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Abstract Mammalian glutamate transporters are crucial players in neuronal communication as

they perform neurotransmitter reuptake from the synaptic cleft. Besides L-glutamate and

L-aspartate, they also recognize D-aspartate, which might participate in mammalian

neurotransmission and/or neuromodulation. Much of the mechanistic insight in glutamate transport

comes from studies of the archeal homologs GltPh from Pyrococcus horikoshii and GltTk from

Thermococcus kodakarensis. Here, we show that GltTk transports D-aspartate with identical Na+:

substrate coupling stoichiometry as L-aspartate, and that the affinities (Kd and Km) for the two

substrates are similar. We determined a crystal structure of GltTk with bound D-aspartate at 2.8 Å

resolution. Comparison of the L- and D-aspartate bound GltTk structures revealed that D-aspartate

is accommodated with only minor rearrangements in the structure of the binding site. The structure

explains how the geometrically different molecules L- and D-aspartate are recognized and

transported by the protein in the same way.

DOI: https://doi.org/10.7554/eLife.45286.001

Introduction
Mammalian excitatory amino acid transporters (EAATs) are responsible for clearing the neurotrans-

mitter glutamate from the synaptic cleft (for review see Grewer et al., 2014; Takahashi et al.,

2015; Vandenberg and Ryan, 2013). EAATs are secondary transporters that couple glutamate

uptake to co-transport of three sodium ions and one proton and counter-transport of one potassium

ion (Levy et al., 1998; Owe et al., 2006; Zerangue and Kavanaugh, 1996). EAATs transport L-glu-

tamate, L- and D-aspartate with similar affinity (Arriza et al., 1994).

D-aspartate is considered as a putative mammalian neurotransmitter and/or neuromodulator

(Brown et al., 2007; D’Aniello et al., 2011; Spinelli et al., 2006) (reviewed in D’Aniello, 2007; Gen-

chi, 2017; Ota et al., 2012). Such a role is also proposed for L-aspartate (Cavallero et al., 2009),

however this is still a matter of debate (Herring et al., 2015). Both stereoisomers bind to and acti-

vate N-methyl-D-aspartate receptors (NMDARs) (Patneau and Mayer, 1990) and might be involved

in learning and memory processes (reviewed in Errico et al., 2018; Errico and Usiello, 2017;

Katane and Homma, 2011; Ota et al., 2012).

Although it is well established that EAATs take up D-aspartate (Arriza et al., 1994;

Gundersen et al., 1993), structural insight in the binding mode of the enantiomer is lacking. The

best structurally characterized members of the glutamate transporter family are the archeal homo-

logs GltPh and GltTk (Akyuz et al., 2015; Boudker et al., 2007; Guskov et al., 2016; Jensen et al.,

2013; Reyes et al., 2013; Reyes et al., 2009; Scopelliti et al., 2018; Verdon et al., 2014;

Verdon and Boudker, 2012; Yernool et al., 2004), which share 32–36% sequence identity with

eukaryotic EAATs (Jensen et al., 2013; Slotboom et al., 1999; Yernool et al., 2004). In contrast to

EAATs, GltPh and GltTk are highly selective for aspartate over glutamate, and couple uptake only to

co-transport of three sodium ions (Boudker et al., 2007; Groeneveld and Slotboom, 2010;
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Guskov et al., 2016). Despite these differences, the amino acid residues in the substrate-binding

sites of mammalian and prokaryotic glutamate transporters are highly conserved (Boudker et al.,

2007; Jensen et al., 2013). The first structures of human members of the glutamate transporter fam-

ily (Canul-Tec et al., 2017; Garaeva et al., 2018), showed that the substrate-binding sites are

indeed highly similar among homologs (Figure 2—figure supplement 1).

Here, we present the structure of GltTk with the enantiomeric substrate D-aspartate. The crystal

structure was obtained in the outward-facing state with the substrate oriented in a very similar mode

as L-aspartate, showing that the two enantiomers bind almost identically regardless of the mirrored

spatial arrangement of functional groups around the chiral Ca atom.

