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Abstract: This systematic literature review aimed to determine the protein requirements of
pre-menopausal (e.g., 18–45 years) female athletes and identify if the menstrual cycle phase
and/or hormonal contraceptive use influence protein requirements. Four databases were searched
for original research containing pre-menopausal female athletes that ingested protein alongside
exercise. The Academy of Nutrition and Dietetics Quality Criteria Checklist was used to determine
study quality. Fourteen studies, which included 204 recreationally active or competitive females,
met the eligibility criteria for inclusion in this review, and all were assessed as positive quality.
The estimated average requirement (EAR) for protein intake of pre-menopausal recreational and/or
competitive female athletes is similar for those undertaking aerobic endurance (1.28–1.63 g/kg/day),
resistance (1.49 g/kg/day) and intermittent exercise (1.41 g/kg/day) of ~60–90 min duration. The optimal
acute protein intake and influence of menstrual cycle phase or hormonal contraceptive use on
protein requirements could not be determined. However, pre- and post-exercise protein intakes of
0.32–0.38 g/kg have demonstrated beneficial physiological responses in recreational and competitive
female athletes completing resistance and intermittent exercise. The protein requirements outlined in
this review can be used for planning and assessing protein intakes of recreational and competitive
pre-menopausal female athletes.

Keywords: amino acids; muscle protein; exercise; menstrual cycle; contraceptives

1. Introduction

Dietary protein supports exercise training adaptations, including the remodelling of protein
structures and accretion of lean body mass and strength, and contributing to metabolic pathways
during exercise [1,2]. Due to the increased protein turnover associated with exercise, current sports
nutrition guidelines for daily protein intake (1.2–2.0 g/kg/day) [3] are higher than national dietary
guidelines (~0.6–0.8 g/kg/day) that are aimed at preventing nutrient deficiencies in the general
population [4–6] rather than optimising exercise training adaptations [1,7]. Unfortunately, these sports
nutrition guidelines [3] are limited by methodological issues that have been used to determine protein
requirements in athletes [8,9] and are primarily based on research investigating the requirements
of male athletes. Research that is primarily conducted in male athletes is then applied to female
athletes on the basis of similar resting, post-exercise and post-prandial muscle protein synthesis

Nutrients 2020, 12, 3527; doi:10.3390/nu12113527 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0001-5656-9106
https://orcid.org/0000-0002-5620-4788
https://orcid.org/0000-0003-2753-7847
https://orcid.org/0000-0002-3754-6782
http://dx.doi.org/10.3390/nu12113527
http://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/12/11/3527?type=check_update&version=3


Nutrients 2020, 12, 3527 2 of 20

(MPS) responses, and a lack of evidence suggesting that muscle mass influences post-exercise protein
requirements [10–12]. This research, however, fails to address differences in sex steroid hormones that
affect exercise metabolism [13]. For example, there is compelling evidence that females have higher
fat and subsequently lower carbohydrate and protein oxidation than males during fasted aerobic
endurance exercise [14–16] and that these metabolic differences are likely mediated by oestradiol [13].
These metabolic differences are suggested to result in ~15–25% lower protein requirements for female
compared to male endurance athletes [13,17]. It is therefore plausible that sex-based differences in
protein requirements may exist across different types of exercise (e.g., resistance, aerobic endurance or
intermittent (e.g., team sports)), although this is an area that requires further research.

In addition to the type of exercise, hormonal fluctuations across the menstrual cycle may influence
resting metabolic rate (e.g., ~9% increase in the luteal phase of the menstrual cycle) [18,19] and the
subsequent nutrition and protein requirements of female athletes [20]. The menstrual cycle facilitates
female reproduction between menarche and menopause (defined as “pre-menopause” in this review)
and can be divided into various phases based on the concentrations of sex steroid hormones [21,22].
Of particular interest is that these fluctuating reproductive hormones coincide with the age of peak
competitive performance (e.g., 20–39 years) in female athletes [23]. Moreover, approximately half of
pre-menopausal female athletes use hormonal contraceptives (e.g., oral contraceptive pills (OCPs),
injections, intrauterine devices, etc.), [24,25] that provide exogenous hormones (e.g., oestrogen and
progestin) of varying types and doses that downregulate endogenous hormone production [26].
Recent reviews suggest that these alterations in hormones across different phases of the menstrual cycle
and with the use of hormonal contraceptives may have small variable effects on exercise performance,
although findings are limited by poor methodological approaches to classifying the phase of menstrual
cycle [26,27]. Nevertheless, it is important that future research considers the potential nutrient, exercise
and hormone interactions to enable the development of female-specific sports nutrition guidelines.

There are currently no studies that specifically address the protein requirements of female athletes
across the menstrual cycle or with the use of hormonal contraceptives. However, there is some evidence
that protein catabolism is higher at rest and following aerobic endurance exercise in the luteal phase,
when oestrogen and progesterone are elevated, compared to the early follicular phase when oestrogen
and progesterone concentrations are low [14,28,29]. In contrast, a more recent study suggests there is
no difference in myofibrillar and collagen protein synthesis between the follicular and the luteal phases
24 h after 60 min of resistance exercise [30]. It is therefore currently unclear if these physiological
responses to exercise across the menstrual cycle influence the protein requirements of female athletes
and if this differs based on the type (e.g., aerobic endurance vs. resistance) of exercise performed.
Similarly, it is unclear if the lower post-exercise myofibrillar protein synthesis observed in female
athletes using hormonal contraceptives, compared to non-users [31], can be mediated by protein intake.

Considering that adequate dietary protein is important for supporting physiological adaptations
to exercise, there is a growing need to determine the protein requirements for pre-menopausal
athletes that address the influence of endogenous and exogenous hormones and potential metabolic
interactions with different types of exercise. Therefore, this systematic literature review aimed to
outline the current evidence on daily and acute (e.g., intake pre-, during or post-exercise) protein
requirements of pre-menopausal female athletes undertaking resistance, endurance and intermittent
exercise. A secondary aim of this systematic literature review was to identify if the phase of the
menstrual cycle and/or hormonal contraceptive use influences the protein requirements of female
athletes. The information from this review can be used to inform the planning and assessment of protein
intakes for pre-menopausal female athletes and inform the development of future female-specific
sports nutrition guidelines.
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2. Materials and Methods

This systematic literature review was conducted in accordance with the PRISMA statement [32].

