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Protecting the death of nerve cells is an essential tactic for spinal cord injury (SCI) repair.
Recent studies show that nerve growth factors can reduce the death of nerve cells and
promote the healing of nerve injury. To investigate the conducive effect of fibroblast growth
factor 21 (FGF21) on SCI repair. FGF21 proteins were systemically delivered into rat model
of SCI via tail vein injection. We found that administration of FGF21 significantly promoted
the functional recovery of SCI as assessed by BBB scale and inclined plane test, and
attenuated cell death in the injured area by histopathological examination with Nissl
staining. This was accompanied with increased expression of NeuN, GAP43 and
NF200, and deceased expression of GFAP. Interestingly, FGF21 was found to
attenuate the elevated expression level of the autophagy marker LC3-II (microtubules
associated protein 1 light chain 3-II) induced by SCI in a dose-dependent manner. These
data show that FGF21 promotes the functional recovery of SCI via restraining injury-
induced cell autophagy, suggesting that systemic administration of FGF21 could have a
therapeutic potential for SCI repair.
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INTRODUCTION

Spinal cord injury (SCI) is a devastating neurological disorder resulting in the loss of motor and
sensory function (Taccola et al., 2018; Li et al., 2019). Due to the non-reproducibility of neurons, the
natural self-repair from SCI is very limited (Zholudeva et al., 2018). SCI can be operationally divided
into primary injury initiated by mechanical impact, and secondary injury caused by autophagy,
inflammation, apoptosis, oxidative stress and other factors (Kim et al., 2018; Ko et al., 2020; Vismara
et al., 2020). In SCI, following the primary injury, a large number of nerve cells are damaged by
subsequent secondary injury, resulting in severe functional loss (Qian et al., 2020; Zhang et al., 2020).
The damaged nerve fiber degeneration, local edema, ischemia and hypoxia caused by SCI will lead to
a series of secondary injury reactions such as anaerobic metabolism, tissue acidosis and free radical
reaction, which could promote the apoptosis and autophagy of spinal cord neurons due to the
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hypoxia microenvironment, resulting in continuous impairment
of spinal cord function (Lipinski et al., 2015; Gonzalez Porras
et al., 2018; Abbaszadeh et al., 2020). Therefore, the suppression
of secondary SCI to reduce the death of neurons has become a key
step for SCI repair therapy.

Autophagy is an important process of secondary SCI and has
become a hotspot in SCI repair research (Li et al., 2019; Wu and
Lipinski, 2019). Under physiological condition, autophagy is
characterized by “cellular self-digestion” of autophagosomes
with bilayer membrane structures in the cytoplasm (Schutter
and Graef, 2020), and is beneficial to maintaining cell activity.
However, in the pathogenesis of SCI, lysosomal injury and
dysfunction could cause defects in autophagy flux,
accumulation of autophagosomes and initiation of long-term
and excessive-scale autophagic activity, which results in the
damage of nerve cells (Rong et al., 2019). Microtubules
associated protein 1 light chain 3-II (LC3-II), located on
autophagy vesicles of mammalian cells is a specific marker
of autophagy, and has been used to indicate the level of
autophagy in cell (Malla et al., 2019). In the early stages of
SCI, oxidative stress and apoptotic pathways are activated
rapidly, mediating the death of spinal cord cells. In the
chronic recovery period, autophagy is dominant. Although
autophagy can clear damaged organelles in cells,
overactivation of autophagy can also induce cell death.
Therefore, inhibition of overactivative autophagy has
become a key strategy for SCI recovery (Tang et al., 2015;
Rong et al., 2019; Gu et al., 2020; Ko et al., 2020).

FGF21 is a member of FGF superfamily, which plays a role in
regulating lipid and glucose balance and preventing metabolic
disorders (Li, 2019; Keipert et al., 2020). In addition, FGF21 has
been shown to promote nerve cell repair and regulate nerve
development, survival and plasticity (Owen et al., 2014; von
Holstein-Rathlou et al., 2016; Xiao et al., 2019). Interestingly,
pancreas-derived FGF21 was found to promote the proliferation
of oligodendrocyte precursor cells (OPC) and drive remyelination in
the central nervous system (Kuroda et al., 2017). It was identified that
OPCs expressed FGF21 coreceptor β-klotho, and knockdown of
β-klotho expression in OPCs prevented the increase in OPC
proliferation and remyelination (Kuroda et al., 2017). More
recently, it has been reported that FGF21 can inhibit autophagy
and promote the recovery of peripheral nerves (Lu et al., 2019), but
the therapeutic effect of systemic administration of FGF21 on SCI
and the role of FGF21 in SCI-induced autophagy remain unclear. In
this study, FGF21 was administrated to SCI rats via tail vein injection
to observe its therapeutic effect on the recovery of the damaged spinal
cord. Here, we demonstrated for the first time that FGF21 promotes
functional recovery from SCI, protects neurons and axons, and
inhibits SCI-induced autophagy, and thus might serve as a
promising molecule for the therapy of SCI repair.