Results

Affinity of D-aspartate and stoichiometry of sodium binding to GltTk
Using Isothermal Titration Calorimetry (ITC), we determined the binding affinities of D-aspartate to

GltTk in the presence of varying concentrations of sodium ions (Figure 1A, Table 1). The affinity of

the transporter for D-aspartate was strongly dependent on the concentration of sodium, similar to

what has been reported for L-aspartate binding to GltPh and GltTk (Boudker et al., 2007;

Hänelt et al., 2015; Jensen et al., 2013; Reyes et al., 2013). At high sodium concentration (500

mM), the Kd values of GltTk for D- and L-aspartate binding level off to 374 ± 30 nM and 62 ± 3 nM,

respectively. The DH values for binding of both substrates were favorable, with a more negative

value of ~1 kcal mol�1 for L-aspartate, indicating a better binding geometry for L- than for D-aspar-

tate. For both substrates, the DS contribution was unfavorable (Table 1). When plotting the

observed Kd values for L- and D-aspartate against the sodium concentration (on logarithmic scales),

the slopes of both curves in the lower limit of the sodium concentration are close to �3, indicating

that binding of both compounds is coupled to the binding of three sodium ions (Boudker et al.,

2007; Lolkema and Slotboom, 2015) (Figure 1B).

To test whether D-aspartate is a transported substrate, purified GltTk was reconstituted into pro-

teoliposomes and uptake of [3H]-D-aspartate was assayed. GltTk catalyzed transport of the radiola-

beled substrate into the proteoliposomes. The Km for transport was 1.1 ± 0.11 mM at a sodium

concentration of 100 mM (Figure 1C). This value is comparable to the Km for L-aspartate uptake

under the same conditions (0.75 ± 0.17 mM). The stoichiometry Na+: D-aspartate was determined by

flux measurements of radiolabeled D-aspartate at different membrane voltages (Fitzgerald et al.,

2017). Depending on the concentrations of Na+ and D-aspartate on either side of the membrane,

the imposed voltages either lead to flux of radiolabeled D-aspartate across the membrane (accumu-

lation into or depletion from the lumen), or does not cause net flux (when the voltage equals the

equilibrium potential) (Fitzgerald et al., 2017). The equilibrium potentials for different possible stoi-

chiometries are calculated by:

Erev ¼�
60mV
n
m
� 1

n

m
log

Naþ½ �in
Naþ½ �out

þ log
S½ �in
S½ �out

� �

where n and m are the stoichiometric coefficients for Na+ and substrate S, respectively. Mem-

brane voltages were chosen that would match the equilibrium potential for stoichiometries of 2:1

(�78 mV), 3:1 (�39 mV) or 4:1 (�26 mV), and flux of radiolabeled D-aspartate was measured

(Figure 1D). At �78 mV D-aspartate was taken up into the lumen; at �26 mV it was released from

the liposomes; and at �39 mV there was little flux. From these data, we conclude that D-aspartate is

most likely symported with three sodium ions. However, the flux was not exactly zero at the calcu-

lated equilibrium potential of �39 mV for 3:1 stoichiometry. This small deviation could be caused by

systematic experimental errors, or by leakage or slippage (Parker et al., 2014; Shlosman et al.,

2018). To exclude that it was caused specifically by D-aspartate, we repeated the experiment using

radiolabeled L-aspartate. The equilibrium potentials for the experiments using D- and L-aspartate

were identical, showing that the two stereoisomers use the same coupling stoichiometry.

Similar mode of enantiomers binding
We determined a crystal structure of GltTk in complex with D-aspartate at 2.8 Å resolution

(Figure 2A,B). The obtained structure is highly similar to the previously described GltTk and GltPh
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Figure 1. Binding and transport of D-aspartate by GltTk. (A) ITC analysis of D-aspartate binding to GltTk in presence of 300 mM NaCl (Kd of 0.47 ± 0.17

mM). Insets show no D-aspartate binding in absence of NaCl. (B) Sodium and aspartate binding stoichiometry. Logarithmic plot of Kd values (nM) for