2.1. Search Strategy

A literature search was conducted in Medline, Embase, Sportdiscus and CINAHL databases
from inception to March 2020. Search terms used included a combination of female or woman or
contraceptive and “muscle protein synthesis” or “myofibrillar protein” or “protein balance” or “protein
and catabolism” or “protein metabolism” or “protein turnover” or “protein and nitrogen balance”.
Additional articles were identified by hand-searching the reference lists of review articles and included
full-text articles.

2.2. Inclusion and Exclusion Criteria

Screening of title and abstracts and full-text articles against inclusion and exclusion criteria was
conducted independently by two authors. Disagreements in the screening process were resolved
by discussion and consensus. The inclusion criteria consisted of (1) original full-text peer-reviewed
research, (2) healthy pre-menopausal or hormonal contraceptive using recreationally, competitive or
elite female athletes aged 18–45 years, (3) consumption of daily or acute dose of protein in conjunction
with an exercise protocol and (4) determination of protein requirements (e.g., an estimated average
requirement (EAR)) and/or a physiological response (e.g., muscle protein synthesis, nitrogen balance,
muscular strength, body composition, etc.) to the exercise and protein intake, as per previous
reviews and current guidelines on protein intake [2,3,7]. Articles were excluded if they (1) did not
report pre-menopausal female data separately from males or post-menopausal females, (2) included
sedentary/physically inactive participants, (3) administered amino acids or combinations of amino
acids in isolation and/or in conjunction with protein intake or (4) were not published in English.

2.3. Data Extraction and Management

Data were extracted into a customised table by one author and reviewed by a second author.
For studies that contained both male and female participants, only the female data were retrieved and
reported. Studies were divided into aerobic endurance exercise, resistance exercise and intermittent
exercise (e.g., intermittent-type activity similar to team sport) based on the exercise performed during
the study and the established potential differences in protein requirements based on the different
physiological adaptations that exist for these types of exercise, based on existing literature [33,34].
Studies were then divided into daily and acute (e.g., pre-, during or post-exercise dose) protein
intake based on the intervention and primary outcome measure to allow for comparison to current
sports nutrition guidelines. Protein intakes that were reported in absolute dose (e.g., grams) were
converted to relative protein intake (e.g., grams per kilogram of body mass) using the mean body mass
of participants for standardisation and comparison to other articles and sports nutrition guidelines.
Where articles reported an EAR for protein, this was used to calculate a recommended dietary intake
(RDI) (e.g., referred to as recommended dietary allowance (RDA) by the Institute of Medicine [6] and
reference nutrient intake by the Department of Health [4]) using the equation: RDI = 1.24 × EAR [5],
where 1.24 equates to a 12% coefficient of variation for protein requirements [35]. This method has
previously been used to determine the RDI (or equivalent RDA) for the nutrient reference values
and dietary reference intakes of healthy individuals [5,6] and was selected due to the large standard
deviations and small sample sizes of the studies included in this review.

2.4. Quality Assessment

Study quality was assessed independently by two authors using the Academy of Nutrition and
Dietetics Quality Criteria Checklist [36] and disagreements in ratings were resolved by discussion and
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consensus. This checklist consists of ten questions that address scientific validity, including the risk of
bias, and provides an overall study rating of negative, neutral or positive [36].

3. Results

3.1. Screening and Study Selection

The database search resulted in 19,555 articles, with 12,515 titles and abstracts screened after the
removal of duplicates (Figure 1). One hundred and fifty full-text articles were screened and 14 of these
articles (studies) met the eligibility criteria and were included in this review (Figure 1).
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3.2. Quality Assessment of Included Studies

All 14 studies included in this review received a positive overall rating after assessment against
the Academy of Nutrition and Dietetics Quality Criteria Checklist [36] (Table 1).
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Table 1. Quality assessment of included studies.

Author and Year Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Overall Rating

Brown et al., 2018 [37] Y Y Y N/A Y Y Y Y Y Y Positive
Campbell et al., 2018 [38] Y Y Y Y N Y Y Y Y N Positive

Houltham and Rowlands 2014 [39] Y Y Y N/A N Y Y Y Y Y Positive
Malowany et al., 2019 [40] Y Y Y N N Y Y Y Y Y Positive

Phillips et al., 1993 [16] Y Y N/A N/A N Y Y Y Y Y Positive
Pihoker et al., 2019 [41] Y Y Y Y N Y Y Y Y Y Positive

Rowlands and Wadsworth 2011 [42] Y Y Y N Y Y Y Y Y Y Positive
Roy et al., 2002 [43] Y Y Y N Y Y Y Y Y U Positive

Taylor et al., 2016 [44] Y Y Y N Y Y Y Y Y Y Positive
Tinsley et al., 2019 [45] Y Y Y Y Y Y Y Y Y Y Positive

West et al., 2012 [10] Y Y N/A N/A N Y Y Y Y Y Positive
Wilborn et al., 2013 [46] Y Y Y N Y Y Y Y N U Positive
Wilborn et al., 2016 [47] Y Y N/A N Y Y Y Y Y Y Positive
Wooding et al., 2017 [48] Y Y Y N N Y Y Y Y Y Positive

Y, yes (criteria met); N, no (criteria not met); U, unclear; N/A, not applicable.

Academy of Nutrition and Dietetics Quality Criteria Checklist [36] for the 14 included studies: Q1,
clear research question; Q2, participant selection free from bias; Q3, comparability of study groups; Q4,
description of withdrawals; Q5, blinding; Q6, description of study procedures; Q7, outcomes clearly
defined and measurements valid and reliable; Q8, appropriate statistical analysis; Q9, results support
conclusion; Q10, unlikely bias from funding or sponsorship. For a positive overall rating, the majority
of Q1–10 must be met as well as criteria for Q2, Q3, Q6 and Q7. A negative overall rating is provided
when the majority of criteria are not met. A neutral rating is provided when criteria for Q2, Q3, Q6 and
Q7 are met but not the majority.