MATERIALS AND METHODS

Materials
Primary antibodies including neurofilament 200 (NF200,
ab4680), glial fibrillary acidic protein (GFAP, ab7260), NeuN

(ab104224), growth associated protein 43 (GAP43, ab75810), and
LC3-II (ab192890), and secondary antibodies including goat anti-
mouse 488 (ab150113), goat anti-rabbit 488 (ab150077), goat
anti-chicken 488 (ab150169) and goat anti-rabbit tritc (ab6718)
were purchased from Abcam (MC, United Kingdom). The DAPI
was also under the supply of Abcam (MC, United Kingdom).
Recombinant human FGF21 (rhFGF21) was obtained from Prof.
Xiaokun Li, Zhejiang Provincial Key Laboratory of
Biopharmaceuticals, Wenzhou Medical College, Wenzhou,
Zhejiang, China. It was previously reported that rhFGF21 was
produced using Escherichia coli and purified to be endotoxin free
(Wang et al., 2010), and its biological effect further tested in nerve
cells (Lu et al., 2019).

Animal Model of SCI
Forty adult female SD rats were provided by the Animal Center
of Chinese Academy of Sciences (Shanghai, China). The
average weight of the rats is from 220 to 250 g at the time of
surgery. Animal experiments were ethically approved by the
Animal Care and Use Committee of Wenzhou Medical College
(wydw2014-0074). The experiment was conducted according to
the national institutes of health’s guidelines for the care and use
of laboratory animals. For experimental purposes, these rats
were divided into four groups at random, including Sham
group, SCI group, treatment group with 100 μg/ml FGF21,
and treatment group with 500 μg/ml FGF21 (Lu et al., 2019).
After 10% chloral hydrate (3.5 ml/kg, i. p.) anesthesia, SD rats
were made an incision along the middle of the back skin to
expose the eighth to 10th thoracic spinal vertebrae. By striking
T9 segment of the spinal cord using a 10 g hammer and a 25-
mm-height free fall, the acute injury of SCI model was
generated. Animals in sham group underwent the same
operation procedures except the collision damage. Animal
care and treatment included bladder massage twice a day, in
the morning and evening, to help SD rats expel urine.

FGF21 Injection Through the Tail Vein to
Treat SCI
Half an hour after the SCI model was established, 200 μl of
100 μg/ml FGF21 and 500 μg/ml FGF21 were injected into rats
in different treatment groups through the tail vein, and then
repeated every other 2 days. The Sham group was injected with
saline alone at the same time. Tail vein injection was chosen to
more readily deliver the drug into the site of SCI via blood
circulation than intramuscular injection in this study. All the
animals stayed at cage to recover. Same moderate diet was given
to each group at fixed times.

Locomotion Recovery Assessment
The Basso, Beattie and Bresnahan (BBB) locomotor rating scale
scoring was conducted based on the natural process of exercise
recovery of SCI rats, which ranges from 0 (responding to paralysis
of the lower limbs) to 21 (reacting to normal motor function).
The slanted test refers to a test device that was used to test and
record the max angle at which rats could not fall and at least keep
their position for 5 s. After wetting the rats’ hind feet with red dye,
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FIGURE 1 | FGF21 treatment improves the recovery of spinal cord appearance and hindlimb function (A) Image to show different appearance of spinal cords in
every group (B)Motional sequence of rats in every group. The blue, green and red dot marks represent Hip (iliac crest), knee and ankle joints; respectively. And they are
connected by lines. Arrow displays the directions in which feet movement (C–E) Statistical graphs of height of trunk above the ground, foot-placement error and number
of successful plantar steps. Representation of data is mean values ±SEM, n � 6, “*” and “**” represent p < 0.05 or p < 0.01 vs the SCI group, “##” represent p < 0.01
vs the 100 μg/ml FGF21 group.

