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Abstract Connective tissue growth factor (CCN2) is a
major pro-fibrotic factor that frequently acts downstream of
transforming growth factor beta (TGF-β)-mediated fibro-
genic pathways. Much of our knowledge of CCN2 in
fibrosis has come from studies in which its production or
activity have been experimentally attenuated. These studies,
performed both in vitro and in animal models, have
demonstrated the utility of pharmacological inhibitors (e.g.
tumor necrosis factor alpha (TNF-α), prostaglandins,
peroxisome proliferator-activated receptor-gamma (PPAR-γ)
agonists, statins, kinase inhibitors), neutralizing antibodies,
antisense oligonucleotides, or small interfering RNA (siRNA)
to probe the role of CCN2 in fibrogenic pathways. These
investigations have allowed the mechanisms regulating CCN2
production to be more clearly defined, have shown that CCN2
is a rational anti-fibrotic target, and have established a
framework for developing effective modalities of therapeutic
intervention in vivo.
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Abbreviations
αSMA alpha smooth muscle actin
CCl4 carbon tetrachloride
CCN2 connective tissue growth factor
COX cyclo-oxygenase
CVIR Collagen Type VI receptor
ECM extracellular matrix
HSC hepatic stellate cell
PG prostaglandin
PSC pancreatic stellate cell
RT-PCR reverse-transcriptase polymerase chain reaction
siRNA small interfering RNA
TGF-β transforming growth factor beta
TIMP tissue inhibitor of metalloprotease
TNF-α tumor necrosis factor alpha

Introduction

Since the recognition almost 20 years ago that connective
tissue growth factor (CCN2) mRNA is induced in cultured
fibroblasts by transforming growth factor beta (TGF-β)
(Brunner et al. 1991), there has been a concerted effort to
understand the mechanistic basis of this relationship and to
explore its in vivo consequences (Leask and Abraham 2003;
Shi-Wen et al. 2008; Leask et al. 2009). Nowhere is this
more apparent than in the field of fibrosis, which currently
represents the most common pathophysiology in which
CCN2 has been implicated (Rachfal and Brigstock 2005)
and in which there is an extensively documented role for
TGF-β as well (Verrecchia and Mauviel 2007). Fibrosis
arises due to a failure of the normal wound healing response
to terminate, leading to excessive scarring characterized
by profound production, deposition, and contraction of
extracellular matrix (ECM). This process usually occurs
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over many months and years, and can lead to organ
dysfunction or death. Key observations have included the
following: 1) CCN2 and TGF-β are highly over-expressed
and spatio-temporally correlated in numerous fibrotic
lesions; 2) CCN2 induces the synthesis and secretion of
ECM proteins, notably of fibrillar collagens which are a
major component of fibrous deposits; and 3) TGF-β-
mediated collagen synthesis in vitro is blocked by CCN2
antagonists. These observations have been complemented
by a careful molecular dissection of the TGF-β-inductive
axis and important response elements in the CCN2
promoter have now been identified that are involved in
the regulation of CCN2 mRNA expression, although their
relative contributions vary according to cell type (Shi-Wen
et al. 2008; Leask et al. 2009).

On the other hand, it is important to be mindful of
several caveats. Since CCN2 is a multi-modular matricel-
lular protein, it probably resides in the ECM or tethered to
the cell surface via integrins, heparan sulfate proteoglycans,
and other receptors where it likely acts as a binding partner
for other cell regulatory molecules (Chen and Lau 2008).
Thus the pro-fibrotic properties of CCN2 may actually be a
reflection of its ability to amplify fibrogenic responses to
other factors. For example, a binding interaction between
the CCN2 and TGF-β proteins has been reported (Abreu et
al. 2002) and this association may explain the synergistic
interaction of these molecules in mouse models of dermal
fibrosis whereas CCN2 alone is unable to drive sustained
fibrosis (Frazier et al. 1996; Mori et al. 1999; Chujo et al.
2005). Also, there is no fibrosis in livers or kidneys of mice
over-expressing tissue-specific CCN2 transgenes, yet the
presence of the CCN2 transgene clearly exacerbates the
population of pro-fibrogenic cell types, ECM deposition and/
or expression of fibrogenic markers after the organs undergo
injury (Tong and Brigstock 2005; Yokoi et al. 2008). Thus
while considerable data support a central role for CCN2 in
fibrosis and its induction by TGF-β, we actually have a quite
limited understanding of the various signaling events and
molecular cross-talk that underlie its fibrogenic actions.