3.3. Participant Characteristics, Menstrual Cycle and Hormonal Contraceptive Use

A total of 204 recreationally active and/or competitive pre-menopausal female athletes participated
in the 14 studies included in this review (Tables 2–4). Phase of the menstrual cycle was reported by
eight studies, with four of these studies combining pre-menopausal female athletes and female athletes
using hormonal contraceptives (Tables 2–4). All four studies with female athletes completing aerobic
endurance exercise were conducted in the mid-follicular phase of the menstrual cycle and/or combined
with hormonal contraceptives users (Table 2). In contrast, two studies with resistance (Table 3) and two
with intermittent (Table 4) exercise were performed in the luteal phase and/or combined with hormonal
contraceptives. It was not possible to determine the effect of the menstrual cycle and hormonal
contraceptive use on the protein requirements of female athletes due to a lack of comparisons available
both within and between studies.

3.4. Aerobic Endurance Exercise

The daily protein requirements of recreationally active and competitive female endurance athletes
were investigated by three studies using the nitrogen balance method (Table 2). An EAR of 1.28 g
protein/kg/day (calculated RDI 1.59 g/kg/day) was reported for competitive female cyclists who
undertook a four-day exercise protocol that included 150 min of cycling intervals, a repeat sprint cycle
test on days two and four with a rest day on day three [42]. In contrast, other studies in this review
reported daily protein intakes of 0.8 and 1.4 g/kg/day and resulted in negative nitrogen balance when
recreationally active females completed a 90 min run at 65% VO2max and competitive female cyclists
completed 90 min cycling intervals each day for three days [16,39]. The latter study in competitive
cyclists determined an EAR of 1.63 g protein/kg/day, equating to an RDI of 2.02 g protein/kg/day to
achieve nitrogen balance [39].

Acute protein intakes of female athletes completing aerobic endurance exercise were investigated
by one study that showed an attenuation in loss of body mass and a trend for improved nitrogen
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balance after a 7-day exercise protocol when a mixed supplement containing 0.24 g/kg whey protein
was consumed post-exercise compared to 10 h pre-exercise [43].

3.5. Resistance Exercise

Daily protein intakes of female athletes completing resistance exercise was investigated by three
studies (Table 3). Using the indicator of amino acid oxidation (IAAO) technique, one of these studies
reported an EAR of 1.49 g protein/kg/day (calculated RDI 1.85 g/kg/day) for recreationally active
resistance-trained female athletes completing a single whole-body resistance training session [40].
Findings from an eight-week resistance training study suggest that daily protein intakes of 0.9 g/kg/day
and 2.5 g/kg/day are similarly effective at supporting increases in maximal strength, with no significant
differences observed between these different protein intakes [38]. However, the increase in fat-free
mass (FFM) was greater in female physique athletes that consumed 2.5 g protein/kg/day compared to
0.9 g protein/kg/day [38]. In addition, a study by Tinsley et al. [45] reported that time-restricted feeding
to a period of eight hours with protein intakes of 1.6 g/kg/day during eight weeks’ resistance training
does not adversely affect maximal strength, endurance or FFM.

Two studies showed that acute protein intakes of ~0.37 g/kg consumed post-resistance exercise
support an increased MPS [10], with a similar protein intake (~0.38 g/kg) ingested either pre- or
post-resistance exercise supporting increased maximal upper-body strength in recreationally active
females [41].

3.6. Intermittent Exercise

The daily protein requirements of competitive female athletes completing intermittent exercise
(Loughborough intermittent shuttle test) determined an EAR of 1.41 g protein/kg/day (calculated RDI
1.75 g/kg/day, Table 4) using the IAAO method [48]. Acute post-intermittent exercise protein intakes of
0.32–0.38 g/kg during eight weeks of training exerted beneficial physiological effects in four studies,
including an attenuation in the decline of reactive strength index post-exercise, reduced fat mass and
creatine kinase levels at 24 h post-exercise and increased maximal strength and lean mass [37,44,46,47].
Additionally, a comparison of whey vs. casein protein showed that the type of protein consumed
post-exercise did not affect measures of maximal strength or body composition [46].
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Table 2. Protein requirements of female athletes completing aerobic endurance exercise.

Author/Year
(Study Design) Female Athletes Menstrual Cycle/

Contraceptives Exercise Protocol Protein Intake Control/Comparison Intake Outcome(s) from Protein
Intake 1

Daily Protein Requirements

Houltham and
Rowlands 2014 [39]

(cross-over)

10 competitive
cyclists and
triathletes

61.3 ± 5.4 kg
Body fat % NR

Mid-follicular
(day 4–11)

90 min cycle intervals at
50–70% VO2max for 3 days

Daily protein intake 2.7 g/kg/day
(includes mean 0.75 g/kg whey

protein post-exercise) (daily
energy: 32% protein, 45% CHO,

23% fat)

Daily protein intake 1.4 g/kg/day
(habitual) (daily energy: 16%
protein, 54% CHO, 30% fat)

Positive nitrogen balance
vs. negative nitrogen

balance in control
EAR 1.63 g/kg/day
RDI 2 2.02 g/kg/day

Phillips et al. 1993
[16] (single

intervention) 3

Six recreationally
active students

58.1 ± 5.4 kg
Body fat 18.8 ± 1.7%

Mid-follicular
(day 4–11) 90 min run at 65% VO2max

Daily protein intake 0.8 g/kg/day
(breakfast energy: 4% protein, 82%

CHO, 14% fat)
N/A Negative nitrogen balance

Rowlands and
Wadsworth 2011
[42] (cross-over)