FIGURE 2 | FGF21 treatment facilitates locomotor function after SCI (A,B) Assessment of BBB scale and inclined plane test for each group. BBB score of 21
represented by the sham group is regarded as full score. Representation of data is mean values ±SEM, n � 6, “*” and “**” represent p < 0.05 or p < 0.01 vs the SCI group,
“#” represent p < 0.05 vs the 100 μg/ml FGF21 group (C) Image of footprint analyses of sham, SCI group, 100 μg/ml FGF21 group and 500 μg/ml FGF21 group.
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they were allowed to crawl through the suitable size box, then
performing footprint scanning and digital image analysis.

H & E Staining and Nissl Staining
To prepare samples for H & E staining, 10% chloral hydrate
(3.5 ml/kg, i.p.) was applied to anesthetize the SD rats, and then
thoracotomy was performed on the 60th day after injection. Rats
were perfused with 0.9% NaCl, subsequently 500 ml
paraformaldehyde phosphate buffer was injected into the heart
to harden the tissue of rats. The spinal cord was removed at the
eighth to 10th thoracic spinal vertebral level around the injury.
The spinal cord was fixed overnight in 4% paraformaldehyde, and
paraffin embedding was then performed. Hematoxylin and eosin
(H & E) and Nissl staining was then performed to paraffin
sections (5 μm thick) for histopathological examination.

Video Imaging of Locomotor Function
Six female SD rats were randomly selected from each group for
video imaging of locomotor function, including sham group, SCI
group, 100 μg/ml FGF21 group and 500 μg/ml FGF21 group.
Using a camera (Leica), rats of each group walked on a 1-m-long
glass runway with marker on the hind limbs to take photos of the
position of hips, knees, ankles and feet. Parameters to evaluate

locomotion were listed as follows. Firstly, weight support,
including height, hip height minus trunk width, equal to the
torso gap on the ground. Secondly, leg extensor spasms
(Quantifying the extent of extensor spasm by the time the foot
is overstretched and dragged and by the relative duration of the
legs on the back). Thirdly, the number of footsteps was recorded
(Previous steps counted as reference). Fourthly, the posture of the
foot (Measuring foot offset behind the hip at the beginning of the
ankle) was also recorded. The front legs were used to determine
the pace of walking steps (front leg steps/second) (Li et al., 2017).

Immunofluorescence Staining
After pretreatment with xylene, and sodium citrate etc., the sections
were incubated in PBS with 10% normal bovine serum and 0.1%
Triton X-100 at 37°C for 1 h, and then with an appropriate primary
antibody at 4°C overnight. The following primary antibodies against
GFAP43 (1:500), NeuN (1:1000), NF200 (1:1000), GFAP (1:1000),
LC3-II (1:500) were used. Next, the sections were washed with PBS
for three times at room temperature. After that, the corresponding
secondary antibodies (1: 500) were applied and incubated at 37°C
avoiding light for 1 h. Sections were then washed 3 times with PBS,
5 min each time. Then DAPI (0.25mg/ml) dye was applied for
7 min to allow nuclei staining. A Nikon ECLIPSE Ti microscope
(Nikon, Tokyo, Japan) was used to take images. Fluorescent images
were taken at the boundary between the normal area and the
damaged area in comparablematching anatomical regions. Imagine
J software was used to count the region of interest of at least three
images and then SPSS13 software to process the obtained data to
produce the statistical graph.

Statistical Analysis
Statistical package for the social sciences (SPSS) analysis was used
to evaluate the data which were expressed as mean ± SEM. When
the experimental group was conducted in two groups, the student
t test was applied to confirm the statistical significance. One-way
analysis of variance (ANOVA) and Dunnett’s post-mortem test
were employed to evaluate the data when the comparison was
conducted more than two groups. p < 0.05 was considered
statistically significant.

RESULTS

Systemic Administration of FGF21 Improves
the Recovery of Spinal Cord Appearance
and Hindlimb Function
To evaluate the treatment effect of FGF21 systemic injection on SCI,
the visual images of morphology of spinal cords were taken. The
spinal cord in the SCI group showed blackened and shrinked
appearance, whereas in the group with systemic administration
of FGF21, the spinal cord showed decreased color change and less
atrophy (Figure 1A). In addition, video recording sequences
revealed that the hind legs of SCI rats were stiff with no evident
joint movement, whereas FGF21 treated groups showed varying
degrees of improvement in hind leg movement as measured by
height and plantar steps (Figure 1B). Further, when compared with

FIGURE 3 | FGF21 treatment improves the tissue structure and number of
Nissl bodies (A) Images captured after H&E staining and Nissl staining. The
images showed the whole cross section of spinal cord, scale bar � 100 μm.
The part restricted by a rectangle represents region with high power
images, scale bar � 100 μm. The scale bar of Nissl staining images are
100 μm (B) Statistical graph of quantification of Nissl staining data from
(A). Representation of data is mean values ±SEM, n � 6, “*” and “**” represent
p < 0.05 or p < 0.01 vs the SCI or Sham group, “#” represent p < 0.05 vs
the 100 μg/ml FGF21 group.
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SCI group, the footstep errors of the FGF21 treated groups were
decreased as measured by the heights of trunk above the ground,
foot-placement errors and number of successful plantar steps
(Figures 1C–E).

