitioned. The aqueous layer was extracted with CH2Cl2, and

the combined organic extracts were dried with MgSO4, filtered, and concentrated in vacuo. The resi-

due was purified by flash column chromatography on silica gel (hexane:ethyl acetate, 4:1) to give 9

(78.86 mg, 0.12 mmol, 68%) as a white solid.
1H NMR (400 MHz, CDCl3) d 7.92 (d, J = 8.6 Hz, 1H, Ar-H), 7.85 (dd, J = 8.6, 1.6 Hz, 1H, Ar-H),

7.58 (br, 1H, NH), 7.21 (s, 1H, Ar-H), 7.00 (d, J = 2.2 Hz, 2H, Ar-H), 6.85 (d, J = 8.6 Hz, 2H, Ar-H),

6.76 (dd, J = 8.6, 2.2 Hz, 2H, Ar-H), 5.78 (m, 1H), 4.96 (dd, J = 17, 1.6 Hz, 1H), 4.91(dd, J = 12, 1.6

Hz, 1H), 2.27 (t, J = 7.5 Hz, 2H, COCH2), 2.00 (dd, J = 7.3, 6.7 Hz, 2H), 1.35 (s, 18H, C(CH3)3).

(3R,5S,8S,10S,13S,14S,17S)�10,13-Dimethyl-17-((E)�14-oxo-14-(3-oxo-
30,60-bis(pivaloyloxy)�3H-spiro[isobenzofuran-1,90-xanthene]�6-ylamino)
tetradec-4-enoyl)- (pent-4-enoyl)hexadecahydro-1H-cyclopenta[a]
phenanthren-3-yl acetate (10)
To a stirred solution of 7 (241.9 mg, 0.604 mmol) and 9 (412.02 mg, 0.604 mmol) in CH2Cl2 (3.5 mL)

was added Hoveyda Grubbs’ 2nd catalyst (0.0031 g, 0.0036 mmol), and the resulting mixture was

heated under reflux. After 26 hr, the mixture was filtered through a pad of Celite, and the organic

solvent was evaporated. The crude product was purified by flash column chromatography (10% to

25% ethyl acetate/hexane) to afford 10 (30.0 mg, 0.028 mmol, 5%).
1H NMR (400 MHz, CDCl3) d 7.90 (d, J = 8.2 Hz, 1H, Ar-H), 7.86 (dd, J = 8.7, 1.4 Hz, 1H, Ar-H),

7.23 (br, 1H, Ar-H), 7.00 (d, J = 1.8 Hz, 2H, Ar-H), 6.85 (d, J = 8.7 Hz, 2H, Ar-H), 6.76 (dd, J = 8.7,

2.3 Hz, 2H, Ar-H), 5.39–5.31 (m, 2H), 5.00 (br, 1H), 4.21 (t, J = 5.9 Hz, 1H), 2.48 (t, J = 8.7 Hz, 1H),

2.04 (s, 3H), 1.34 (s, 18H), 0.78 (s, 3H), 0.56 (s, 3H).

(3R,5S,8S,10S,13S,14S,17S)�10,13-Dimethyl-17–14-oxo-14-(3-oxo-30,60-
bis(pivaloyloxy)�3H- spiro[isobenzofuran-1,90-xanthene]�6-ylamino)
tetradecanoyl)-(pent-4-enoyl)hexadecahydro-1H-cyclopenta[a]
phenanthren-3-yl acetate (11)
Compound 10 (30.0 mg, 0.028 mmol) in ethyl acetate (0.28 mL) was hydrogenated over 10 wt% Pd

on activated carbon (3.0 mg). After 3 hr, the reaction mixture was diluted with ethyl acetate and
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filtered to remove the catalyst. The filtrate was concentrated, and the crude product 11 was used in

the next step without further purification.
1H NMR (400 MHz, CDCl3) d 7.92 (d, J = 9.1 Hz, 1H, Ar-H), 7.86 (dd, J = 8.6, 1.8 Hz, 1H, Ar-H),

7.69 (br, 1H, Ar-H), 7.01 (d, J = 2.2 Hz, 2H, Ar-H), 6.86 (s, Ar-H), 6.86 (s, Ar-H), 6.78 (d, J = 2.2 Hz,

1H, Ar-H), 6.76 (d, J = 2.2 Hz, 1H, Ar-H), 5.01 (br, 1H), 2.45 (t, J = 9.2 Hz, 1H), 2.37–2.24 (m, 4H),

2.18–2.11 (m, 1H), 2.05 (s, 3H), 1.99–1.92(m, 1H), 1.35 (s, 18H), 0.79 (s, 3H), 0.57 (s, 3H).

Fluorescein-labeled ALLO (12)
To a stirred solution of 11 in MeOH (1.8 mL) was added K2CO3 (18.5 mg, 0.018 mmol), and the

resulting mixture was heated under reflux for 16 hr. The reaction was quenched by the addition of

saturated aqueous NH4Cl, and the organic solvent was evaporated. The residue was extracted with

ethyl acetate, and the combined organic extracts were dried with MgSO4 and concentrated in

vacuo. The crude product was purified by flash column chromatography (ethyl acetate in hexane) to

afford 12 (11.1 mg, 0.013 mmol, 73%).
1H NMR (400 MHz, CD3OD) d 7.92 (d, J = 8.7 Hz, 1H, Ar-H), 7.76 (dd, J = 8.2, 1.4 Hz, 1H, Ar-H),

7.57 (d, J = 1.8, 1H, Ar-H), 6.68–6.63 (m, 4H, Ar-H), 6.56 (d, J = 2.8 Hz, 1H, Ar-H), 6.53 (d, J = 2.8

Hz, 1H, Ar-H), 4.54 (br, 2H), 3.92 (m, 1H), 3.34 (s, 3H), 2.60 (t, J = 8.7 Hz, 1H), 0.78 (s, 3H), 0.56 (s,

3H).
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