12 competitive
cyclists

60.8 ± 3.4 kg
Body fat 19 ± 3%

Six mid-follicular
(day 3–7),

six hormonal
contraceptives

150 min cycle intervals at
50–90% Wmax day 1, sprint

performance test (10 ×
workload max sprints) days 2

and 4

Protein blend 0.7 g/kg/h (with
1.4 g/kg/h CHO and 0.26 g/kg/h fat;

energy 30% protein, 59% CHO,
11% fat) for 4 h post-exercise with

high daily carbohydrate diet

Isocaloric control, protein
0.1 g/kg/h (with 2.1 g/kg/h CHO
and 0.26 g/kg/h fat; energy 4%

protein, 85% CHO, 11% fat) for 4 h
post-exercise with high daily

carbohydrate diet

Positive nitrogen balance
vs. negative nitrogen

balance in control
EAR 1.28 g/kg/day
RDI 2 1.59 g/kg/day

Acute Protein Requirements

Roy et al. 2002 [43]
(cross-over)

10 recreationally
trained endurance

athletes
61.6 ± 7.6 kg

Body fat 21.9 ± 1.1%

Four mid-follicular
(day 4–11),

six triphasic OCP

60 min cycle at 65% VO2peak
on days 1, 3, 4 and for 90 min

day 6, plus cycle to
exhaustion (75% VO2peak) on

day 7

Post-exercise: mixed supplement
0.24 g/kg whey protein (energy

23% protein, 66% CHO, 12% fat)
non-caloric placebo 10 h

pre-exercise (daily energy: 16%
protein, 58% CHO, 26% fat)

Pre-exercise: mixed supplement
0.24 g/kg whey protein 10 h

pre-exercise (energy 23% protein,
66% CHO, 12% fat) non-caloric

placebo post-exercise (daily energy:
16% protein, 58% CHO, 26% fat)

No differences in nitrogen
balance (trend for

improved balance on days
6 and 7 with post-exercise)
↓ body mass loss vs.

pre-exercise

EAR, estimated average requirement; CHO, carbohydrate; N/A, not applicable; NR, not reported; OCP, oral contraceptive pill; RDI, recommended dietary intake; VO2max, maximal oxygen
uptake; VO2peak, peak oxygen uptake; Wmax, watts maximum. 1 Differences refer to statistical significance reported in the study. 2 RDI calculated as 12% coefficient of variation (1.24 × EAR)
in accordance with Rand et al. [35]. 3 Comparison group data did not meet the inclusion criteria.
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Table 3. Protein requirements of female athletes completing resistance exercise.

Author/Year
(Study Design) Female Athletes Menstrual Cycle/

Contraceptives Exercise Protocol Protein Intake Control/Comparison Intake Outcome(s) from Protein
Intake 1

Daily Protein Requirements

Malowany et al. 2019
[40]

(cross-over)

Eight recreationally
active RT athletes

67.0 ± 7.7 kg
Body fat 24.4 ± 6.9%

Luteal (days NR) Single whole-body RT
session

Isocaloric meal with
0.2–2.9 g/kg/day crystalline amino
acid based on egg protein provided
in eight hourly doses post-exercise

(% energy NR)

N/A

EAR 1.49 g/kg/day
RDI 2 1.85 g/kg/day

Nitrogen balance
1.53 g/kg/day

Campbell et al. 2018
[38]

(cohort study)

17 physique athletes
(n = 8 intervention,

n = 9 control)
61.0 ± 6.1 kg

Body fat 22.7 ± 3.0%

NR
Eight-week whole-body

RT program,
two to four sessions/week

Daily protein intake 2.5 g/kg/day
(includes mean 0.41 g/kg whey
protein pre- and post-exercise.

Daily energy: 41% protein,
41% CHO, 18% fat)

Daily protein intake 0.9 g/kg/day
(includes acute mean 0.08 g/kg pre-

and post-exercise. Daily energy:
19% protein, 62% CHO, 19% fat)

↑maximal strength in
both groups

↑ FFM higher vs. control

Tinsley et al. 2019 [45]
(cohort study)

17 recreationally
active RT athletes

(n = 9 intervention,
n = 8 control)
63.9 ± 7.8 kg

Body fat < 33%

NR
Eight-week whole-body

RT program,
three sessions/week

Daily protein intake 1.6 g/kg/day
(includes mean 0.39 g/kg whey

protein post-exercise. Daily energy:
27% protein, 42% CHO, 34% fat)

Time-restricted (8 h) feeding with
daily protein intake 1.6 g/kg/day
(includes mean 0.39 g/kg whey

protein post-exercise. Daily energy:
27% protein, 39% CHO, 32% fat)

↑maximal strength,
endurance and FFM in

both groups

Acute Protein Requirements

West et al. 2012. [10]
(single intervention) 3

Eight recreationally
active

67.1 ± 5.6 kg
Body fat 23.1 ± 4.1%

Four
pre-menopausal

(phase NR),
four OCP

Single lower-body RT session
0.37 g/kg whey protein

post-exercise (daily energy: 15%
protein, 55% CHO, 30% fat)

N/A ↑MPS early (1–5 h) and late
(24–28 h) post-exercise

Pihoker et al. 2019
[41]

(cohort study)

43 recreationally
active (n = 17

pre-exercise and
n = 17 post-exercise,

n = 9 control)
66.5 ± 11.4 kg

Body fat % NR

NR
Six-week whole-body RT

program,
two sessions/week

Pre-exercise group: mixed
supplement 0.38 g/kg whey and

casein protein
Post-exercise group: mixed

supplement 0.38 g/kg whey and
casein protein

(supplement energy: 56% protein,
36% CHO, 8% fat)

No nutrition intake

↑maximal upper body
strength vs. control

No difference in lower
body strength or body
composition between

groups

EAR, estimated average requirement; CHO, carbohydrate; FFM, fat-free mass; whole-body, includes upper and lower body exercises; MPS, myofibrillar protein synthesis; N/A,
not applicable; NR, not reported; OCP, oral contraceptive pill; RDI, recommended dietary intake; RT, resistance training. 1 Differences refer to statistical significance reported in the study.
2 RDI calculated as 12% coefficient of variation (1.24 × EAR) in accordance with Rand et al. [35]. 3 Comparison group data did not meet the inclusion criteria. ↑, increase.



Nutrients 2020, 12, 3527 9 of 20

Table 4. Protein requirements of female athletes completing intermittent exercise.