Further, using BBB scale and inclined plane test, we found that
FGF21 treated groups exhibited improved locomotor function,
when compared with SCI group (F � 4.229 in BBB scale, F � 4.158
in inclined plane test. Figures 2A,B). Consistently, by footprint
analysis, FGF21 treated groups showed improved functional
recovery of SCI when compared with SCI group (Figure 2C).
Collectively, these results demonstrate a therapeutic effect of
FGF21 systemic administration on SCI repair.

FGF21 Treatment Promotes the Survival of
Neurons and the Improvement of Tissue
Density
H & E staining and Nissl staining were performed to examine the
structure of the spinal cord tissues. The staining of sham group
showed a complete organizational appearance with quite a few
large and medium-sized neurons. SCI group showed that the
some tissues at SCI sites were damaged, accompanied with a
massive reduction in the number of neurons. In FGF21 treated
groups, small and sporadic voids were detected with no apparent
necrosis. Noticeably, FGF21 treated group with administration of
500 μg/ml FGF21 group displayed a more complete

organizational structure with significantly more neurons and
Nissl bodies than 100 μg/ml FGF21 group and SCI group,
indicative of a dose dependent effect (Figure 3).

FGF21 Treatment Increases the Expression
of NeuN, GAP43 and NF200, and Deceases
the Expression of GFAP
Next, the protein expressions of NeuN and GAP43 were used to
evaluate neural regeneration. The immunofluorescence staining
of NeuN showed that more green fluorescence signals in FGF21
treated groups, when compared with the SCI group (Figures
4A,B). Similarly, the immunofluorescence staining of GAP43
showed that more green fluorescence signals in FGF21 treated
groups, when compared with the SCI group (Figures 4C,D).
These results indicated that FGF21 had a positive effect on the
survival and regeneration of axon.

Further, the immunofluorescence staining of NF200 showed
that the expression of NF200 was higher in FGF21 treated groups,
when compared with SCI group (Figure 5). These results suggest
that the systemic administration of FGF21 has the potential to
promote or maintain the regeneration of axon expanded over the
scar boundary after SCI.

In addition, protein GFAP is used to determine the formation of
the glial scar after SCI. Consistently, the immunofluorescence
staining of GFAP revealed that the GFAP expression were lower

FIGURE 4 | FGF21 treatment increases the expression of NeuN and GAP43 (A,C) Image of Immunofluorescence staining of NeuN and GAP43 in spinal cord
lesions for each group. The bright green dots are positively stained neurons marked with obvious NeuN and GAP43; respectively. DAPI (blue) is applied to mark nuclei.
scale bar � 100 μm (B,D) Analysis of mean fluorescence intensity. Representation of data is mean values ±SEM, n � 6, “**” represent p < 0.01 vs the SCI or Sham group,
“##” represent p < 0.01 vs the 100 μg/ml FGF21 group.
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in FGF21 treated groups when compared with SCI group. These
data suggest that FGF21 systemic injection could inhibit glial scar
formation of SCI (Figure 5). Taken together, these results indicate
that FGF21 treatment inhibits formation of glial scar and promotes
axon regeneration expanded over the scar boundary.

FGF21 Administration Attenuates
Autophagy Induced by SCI
To further explore whether the mechanism of FGF21’s in vivo
effect may involve regulating autophagy. We applied
immunofluorescence staining to detect the protein expression
of LC3-II, an autophagy marker, and found that LC3-II protein
expression was upregulated in SCI (Figure 6). Interestingly, the
expression level LC3-II protein was decreased in FGF21 treated
groups in a dose dependent manner, when compared with SCI
group. Collectively, our results indicate that FGF21 is able to
attenuate the SCI-induced autophagy, consistently with its in vivo
therapeutic effect on the functional recovery of SCI (Figure 6).