L-aspartate (black squares; slope is �2.8 ± 0.4; taken for reference from Guskov et al., 2016) and D-aspartate (gray circles; slope is �2.9 ± 0.2) against

logarithm of NaCl concentration (mM). The negative slope of the double logarithmic plot (red line) in the limit of low sodium concentrations indicates

the number of sodium ions that bind together with aspartate. Error bars represent the ±SD from at least three independent measurements. (C) GltTk
transport rate of D-aspartate in presence of 100 mM NaCl. The solid line reports the fit of the Michaelis-Menten model to the data revealing a Km

value of 1.1 ± 0.11 mM. Error bars represent the ±SD from duplicate experiments. (D) Determination of Na+ : aspartate coupling stoichiometry in GltTk
using equilibrium potential measurement. The uptake or efflux of radiolabeled aspartate was determined by comparing the lumenal radioactivity

associated with the liposomes after 2 min of incubation with the radioactivity initially present (Dcpm). Gray circles and black squares show the

measurements for D- and L-aspartate, respectively. The solid and dashed lines are the best linear regression for the D- and L-aspartate data,

Figure 1 continued on next page
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structures with the transport domains in the outward-oriented occluded state. Comparison of the

GltTk structures in complex with L- and D-aspartate revealed a highly similar binding mode of the

substrates with analogous orientation of amino and carboxyl groups. Despite the impossibility to

superimpose two enantiomers, D- and L-aspartate are capable of forming almost identical hydrogen

bonding networks with conserved amino acid residues of the substrate-binding site (Figure 2C).

There are only small changes in the positions of the Ca atoms and Cb carboxyl groups due to the

constitutional differences. However, this divergence leads to only minor changes in the interaction

network, consistent with the comparable Kd and DH values determined by ITC (Table 1).

Three peaks of electron density (Figure 2D; Figure 2—figure supplement 2) located at the same

positions as three sodium ions in the GltTk complex with L-aspartate (Guskov et al., 2016) most

probably correspond to sodium ions, consistent with a 3:1 Na+: D-aspartate coupling stoichiometry

(Figure 1B,D).

Discussion
Most proteins selectively bind a single stereoisomer of their substrates (for a review see

Nguyen et al., 2006). On the other hand, some proteins are able to bind different stereoisomers of

a ligand, which is believed to be possible due to different binding modes, because enantiomers can-

not be superimposed in the three-dimensional space and thus cannot interact with the binding site

identically.

Based on three- and four-point attachment models (Easson and Stedman, 1933; Mesecar and

Koshland, 2000; Ogston, 1948) it has been suggested that stereoisomers can bind in the same site

but with significant differences. This hypothesis was supported by crystal structures of enzymes with

different enantiomeric substrates (Brem et al., 2016; Sabini et al., 2008), including enantiomeric

amino acids (Aghaiypour et al., 2001; Bharath et al., 2012; Driggers et al., 2016;

Temperini et al., 2006). In contrast, the binding poses of enantiomers in some other enzymes are

remarkably similar, for instance in aspartate/glutamate racemase EcL-DER, where active site forms

pseudo-mirror symmetry (Liu et al., 2016).

To our knowledge GltTk is the first amino acid transporter for which the binding of enantiomeric

substrates has been characterized. The only other transporter for which structures have been deter-

mined in the presence of D- and L-substrates is the sodium-alanine symporter AgcS. However, in

that case, limited resolution prevented determination of the absolute orientation of bound enan-

tiomers (Ma et al., 2019). In the substrate-binding site of GltTk, L- and D-aspartate take similar poses

leading to almost identical networks of contacts. Since mirror imaged substrates inevitably have

Figure 1 continued

respectively. The 95% confidence interval for D-aspartate is displayed by gray curves. Numbers in parentheses are the coupling stoichiometries

expected to give zero flux conditions for each membrane voltage. Error bars represent the ± SD obtained in five replicates.

DOI: https://doi.org/10.7554/eLife.45286.002

The following source data is available for figure 1:

Source data 1. Final concentrations of internal and external buffer used in each reversal potential experiment after diluting the proteoliposomes.

DOI: https://doi.org/10.7554/eLife.45286.003

Table 1. Thermodynamic parameters of D- and L-aspartate binding at high (300 mM) and low (75

mM) Na+ concentration.