Author/Year
(Study Design) Female Athletes Menstrual Cycle/

Contraceptives Exercise Protocol Protein Dose, Type, Timing Control/Comparison Intake Outcome(s) from Protein
Intake 1

Daily Protein Requirements

Wooding et al. 2017
[48] (cross-over)

Six competitive
rowing, ice hockey,
volleyball athletes

68.8 ± 4.1 kg
Body fat 21.8 ± 2.7%

Luteal (days NR)
Modified Loughborough test
(4 × 15 min variable intensity

shuttle run)

Isocaloric meal with
0.2–2.66 g/kg/day crystalline amino

acids based on egg protein
provided in eight hourly doses

post-exercise
(% energy NR)

N/A EAR 1.41 g/kg/day
RDI 2 1.75 g/kg/day

Acute Protein Requirements

Brown et al. 2018
[37]

(cohort)

20 competitive
dancers (n = 10

intervention, n = 10
control)

61.8 ± 7.9 kg
Body fat % NR

Six luteal,
14 hormonal

contraceptives
(groups NR)

15 × 30 m repeated sprints

0.32 g/kg whey protein
immediately and 2 h post-exercise

(energy 91% protein, 8% CHO,
1% fat)

(average daily protein intake of
1.8 g/kg/day. Daily energy:

21% protein, 63% CHO, 24% fat)

0.32 g/kg carbohydrate
immediately and 2 h post-exercise
(energy 0% protein, 99.5% CHO,

0.5% fat)
(daily protein intake 1.3 g/kg/day.

Daily energy: 15% protein,
61% CHO, 25% fat)

↓ decline in reactive
strength index during 72 h

post-exercise
↓ CK levels at 24 h

post-exercise

Wilborn et al. 2016
[47] (single

intervention) 3

Nine
resistance-trained

athletes
65.1 ± 8.4 kg

Body fat 25.5 ± 7.2%

NR

Eight-week whole-body
intermittent exercise

program,
four sessions/week

0.38 g/kg whey protein
post-exercise (energy 96% protein,

4% CHO, 0% fat)
(average daily protein intake

1.1 g/kg/day)

N/A ↑maximal strength and
agility

Taylor et al. 2016
[44]

(cohort)

14 competitive
basketballers (n = 8

intervention
66.0 ± 3.1 kg, body

fat 25.4 ± 4.2%;
n = 6 control

68.2 ± 7.6 kg, body
fat 25.1 ± 4.7%)

NR

Eight-week whole body
anaerobic, agility and

RT program,
four sessions/week

0.36 g/kg whey protein pre- and
post-exercise (energy 96% protein,

0% CHO, 4% fat) (average daily
protein intake 1.39 g/kg/day)

0.35 g/kg maltodextrin pre- and
post-exercise (energy 0% protein,
100% CHO, 0% fat) (daily protein

intake of 1.08 g/kg/day)

↑maximal strength and
agility scores vs. control

Wilborn et al. 2013
[46]

(cohort)

16 competitive
basketballers (n = 8

intervention
66.0 ± 4.9 kg, body

fat 27.0 ± 4.9%;
n = 8 comparison

68.0 ± 2.9 kg, body
fat 25.0 ± 5.7%)

NR

Eight-week whole body
anaerobic, agility and

RT program,
four sessions/week

0.36 g/kg whey protein pre- and
post-exercise (energy 83% protein,

14% CHO, 3% fat)
(daily protein intake NR)

0.35 g/kg casein protein pre- and
post-exercise (energy 86% protein,
11% CHO, 4% fat) (daily protein

intake NR)

↑maximal strength, lean
mass and anaerobic

performance, and ↓ in fat
mass in both groups

CK, creatine kinase; EAR, estimated average requirement; CHO, carbohydrate; whole body, includes upper and lower body; N/A, not applicable; NR, not reported; RDI, recommended
dietary intake; RT, resistance training. 1 Differences refer to statistical significance reported in the study. 2 RDI calculated as 12% coefficient of variation (1.24 × EAR) in accordance with
Rand et al. [35]. 3 Comparison group data did not meet the inclusion criteria. ↑, increase; ↓, decrease.
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4. Discussion

This systematic literature review aimed to determine the daily and acute protein requirements for
pre-menopausal female athletes and identify if the menstrual cycle phase and hormonal contraceptive
use influenced these requirements. Very limited research has been conducted on the protein
requirements of female athletes, but the quality of research included in this review is positive.
A key finding of this review is that the EAR for protein intake of pre-menopausal recreationally
active and/or competitive female athletes is similar for aerobic endurance exercise (1.28–1.63 g/kg/day),
resistance exercise (1.49 g/kg/day) and intermittent exercise (1.41 g/kg/day). These requirements
are within the mid-range of current sports nutrition guidelines (1.2–2.0 g/kg/day) for all athletes [3].
The optimal acute protein dose for female athletes remains to be determined. However, protein
intakes of 0.32–0.38 g/kg consumed pre- or post-exercise have demonstrated beneficial physiological
responses with resistance and intermittent exercise. Insufficient data were available to determine
the impact of menstrual cycle phase and hormonal contraceptive use on the protein requirements of
female athletes and is an area deserving further research. To the authors’ knowledge, this is the first
systematic literature review to determine the protein requirements of pre-menopausal female athletes.
The findings of this review can be used to inform the development of future female-specific sports
nutrition guidelines that can be used by sports nutrition professionals to plan and/or assess the adequacy
of dietary protein intakes when seeking to optimise physiological responses of pre-menopausal female
athletes. This review also highlights a number of key areas for future research.