DISCUSSION

In this study, using systemic administration of FGF21 to rat
model of SCI, we have shown that FGF21 promotes the functional
recovery of SCI and inhibits SCI-induced autophagy, suggesting a
promising potential of FGF21 systemic administration in the
therapy of SCI repair for the first time.

FGF21 is generally considered to be an effective metabolic
regulator (Keipert et al., 2020; Zarei et al., 2020). There are few
reports on the role of FGF21 in mediating neuroprotection and
nerve regeneration. For instance, decreased FGF21 signal has
been shown not only to reduce the number of new axons formed
in the damaged loci, but also to alter the molecular structure of
axons(Douris et al., 2017; Lovadi et al., 2017; Xiao et al., 2019).
However, the role of FGF21 systemic administration in SCI repair
remains hitherto unknown. In this study, we showed the effect
and underlying molecular mechanism of FGF21 in mediating
neuroprotection and nerve regeneration after SCI. Interestingly,
we have found that FGF21 has a potent neuroprotective effect on

FIGURE 5 | FGF21 treatment increases the expression of NF200, and deceases the expression of GFAP (A)NF200 andGFAP staining in the sham, SCI group, and
FGF21 treated groups. The positive bright green dots represent NF200 staining, while the bright red dots represent GFAP staining. DAPI (blue) is in application to mark
nuclei, Scale bar � 100 μm (B,C) Quantification of the NF200 and GFAP positive staining is reflected by mean fluorescence intensity. Representation of data is mean
values ±SEM, n � 6, “**” represent p < 0.01 vs the SCI or Sham group, “##” represent p < 0.01 vs the 100 μg/ml FGF21 group.
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SCI, manifested in the recovery of motor function, inhibition of
neuronal death, and promotion of axonal elongation. In order to
further explore the protective mechanism of FGF21 on neurons,
we have investigated the effect of FGF21 on the autophagy.

After SCI, a microenvironment of ischemia, hypoxia and
inflammatory infiltration is formed at the injury site (Fan et al.,
2020; Kumar et al., 2020; Qian et al., 2020). Subsequently, lysosomal
damage and dysfunction can occur within affected cells, leading to
autophagy flux defects, accumulation of autophagosomes, initiation
of long-term large-scale autophagy, and active cell death, which is not
conducive to the survival of neurons (Bae et al., 2019; Rehorova et al.,
2019). Inhibition of excessive autophagy activation by
pharmacological intervention has been suggested to be a new
tactic to reduce neuronal death (Lee et al., 2020). Compared with

the short-term stress responsees such as oxidative stress and
apoptosis, autophagy exists in the whole process of SCI (Cortes
et al., 2014; He et al., 2016; Vahsen et al., 2020). Consistently, we
found that autophagy-related protein level LC3 II was significantly
induced in SCI, and whereas FGF21 attenuated SCI-induced
autophagy and improves the functional recovery of SCI.

Previous studies have shown that SCI can lead to the death of a
large number of neurons, the rupture of axons, and the formation of
dense glial scar to block axon growth and elongation (Wang et al.,
2019; Ma et al., 2020; Tran et al., 2020). These pathological changes
could result in severe motor sensory dysfunction (Su et al., 2019).
There is increasing evidence that autophagy is critically involved in the
death of nerve cells in the central nervous system injury conditions
(Pivtoraiko et al., 2009; Chen et al., 2017; Yan et al., 2019). Since it is

FIGURE 6 | FGF21 administration results in attenuation of SCI-induced autophagy (A) The immunofluorescence staining for LC3-II in Sham, SCI group, and FGF21
treated groups. Green fluorescence represents LC3-II. DAPI (blue) is applied to stain nuclei. Scale bar � 50 μm (B) Quantitation of the Immunofluorescence staining
results of LC3-II by mean fluorescence intensity. Representation of data is mean values ±SEM, n � 6, “**” represent p < 0.01 vs the SCI or Sham group, “##” represent
p < 0.01 vs the 100 μg/ml FGF21 group.
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difficult for neurons to regenerate, the best solution for neuron injury
is to protect neurons and reduce excessive autophagy in neurons
(Tsumuraya et al., 2015). Therefore, blocking autophagy cell death by
FGF21may represent an effective strategy to inhibit neuron death and
promote axonal elongation after SCI.

Taken together, our data indicate that systemic administration
of FGF21 can effectively improve the functional recovery after
SCI, reduce neuron death, and inhibit autophagy, and thus imply
that FGF21 may serve as a potential therapeutic molecule for SCI
repair (Figure 7).

FIGURE 7 | Injection of FGF21 inhibits autophagy and promotes motor function recovery.
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