Substrate/ Na+ Kd (mM) DH (cal mol�1) DS (cal mol�1 K�1)

L-aspartate/300 mM NaCl 0.12 ± 0.04 �1.61 (±0.08) x 104 �22.1 ± 2.2

D-aspartate/300 mM NaCl 0.47 ± 0.17 �1.48 (±0.11) x 104 �20.6 ± 3.6

L-aspartate/75 mM NaCl 1.04 ± 0.39 �1.22 (±0.13) x 104 �13.2 ± 5.2

D-aspartate/75 mM NaCl 5.66 ± 1.59 �1.14 (±0.41) x 104 �14.3 ± 14.3*

*At low Na+ concentrations high errors prevented accurate measuring of DS values.

DOI: https://doi.org/10.7554/eLife.45286.004
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Figure 2. The crystal structure of GltTk with D-aspartate. The model contains one protein molecule in the asymmetric unit with the substrate present in

each protomer of the homotrimer. (A) Cartoon representation of the homotrimer viewed from the extracellular side of the membrane. Lines separate

protomers. Each protomer consists of the scaffold domain (pale green) and the transport domain. In the transport domain HP1 (yellow), HP2 (red),

TMS7 (orange) are shown. D-aspartate is shown as black sticks and Na+ ions as purple spheres. Like in most GltPh structures a part of the long flexible

loop 3–4 between the transport and scaffold domain is not visible. It is indicated by a dashed connection. (B) A single protomer is shown in the

membrane plane. (C) Comparison of the substrate-binding site of GltTk in complex with L-aspartate (gray; PDB code 5E9S) and D-aspartate (black).

Cartoon representation; substrates and contacting amino acid residues are shown as sticks; hydrogen bonds are shown as dashed lines. The GltTk
structures with D- and L-aspartate can be aligned with Ca-RMSD = 0.38 Å for the three transport domains. (D) Composite omit map (cyan mesh) for

D-aspartate (contoured at 1s) and sodium ions (2s) calculated using simulated annealing protocol in Phenix (Terwilliger et al., 2008). Color coding in

all panels is the same.

DOI: https://doi.org/10.7554/eLife.45286.005

The following figure supplements are available for figure 2:

Figure supplement 1. Superposition of substrate-binding sites of L-aspartate bound GltTk and thermostabilized human EAAT1.

DOI: https://doi.org/10.7554/eLife.45286.006

Figure 2 continued on next page
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differences in angles between donors and acceptors of hydrogen bonds, the binding affinities are

not identical, with 4–6 times higher Kd of the GltTk-D-aspartate complex in comparison with L-aspar-

tate (Table 1). Similar differences in binding affinities between these enantiomers were also found

for the GltPh homologue (Boudker et al., 2007). The higher Kd values for the D-aspartate enantio-

mer might be explained by a higher dissociation rate (koff) in comparison with L-aspartate, that was

shown in kinetic studies of sodium and aspartate binding on GltPh (Ewers et al., 2013;

Hänelt et al., 2015). GltTk couples binding and transport of three sodium ions to one D-aspartate

molecule (Figure 1B,D), the same number as for L-aspartate. Although the affinity for D-aspartate is

lower than for L-aspartate, the binding of D-aspartate is not accompanied by a loss of sodium bind-

ing sites, which is in line with the observation that none of the sodium binding sites are directly coor-

dinated by the substrate L-aspartate. In the crystal structure of GltTk with D-aspartate peaks of

density were resolved at positions corresponding to the three sodium ions in the L-aspartate bound

GltTk structure (Figure 2D) (Guskov et al., 2016). Altogether our data suggest that the mechanism

of D- and L-aspartate transport in GltTk is most probably identical.

Mammalian glutamate transporters take up D-aspartate, L-glutamate and L-aspartate with similar

micromolar affinity, but have significantly lower affinity (millimolar) for D-glutamate (Arriza et al.,

1997; Arriza et al., 1994). In the absence of the structures of human SLC1A transporters with differ-

ent stereoisomeric substrates, one can only speculate why EAATs can readily bind and transport

both L- and D-aspartate, but only L-glutamate. It seems that the extra methylene group in D-gluta-

mate compared to D-aspartate could cause sterical clashes within the binding site (Figure 2 — Fig-

ure 2—figure supplement 3), which might affect affinity of binding.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene TK0986 UniProt database Q5JID0

Strain, strain
background (E. coli)

MC1061 Casadaban and Cohen, 1980

Biological
sample
(Thermococcus
kodakarensis KOD1)

ATCC BAA-918/JCM
12380/KOD1

Recombinant
DNA reagent

pBAD24-GltTk-His8 Jensen et al., 2013 Expression plasmid
for C-terminally
His8-tagged GltTk.