4.1. Aerobic Endurance Exercise

Findings from this review indicate that the EAR for protein intake of competitive female endurance
athletes is 1.28–1.63 g/kg/day when completing multiple days of moderate to high-intensity cycling
intervals and/or sprints with an exercise duration up to 150 min [39,42]. It should be noted that protein
intakes at the EAR will achieve nitrogen balance in ~50% of competitive female cyclists completing an
equivalent exercise load and can be used for planning and assessing dietary intakes of groups of female
endurance athletes [4–6]. However, the calculated RDI of 1.59–2.02 g/kg/day is more appropriate
when planning and assessing the daily protein intake of individual athletes and will achieve nitrogen
balance in ~97–98% of pre-menopausal female endurance athletes during equivalent exercise [4–6].
The requirements (e.g., EAR and RDI) determined from this review, whilst based on limited research,
can be used to inform the updating or development of future sports nutrition guidelines. For example,
the EAR from this review is within the lower mid-range, whilst the RDI is within the upper mid-range
of protein guidelines for all athletes (1.2–2.0 g/kg/day) [3]. The EAR and RDI are, however, higher than
previous recommendations for female endurance athletes (0.88–0.94 g/kg/day for moderate intensity
and 1.28–1.36 g/kg/day for elite endurance athletes) that were believed to be ~15–25% lower than male
athletes [13,17]. Interestingly, the protein requirements based on nitrogen balance studies in this review
are similar to those determined by the IAAO method in male endurance athletes (EAR 1.65 g/kg/day
and RDI 1.83 g/kg/day) completing a 20 km treadmill run [49].

Differences in protein requirements of male and female endurance athletes are believed to
primarily arise from lower protein (and endogenous carbohydrate) oxidation and higher fat oxidation
during exercise [14–16]. However, these differences in substrate oxidation are diminished with high
carbohydrate availability (e.g., high availability of endogenous and exogenous carbohydrates) [50],
highlighting the importance for consideration of carbohydrate availability and energy balance on the
protein requirements of female endurance athletes. For example, female endurance athletes with low
carbohydrate and/or energy availability will likely have increased daily and acute protein requirements
due to increased protein oxidation during exercise, and to attenuate loss of lean body mass during
intensified training [17,43]. This point is especially prudent considering that inadequate energy intake
is a common feature amongst female endurance athletes [51,52]. Furthermore, the protein requirements
of female athletes may be increased with higher exercise intensity and longer exercise duration and
be influenced by the training status of the athlete [8,17,53,54]. Our findings therefore need to be
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interpreted and applied with consideration to nutritional status, exercise load and training status of
female endurance athletes. Moreover, it is possible that protein requirements of female endurance
athletes in this review have been overestimated due to high daily protein intakes and the limitations of
the nitrogen balance method for estimating protein requirements of athletes, see the review by Tipton
and Witard [8]. Recent research has also indicated that the IAAO method can overestimate protein
requirements in athletes with high habitual protein intakes and requires ≥5 days of dietary adaptation,
which is not commonly employed by studies using this method [9]. Further research using sound
methodological design is therefore required to enhance our current knowledge on protein requirements
and the practical application of daily protein intake recommendations for pre-menopausal female
endurance athletes across a range of contexts, such as menstrual cycle phase, energy balance status
and training modality.

The optimal acute protein dose for female endurance athletes could not be determined from the
one study included in this review that provided a set protein dose as part of a mixed macronutrient
supplement at 10 h pre- or post-exercise [43]. While research on the optimal acute protein dose in
female endurance athletes is lacking, a recent dose–response investigation in male endurance athletes
showed a post-exercise protein dose of 0.49 g/kg is required to maximally stimulate myofibrillar protein
synthesis, and a ~0.58 g/kg dose optimised whole-body protein balance and de novo mitochondrial and
myofibrillar protein synthesis [55]. Interestingly, these requirements are higher than post-resistance
exercise protein requirements (0.31 g/kg for myofibrillar protein synthesis) reported in a recent
review [11], suggesting endurance athletes should place a greater emphasis on protein intake
post-exercise [56]. While the optimal acute protein dose remains to be determined, the studies
in this review demonstrate that post-exercise protein intake is likely to be beneficial and should be
considered an important strategy when planning dietary protein intakes of pre-menopausal female
endurance athletes.

4.2. Resistance Exercise

Current evidence from this review shows that the EAR and RDI for protein intake of recreationally
active female athletes completing a single whole-body resistance training session is 1.49 g/kg/day and
1.85 g/kg/day, respectively [40]. However, longer-term (e.g., eight weeks) resistance training studies
consisting of two to four training sessions per week suggest that daily protein intakes ranging from
0.9–2.5 g/kg/day can support increases in maximal strength in recreationally trained and physique
sport female athletes [38,45]. The beneficial response across a large protein intake may be attributed to
the exercise training stimulus contributing to maximal strength responses to a greater extent than daily
protein intakes, which have only been shown to augment strength by ~9% [2]. In contrast to maximal
strength, higher protein intakes (1.6 g/kg/day) may be required to support increases in FFM during
long-term resistance training in female athletes [38,45].

The daily protein requirements of resistance-trained females in this review are, with the exception
of maximal strength, within the mid- to upper range of protein recommendations for all athletes
(1.2–2.0 g/kg/day) [3] and are similar to a recent meta-analysis that suggested an EAR of 1.62 g/kg/day
for resistance-trained male and female athletes [2]. It is important to note that several factors may
affect these daily protein requirements, including training load, habitual protein intake and training
status. For example, highly trained athletes may have reduced requirements due to lower protein
turnover, however, higher habitual protein intake and/or training load may offset and/or increase
protein requirements [57,58]. Furthermore, the daily protein requirements of female resistance-trained
athletes are likely to be higher during energy restriction for preventing muscle mass loss [59]. However,
such assumptions are based on male athletes, and further research is required to determine if training
volume, intensity, fitness level, habitual protein intake and energy balance impact the daily protein
requirements of resistance-trained female athletes to the same extent as male athletes.

Protein dose–response studies aimed at determining the amount of protein required for inducing
maximal post-resistance exercise MPS have exclusively been performed in recreationally active
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males [60–62]. Whist some research suggests a similar post-resistance exercise MPS between males
and females and in response to protein feeding [10,30,63], we do not have definitive evidence of
the dose required to achieve maximal MPS in females. Two studies in this review have observed
beneficial responses, such as increased MPS and upper-body strength, in recreationally active females
with protein doses of ~0.37–0.38 g/kg consumed pre- and post-resistance exercise [10,41]. However,
these intakes may exceed the requirements for optimal post-exercise MPS, which have been reported
as 0.31 g/kg protein, based on research that was predominantly conducted in males [60]. Considering
excessive intakes may contribute to increased amino acid oxidation and displacement of other important
nutrients (e.g., carbohydrate and/or energy intake) [11,64], future research should be conducted to
determine the protein dose required to achieve maximal post-resistance exercise MPS in pre-menopausal
female athletes.