Fibrosis affects millions of people world-wide causing
incalculable morbidity and mortality. In the USA it has
been estimated that fibrosis of internal organs is a contrib-
uting factor in 45% of all deaths, yet there are currently no
anti-fibrotics that have been approved for use by the US
Food and Drug Administration. Nonetheless, prospects for
effective anti-fibrotic therapies have improved rapidly in the
last decade and are based on targeting key participants in
fibrogenic cascades (Ghiassi-Nejad and Friedman 2008).
Hence, it is not surprising that investigators have begun to
address the potential therapeutic benefit of targeting CCN2
as an anti-fibrotic strategy (Blom et al. 2002; Leask et al.
2002). A particular attraction of this approach is that CCN2
acts downstream of TGF-β so targeting strategies that focus

on preventing CCN2 production or action would avoid
potential interference with the important tumor-suppressive
and immuno-modulatory actions that are the hallmark of
TGF-β function and which have complicated the targeting
of TGF-β itself.

This article describes the experimental strategies that
have proven effective for blocking CCN2-mediated fibro-
genic pathways in cell cultures or animal models and which
support further investigations of anti-CCN2 therapy for
treating or preventing fibrosis in humans.

Pharmacological inhibitors

Tumor necrosis factor alpha (TNF-α)

TNF-α is mainly recognized as a proinflammatory cytokine
but it also has anti-fibrotic effects in vitro and in vivo
(Leask and Abraham 2004) leading several investigators to
analyze its effect on CCN2 expression. Thus, TNF-α was
shown to reduce basal CCN2 expression in bovine aortic
endothelial cells, fibroblasts and vascular smooth muscle
cells (Dammeier et al. 1998; Lin et al. 1998) as well as in
TGF-β-stimulated fibroblasts or airway smooth muscle
cells (Abraham et al. 2000; Xie et al. 2005; Beddy et al.
2006), dexamethasome-stimulated Balb/c 3 T3 cells
(Dammeier et al. 1998) or histamine-stimulated lung
fibroblasts (Kunzmann et al. 2007). However, in pancreatic
stellate cells (PSC) or mesangial cells, the effect of TNF-α
was actually to stimulate CCN2 expression (Cooker et al.
2007; Karger et al. 2008) while it had no effect on
constitutive CCN2 expression in scleroderma fibroblasts
(Abraham et al. 2000) or glucose-stimulated CCN2
expression in peritoneal mesothelial cells (Sakamoto et
al. 2005). While the anti-fibrotic actions of TNF-α were
initially attributed to interference of TGF-β pathways
either by NF-κB-mediated induction of Smad7 or JNK-
mediated suppression of Smad 3 (Leask and Abraham
2004), the data now suggest that these pathways are over-
ridden or inoperative under some circumstances in some
cell types. Hence the use of TNF-α as a CCN2 inhibitor
must therefore be carefully validated for each specific
experimental system under investigation.