Chemical
compound

D-Asp Sigma-Aldrich 219096–25G ReagentPlus99%

Software Origin 8 OriginLab

Continued on next page

Figure 2 continued

Figure supplement 2. Superposition of substrate and sodium binding sites in L-aspartate and D-aspartate bound GltTk.

DOI: https://doi.org/10.7554/eLife.45286.007

Figure supplement 3. Model of glutamate binding in EAAT1.

DOI: https://doi.org/10.7554/eLife.45286.008
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Other GltTk-D-aspartate coordinate file
and structural
factors

This paper accession number
PDB ID code 6R7R

Crystal structure
of the glutamate
transporter
homologue GltTk
in complex with
D-aspartate

Protein purification and crystallization
GltTk was expressed and purified as described previously (Guskov et al., 2016). It was shown that

L-aspartate binds to GltTk only if sodium ions are present, and the protein purified in absence of

sodium ions is in the apo state (Jensen et al., 2013). For crystallization with D-aspartate the apo

protein was purified by size exclusion chromatography (SEC) on a Superdex 200 10/300 GL (GE

Healthcare) column equilibrated with buffer containing 10 mM Hepes KOH, pH 8.0, 100 mM KCl,

0.15% DM. Crystals of GltTk with D-aspartate were obtained in presence of 300 mM NaCl, 300 mM

D-aspartate (Sigma-Aldrich, 99%) by the vapour diffusion technique (hanging drop) at 5˚C by mixing

equal volumes of protein (7 mg ml�1) and reservoir solution (20% glycerol, 10% PEG 4000, 100 mM

Tris/bicine, pH 8.0, 60 mM CaCl2, 60 mM MgCl2, 0.75% n-octyl-b-D-glucopyranoside (OG)).

Data collection and structure determination
Crystals were flash-frozen without any additional cryo protection and data sets were collected at

100K at the beamline ID23-1 (ESRF, Grenoble). The data were indexed, integrated and scaled in

XDS (Kabsch, 2010) and the structure was solved by Molecular Replacement with Phaser

(McCoy et al., 2007) using structure of GltTk (PDB ID 5E9S) as a search model. Manual model

rebuilding and refinement were carried out in COOT (Emsley et al., 2010) and Phenix refine

(Afonine et al., 2012). Data collection and refinement statistics are summarized in Table 2. Coordi-

nates and structure factors for GltTk have been deposited in the Protein Data Bank under accession

codes PDB 6R7R. All structural figures were produced with an open-source version of PyMol.

Isothermal titration calorimetry
ITC experiments were performed at a constant temperature of 25˚C using an ITC200 calorimeter

(MicroCal). Varying concentrations of the indicated substrates (in 10 mM Hepes KOH, pH 8.0, 100

mM KCl, 0.15% DM and indicated sodium concentrations) were titrated into a thermally equilibrated

ITC cell filled with 250 ml of 3–20 mM GltTk supplemented with 0 to 1000 mM NaCl. Data were ana-

lyzed using the ORIGIN-based software provided by MicroCal.

Reconstitution into proteoliposomes
A solution of E. coli total lipid extract (20 mg ml�1 in 50 mM KPi, pH 7.0) was extruded with a 400-

nm-diameter polycarbonate filter (Avestin, 11 passages) and diluted with the same buffer to a final

concentration of 4 mg ml�1. The lipid mixture was destabilized with 10% Triton-X100. Purified GltTk
and the destabilized lipids were mixed in a ratio of 1:1600 or 1:250 (protein: lipid) and incubated at

room temperature for 30 min. Bio-beads were added four times (25 mg ml�1, 15 mg ml�1, 19 mg

ml�1, 4 mg ml�1 lipid solution) after 0.5 hr, 1 hr, overnight and 2 hr incubation, respectively, on a

rocking platform at 4˚C. The Bio-beads were removed by passage over an empty Poly-Prep column

(Bio-Rad). The proteoliposomes were collected by centrifugation (20 min, 298,906 g, 4˚C), subse-
quently resuspended in 50 mM KPi, pH 7.0 to the concentration of the protein 33.4 mg ml�1 and

freeze-thawed for four cycles. The proteoliposomes were stored in liquid nitrogen until subsequent

experiments.