4.3. Intermittent Exercise

Findings from one study in this review suggest the EAR and RDI for protein are 1.41 g/kg/day
and 1.75 g/kg/day, respectively, for competitive female sport athletes completing 60 min of intermittent
variable-intensity exercise [48]. These protein requirements are within the mid- (EAR) to upper (RDI)
range of general protein recommendations for all athletes (1.2–2.0 g/kg/day) [3]. In addition, the protein
requirements are similar to the aforementioned requirements of endurance and resistance-trained
athletes. It should be noted, however, that these requirements are based on limited research and that the
protein requirements of female athletes completing intermittent exercise are likely to vary considerably
depending on the physiological requirements of the exercise performed (e.g., exercise mode, intensity,
duration, rest periods, exercise order, etc.) [65]. Further research is therefore required to determine
how these factors influence the protein requirements of female athletes completing various types of
intermittent (e.g., sport-specific) exercise.

Acute post-intermittent exercise and/or pre- and post-intermittent exercise protein doses in the
range of 0.32–0.39 g/kg were shown to have beneficial physiological responses (increased maximal
strength, improved body composition and post-exercise recovery) in competitive female basketballers,
dancers and resistance-trained females [37,44,46,47]. Interestingly, the average daily protein intakes
(1.1–1.39 g/kg/day) in two of these studies [44,47] were below the daily protein EAR from this review
(1.41 g/kg/day). Improvements in maximal strength and agility in these studies may therefore be
attributed to enhanced recovery [37] from the post-exercise protein intake and/or the training stimulus
exerting a greater ergogenic response than the protein intake [2]. Similar to endurance and resistance
exercise, the optimal acute protein dose cannot be determined but is likely below 0.32–0.39 g/kg, and is
an area deserving further research.

4.4. Influence of Menstrual Cycle and Hormonal Contraceptives on the Protein Requirements of
Pre-Menopausal Female Athletes

The effect of hormone variations across the menstrual cycle and with hormonal contraceptive
use on the protein requirements of female athletes completing endurance, resistance and intermittent
exercise could not be determined from this review due to insufficient research exploring and/or
controlling for these factors. Despite this lack of research, it is plausible that the protein (and/or specific
amino acid) requirements of female athletes may be increased during the luteal phase of the menstrual
cycle when progesterone and oestrogen levels are both elevated. A decrease in plasma amino acids
during the luteal, compared to the follicular, phase of the menstrual cycle has been reported by several
studies in healthy non-athletic females [66–71] and may be attributed to increased cell cycle progression
and growth, and endometrial protein biosynthesis [69,72]. Increased nitrogen utilisation and excretion
in healthy females [29], and increased protein catabolism and decreased plasma amino acids in female
endurance athletes, have also been observed during the luteal phase of the menstrual cycle [14,73],
but the physiological implications of these responses on protein requirements remain to be explored.
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In contrast, there is some evidence to suggest that protein requirements may not vary across
the menstrual cycle. A cross-sectional study of female athletes in the follicular (n = 8) and in the
luteal (n = 7) phases of the menstrual cycle showed no difference in muscle myofibrillar or collagen
protein fractional synthetic rate (FSR) at 24 h post-endurance exercise [30]. It is, however, unknown if
the lack of difference in this study is attributed to the cross-sectional design, phase of the menstrual
cycle measured (e.g., early vs. mid-luteal phase), exercise protocol, protein intake and/or outcome
measures studied. Menstrual cycle disturbances, such as amenorrhea, anovulation and luteal phase
deficiency, are common in female athletes and may also contribute to variability in research findings if
the phase and hormonal fluctuations of a normal menstrual cycle are not appropriately verified [74].
Future research with the appropriate methodological design is therefore required to determine if the
protein requirements of female athletes are altered due to changes in hormone concentrations across
the menstrual cycle.

Similarly, further research is required to determine the effect of hormonal contraceptives on
the protein requirements of female athletes. The blood amino acid profile of contraceptive users
has consistently been shown to differ from non-contraceptive users [75–77], although it is currently
unknown if this alteration in amino acid metabolism affects protein requirements at rest or in response
to exercise. Any potential alteration in protein (and/or amino acid) requirements of female athletes
using hormonal contraceptives may also depend on the type and/or dose of hormones administered [75].
For example, a study has shown that female athletes using third-generation (i.e., low androgenic
activity progestins) OCPs had impaired myofibrillar protein FSR at rest and 24 h post-endurance
exercise compared to females using second-generation OCPs or in the follicular phase of the menstrual
cycle [31]. Subsequent research has, however, shown that OCP users had an increase in type I muscle
fibre cross-sectional area and a trend for increased muscle mass compared to non-OCP users during
10 weeks’ resistance training [78]. Interestingly, the OCP group had significantly higher protein
intakes than the non-OCP users (1.3 ± 0.2 g/kg/day vs. 1.1 ± 0.2 g/kg/day), although it is unknown if
differences in protein intake contributed to these results [78]. Considering the wide variety of hormonal
contraceptives available and that usage in female athletes is very common [24,25], future research into
the impact of hormonal contraceptive use on the protein requirements of female athletes is warranted.

4.5. Protein Type, Timing and Distribution

It should be noted that most of the studies in this review have used high biological value
(e.g., high digestibility, absorption and essential amino acid content) protein sources, such as whey
or simulated egg-based protein, that maximise post-exercise MPS in male athletes when compared
to plant-based sources [79–82]. Considering female athletes have demonstrated similar post-exercise
and protein feeding MPS responses to male athletes [10], it is possible that higher protein intakes than
outlined in this review may be required when lower biological value (e.g., plant-based) proteins are
consumed [82,83]. This may be of particular concern to female athletes who are more likely than male
athletes to follow specific diets, including vegetarian and vegan diets, that contain lower biological
value proteins compared to omnivorous diets [84,85].