Prostaglandins (PG)

In fibroblasts, TGF-β or TNF-α induce expression of cyclo-
oxygenase-1 or -2 (COX-1, COX-2) respectively, which
catalyze the production of PG from arachidonic acid. Awell
documented effect of PG in some systems is that of being
anti-fibrotic, a property that is attributed to their activation
of protein kinase A and elevation of intracellular cAMP
levels (Leask and Abraham 2004). Indeed, early studies
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showed that cAMP blocking agents such as cholera toxin,
forskolin or 8-Br-cAMP were effective in preventing TGF-
β-induced CCN2 production and anchorage-independent
growth in NRK cells (Kothapalli et al. 1998). Forskolin
also blocked CCN2 mRNA expression in TGF-β-stimulated
human lung or renal mesangial cells (Black et al. 2007).
Additionally, prostaglandin E2 (PGE2) inhibited TGF-β-
stimulated CCN2 production in pulmonary fibroblasts or
mesangial cells, glucose-induced CCN2 levels in kidney
mesangial cells, or TGF-β-induced CCN2 production by
airway smooth muscle cells or rat-1 cells, the latter of
which was mediated via EP-2 receptors (Ricupero et al.
1999; Yu et al. 2002; Makino et al. 2003; Burgess et al.
2006; Black et al. 2007). Iloprost, a synthetic analogue of
prostacyclin PGI2 that is used to help relieve Raynaud’s
phenomenon in scleroderma patients, elevates cAMP levels
and antagonizes the ras/MEK/ERK signaling cascade
necessary for induction of CCN2 (Stratton et al. 2001,
2002; Leask et al. 2003), and its inhibitory effect on CCN2
expression has been applied in an in vivo model of liver
regeneration to demonstrate the CCN2-dependency of Thy-
1+oval cell recruitment (Pi et al. 2005). The suppression of
CCN2 or collagen production by 9-cis-retinoic acid in
scleroderma fibroblasts is due to its induction of COX-2
and PGE2 expression (Xiao et al. 2008), while all-trans
retinoic acid exerted anti-fibrotic effects in the liver and
was associated with decreased CCN2 and TGF-β produc-
tion (Wang et al. 2008). Further, the involvement of ras/
MEK/ERK in CCN2 expression has allowed these path-
ways to be explored with specific kinase inhibitors such as
U0126 or PD98059 (Black et al. 2007; Pickles and Leask
2007; Leask et al. 2008).

It should be stressed that exceptions have been noted in
how PG influences CCN2 expression in some experimental
systems. For example, the action of PGF2α in the cat iris
is associated with increased CCN2 expression (Liang et
al. 2003) while gingival fibroblasts are resistant to PG-
mediated CCN2 inhibition because the cAMP pathway is
poorly coupled to the ras/MEK/ERK pathway and because
PGE2 acts via the EP3 receptor to elevate JNK which opposes
cAMP-mediated CCN2 inhibition (Black et al. 2007). Thus
while PGs and their up- or down-stream mediators are often
inhibitory for CCN2 expression, their actual effects must be
experimentally validated to take account of cell- or tissue-
specific variations in PG responses.

Peroxisome proliferator-activated receptor-gamma
(PPAR-γ) agonists

PPAR-γ is a nuclear receptor and a ligand-activated
transcription factor that acts in adipocytes as a lipid sensor
for fatty acids, eicosanoids, or their metabolites. However,
experimental studies of PPAR-γ using the natural ligand

15-deoxy-Δ12,14 prostaglandin J2 or synthetic ligands such
as rosiglitazone, pioglitazone, or GW7845 have shown that
PPAR-γ acts in a variety of cell types where it can mediate
suppression of basal or TGF-β-stimulated collagen synthe-
sis in vitro or in vivo (Ghosh et al. 2004; Burgess et al.
2005; Milam et al. 2008). Accumulating data clearly shows
that CCN2 is attenuated in many cell types upon stimula-
tion of PPAR-γ. For example in activated hepatic stellate
cells (HSC), TGF-β-mediated CCN2 expression was
inhibited by PPAR-γ (Sun et al. 2006), the effect of which
was increased by treatment of the cells with curcumin
which stimulated of PPAR-γ expression (Zheng and Chen
2006). In vascular smooth muscle cells, PPAR-γ inhibited
TGF-β- or angiotensin-induced CCN2 expression in smooth
muscle cells via Smad-dependent mechanisms (Fu et al. 2001;
Gao et al. 2007). Other in vitro experiments have shown that
PPAR-γ also inhibits CCN2 expression in renal tubular
epithelial cells (Wei et al. 2007a, b), renal fibroblasts (Wang
et al. 2007), and hepatocytes (Gressner et al. 2008), the latter
of which was promoted by caffeine, suggesting its potential
use as an anti-fibrotic (Gressner et al. 2008; Leask 2008). In
vivo, administration of PPAR-γ agonoists caused decreased
CCN2 production in models of conjuctival scarring and lung
injury (Aoki et al. 2008; Yamanaka et al. 2009).