Uptake assay
Stored proteoliposomes with reconstitution ratio of 1:1600 were thawed and collected by centrifu-

gation (20 min, 298,906 g, 4˚C), the supernatant was discarded and the proteoliposomes were resus-

pended in buffer containing 10 mM KPi, pH 7.5, 300 mM KCl. The internal buffer was exchanged by

three cycles of freezing in liquid nitrogen and thawing, and finally extruded through a polycarbonate
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filter with 400 nm pore size (Avestin, 11 passages). The proteoliposomes were finally pelleted by

centrifugation (20 min, 298,906 g, 4˚C) and resuspended to the concentration of the protein 625 ng

ml�1. 2 ml of proteoliposomes were diluted 100 times in reaction buffer containing 10 mM KPi, pH

7.5, 100 mM NaCl, 200 mM Choline-Cl, 3 mM valinomycin and 0.2–15 mM D-aspartate (each concen-

tration point contained 0.2 mM [3H]-D-aspartate). After 15 s the reaction was quenched by adding 2

ml of ice-cold buffer (10 mM KPi, pH 7.5, 300 mM KCl) and immediately filtered on nitrocellulose fil-

ter (Protran BA 85-Whatman filter), finally the filter was washed with 2 ml of quenching buffer. The

filters were dissolved in scintillation cocktail and the radioactivity was measured with a PerkinElmer

Tri-Carb 2800RT liquid scintillation counter.

Measuring transporter equilibrium potentials
Stored proteoliposomes with reconstitution ratio of 1:250 were thawed and collected by centrifuga-

tion (20 min, 298,906 g, 4˚C), the supernatant was discarded and the proteoliposomes were resus-

pended to a concentration of 10 mg ml�1 of lipids in buffer containing 20 mM Hepes/Tris, pH 7.5,

200 mM NaCl, 50 mM KCl, 10 mM D-aspartate (containing 1 mM [3H]-D-aspartate). The internal

buffer was exchanged by freeze-thawing and extrusion as described above. The experiment was

Table 2. Data collection and refinement statistics.

GltTk D-Asp

Data collection

Space group P3221

Cell dimensions

a, b, c (Å) 116.55, 116.55, 314.77

a, b, g (˚) 90.00, 90.00 120.00

Resolution (Å) 48.06-2.80 (2.87-2.80)*

Rmeas 0.11 (>1)

CC1/2 99.9 (11.7)

I / sI 8.40 (0.98)

Completeness (%) 99.3 (98.9)

Redundancy 5 (4)

Refinement

Resolution (Å) 2.80

No. reflections 301,077

Rwork/Rfree (%)s 23.4/27.2

No. of atom

Protein 9262

PEG/detergent 181/33

Ligand/ion 27/9

Water -

B-factors

Protein 127

PEG/detergent 147/174

Ligand/ion 114/117

Water -

R.m.s. deviations

Bond lengths (Å) 0.008

Bond angles (˚) 1.162

*Values in parentheses are for the highest-resolution shell.

DOI: https://doi.org/10.7554/eLife.45286.009
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started by diluting the proteoliposomes 20 times into a buffer containing 20 mM Hepes/Tris, pH 7.5,

200 mM NaCl, 3 mM valinomycin, varying concentrations of KCl and Choline Cl were added in order

to obtain the desired membrane potential as shown in (Figure 1—source data 1).

After 1, 2 and 3 min the reaction was quenched with ice-cold quenching buffer containing 20 mM

Hepes/Tris, pH 7.5, 250 mM Choline Cl and immediately filtered on nitrocellulose filter (Protran BA

85-Whatman filter), finally the filter was washed with 2 ml of quenching buffer. The initial amount of

radiolabeled aspartate was measured by filtering the proteoliposomes immediately after diluting

them in quenching buffer. The filters were dissolved in scintillation cocktail and the radioactivity was

measured with a PerkinElmer Tri-Carb 2800RT liquid scintillation counter. The equilibrium, or rever-

sal, potential, Erev, for each condition was calculated as described in Fitzgerald et al. (2017).
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