Research from this review supports the notion that early (i.e., within 1 h) post-exercise protein
intake is beneficial for female athletes, potentially due to enhanced availability of amino acids for
protein anabolism [86,87]. Protein intake consumed immediately post-exercise improved nitrogen
balance and maintenance of body mass in female endurance athletes compared to protein intake
consumed 10 h pre-exercise [43]. Additionally, protein consumed either 15 min prior to or post-exercise
has been shown to support increases in maximal upper body strength in females during resistance
training [41]. Protein timing, however, may not be as important as the amount of protein consumed,
which has shown to contribute to muscle hypertrophy to a greater extent than timing in male and
female athletes [88,89]. Moreover, emerging research on pre-sleep protein intake in pre-menopausal
female athletes has shown no and/or trivial effects on next-morning endurance and resistance training
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exercise performance [90,91]. Further research is therefore required to determine the importance of
protein timing on the physiological adaptations of pre-menopausal female athletes.

The distribution of protein intake across the day can also influence protein anabolism with
optimised post-exercise intake (~0.25 g/kg) every three hours, promoting greater myofibrillar protein
synthesis than smaller doses (~0.12 g/kg) consumed more frequently (every 1.5 h) or larger doses
(~0.49 g/kg) consumed less frequently (every 6 h) [86]. A recent study in male athletes has also
demonstrated that evenly distributed protein intake across three meals augments muscle hypertrophy
with resistance training to a greater extent than uneven protein distribution across meals [92].
The optimal distribution of protein intake has not been studied in female athletes, but sports nutrition
guidelines recommend protein doses should be consumed every three to four hours across the
day [7]. These recommendations, however, are in contrast to a study within this review that showed
time-restricted feeding to a period of eight hours had no adverse effect on maximal strength and body
composition compared to equivalent protein intake (0.39 g/kg post-exercise dose and daily intake of
1.6 g/kg/day) with unrestricted feeding in female resistance-trained athletes [45]. Whilst the distribution
of protein intake cannot be determined from this study, the eight-hour feeding window would not
allow the aforementioned “optimal” distribution to be achieved. The conflicting findings between
current recommendations based on acute post-exercise responses and longer-term training studies may
be, at least partially, attributed to the adequate daily and acute post-exercise protein intakes, maximised
number of feeding occasions and/or co-ingestion of other nutrients in the training studies [45,93].

While this review has focused on protein requirements, the translation and practical application
of these requirements into sports nutrition guidelines need to be considered alongside female athletes’
requirements for other nutrients, such as carbohydrate, which have clear links to exercise performance
outcomes [3]. Despite the requirements and guidelines being provided based on body mass, it may
be challenging for female athletes to achieve high protein intakes alongside the requirement for
other nutrients due to generally lower overall energy requirements and intakes compared to male
athletes [94–96]. Studies in this review have reported the contribution of daily energy intake from
protein in the range of 19–41% is beneficial in supporting physiological responses, whereas intakes
at 15–16% of total energy were inadequate. Considering that protein intake is positively correlated
with energy intake in athletes [97], achieving adequate total daily energy intake may be an important
strategy that supports optimal protein intakes in female athletes. Research on dietary intakes of female
athletes suggests endurance (mean intake 1.5 ± 0.4 g/kg/day) and resistance-trained (mean intake
1.5 ± 0.5 g/kg/day) athletes achieve the EARs from this review [97]. However, the protein intake of
female intermittent athletes (mean intake 1.3 ± 0.3 g/kg/day) were below the EAR of 1.41 g/kg/day [97]
but would be deemed adequate if compared to the lower end of current guidelines (1.2 g/kg/day) [3].
Considering that the EAR represents a 50% probability of adequate intake, it is possible that many
female athletes may be at risk of inadequate protein intake, although further research is required to
determine this.

A strength of this review is the novel focus on female athletes and that the findings of this review
are based on positive quality studies, suggesting a low risk of bias. However, our findings are limited
by the small number of studies with recreationally active or competitive female athletes performing
up to four days per week of resistance or intermittent exercise and 60–180 min of endurance exercise.
The findings of this review therefore do not necessarily reflect the exercise schedule, intensity, duration,
fitness levels and energy balance of elite female athletes and the implications of these factors on their
protein requirements. This review has highlighted several significant gaps in the current research,
of which the biggest omission is the lack of research investigating the impact of endogenous and
exogenous female sex steroid hormones on the protein requirements of pre-menopausal female athletes.
Determining the impact of both endogenous and exogenous hormones on the protein requirements of
female athletes will be important for the future use of female athletes in sports science research, and also
have practical outcomes for the development of sports nutrition guidelines aimed at optimising exercise
training adaptation and post-exercise recovery.
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5. Conclusions

The EAR and RDI for protein intake of pre-menopausal recreational and/or competitive female
athletes are within the mid- to upper range of current sports nutrition guidelines (1.2–2.0 g/kg/day);
and are similar for aerobic endurance (EAR 1.28–1.63 g/kg/day, RDI 1.59–2.02 g/kg/day), resistance (EAR
1.49 g/kg/day, RDI 1.85 g/kg/day) and intermittent exercise (EAR 1.41 g/kg/day, RDI 1.75 g/kg/day).
These protein requirements can be used as a starting point for planning or assessing daily protein
intakes of recreational and competitive female athletes completing ~60–90 min of exercise. The optimal
acute (i.e., pre-, during or post-exercise) protein dose for female athletes remains to be determined.
However, pre- and post-exercise protein intakes of 0.32–0.38 g/kg have demonstrated beneficial
physiological responses in recreational and competitive female athletes completing resistance and
intermittent exercise. The influence of menstrual cycle phase and hormonal contraceptive use on these
protein requirements is unclear and requires further research. This review provides a foundation
for female-specific protein requirements and the future development of sports nutrition guidelines
that address the unique physiology of females and aim to enhance the preparation, performance and
recovery of female athletes.
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