Statins

Statins are a class of cholesterol-lowering drugs that acts by
inhibiting HMG-CoA reductase, the rate-limiting enzyme
of the mevalonate pathway of cholesterol biosynthesis.
However they also have anti-inflammatory, anti-oxidant
and immunomodulatory actions, and have also been shown
to be anti-fibrotic in models of renal interstitial fibrosis in
rats (Li et al. 2004; Vieira et al. 2005). Some of these
anti-fibrotic effects may be due, at least in part, to the
attentuation of CCN2 expression which has been docu-
mented in several different systems and in response to a
variety of statins. In vitro, CCN2 expression was inhibited
by treatment of mesangial cells, lung fibroblasts or renal
fibroblats with simvastatin (Eberlein et al. 2001; Goppelt-
Struebe et al. 2001; Heusinger-Ribeiro et al. 2004; Watts
and Spiteri 2004; Watts et al. 2005), renal fibroblasts or
tenon fibroblasts with lovastatin (Eberlein et al. 2001; Meyer-
Ter-Vehn et al. 2008), renal tubular epithelial cells with
pravastatin (Wei et al. 2007a), normal rat kidney cells with
fluvastatin (Ikeuchi et al. 2004), or rat cardiac fibroblasts
with atorvastatin (Martin et al. 2005). Moreover, CCN2
expression is suppressed in various animal models undergo-
ing statin treatment including fluvastatin-treated nephropathy
(Song et al. 2004), cerivastatin-treated renal fibrosis (Koepke
et al. 2007), atorvastatin-treated vascular fibrosis (Ruperez
et al. 2007), pravastin-treated intestinal fibrosis (Haydont et
al. 2007), or simvastatin-treated pulmonary fibrosis (Ou et al.
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2008). The inhibition of CCN2 expression by statins is
attributable to their interference with the Rock-Rho signaling
pathway (Eberlein et al. 2001; Watts and Spiteri 2004;
Haydont et al. 2007; Ruperez et al. 2007) which has been
recognized as a potential anti-fibrotic target (Moriyama and
Nagatoya 2004).

Clearly, considerable data has been amassed regarding
the pharmacological inhibition of CCN2 that has helped
to understand the mechanisms up- or down-stream of
CCN2 expression in normal and pathological processes,
and it is possible that these findings will help to facilitate
or justify the therapeutic use of these compounds for
treating human fibrotic disease. On the other hand, these
inhibitors generally do not act in a manner that is CCN2-
specific because they regulate multiple signaling path-
ways and gene transcription events of which CCN2 is but
one component. This lack of specificity is thus a draw-
back when trying to definitively pin-point processes that
are absolutely CCN2-dependent.

Neutralizing antibodies that block CCN2 action

Several CCN2 antibodies, generated by immunization of
chickens, rabbits or mice with a variety of CCN2 proteins
or peptides, have been reported to have neutralizing
activity. These antibodies include the following: polyclonal
chicken antibodies raised against full length human CCN2
(Kothapalli et al. 1997); polyclonal antibodies against
synthetic peptides corresponding to the domain between
module 3 and module 4 including anti-CCN2[244-256]
(HDLEENIKKGKKC) raised in chicken (Safadi et al.
2003) and anti-CCN2[240-259] (RPCEADLEENIKKGKK
CIRT) raised in rabbit (Shimo et al. 2001); two humanized
monoclonal antibodies raised against recombinant human
CCN2 with specificity for module 2 which have been termed
“JMAb31” (human IgG2) and “FG-3019” (human IgG1κ),
the latter of which recognizes residues 142–157 (Aikawa et
al. 2006; Shimo et al. 2006); and monoclonal antibodies
generated by genetic immunization of mice with human
CCN2 cDNA that are specific for module 2 or module 3 or
module 4 (Ikawa et al. 2008).

In general, these antibodies are not widely available and
in only a few instances have they been tested in systems that
address the fibrogenic properties of CCN2. More often, they
have been used to probe the role of CCN2 in other biological
processes such as anchorage-independent growth, tumori-
genesis, metastasis angiogenesis, osteogenesis, and chondro-
genesis (Kothapalli et al. 1997; Shimo et al. 2001, 2006;
Safadi et al. 2003; Aikawa et al. 2006; Dornhofer et al.
2006). Given the structural complexities of the CCN2
molecule, the presence of multiple functional sites (e.g.
integrin-binding) in more than one module, its susceptibility

for proteolytic cleavage into smaller bioactive forms, and the
broad repertoire of binding partners for CCN2 (the require-
ment for which in its full spectrum of activities has not been
systematically addressed) (Brigstock 1999; Chen and Lau
2008), it is possible that a “one-size-fits-all” blocking
antibody may not be technically feasible or capable of
yielding definitive data for all of the many different read-outs
of CCN2 activity. Indeed, the extent to which any of the
aforementioned antibodies prevent CCN2 from stimulating
its respective target cells by specific blocking of one or more
functional sites in the CCN2 molecule versus “non-specific”
steric hindrance has not been reported. While the answer
to this question may be inconsequential in terms of
exerting a neutralizing effect per se, it is a critical if we
are to understand mechanistically the components of CCN2-
mediated fibrogenic cascades.

While CCN2 neutralizing antibodies have been used in
in vitro experiments to demonstrate CCN2-dependency of
TGF-β-induced collagen production (Duncan et al. 1999;
Blalock et al. 2003), there are only a handful of published
reports that support their use in fibrosis research in vivo.
FG-3019 has been reported to show efficacy in models of
renal fibrosis in rodents (Flyvbjerg et al. 2004; Wang et al.
2004a) and is currently under evaluation for phase I trials of
kidney or lung fibrosis in humans (Mageto et al. 2004;
Adler et al. 2006). Also genetic immunization of human
CCN2 cDNA in mice yielded several monoclonal anti-
bodies that reduced TGF-β-dependent fibrosis and collagen
deposition in a mouse skin model, the most potent of which
was targeted to module 2 (Ikawa et al. 2008). Thus the
published data obtained with neutralizing CCN2 antibodies
are very limited but do provide evidence for a role of CCN2
in fibrosis. Nonetheless, while these data suggest that
module 2 is highly immunogenic and is involved somehow
in fibrosis (Aikawa et al. 2006; Shimo et al. 2006; Ikawa
et al. 2008), we must be mindful of the fact that forms of
CCN2 comprising either module 3 alone or module 4
alone are bioactive and fibrogenic (Gao et al. 2004; Gao
and Brigstock 2004, 2005, 2006; Tong and Brigstock
2006). Clearly we have much to learn about the functional
domains in CCN2 and how they act independently or
inter-dependently to support or drive fibrosis.

The lack of readily accessible and/or validated CCN2
neutralizing antibodies represents a huge frustration in the
field. To circumvent this problem, many investigators
have instead focused on antagonism of CCN2 mRNA
using complementary DNA or RNA sequences - for which
the reagents have been easier to develop and validate
among the various laboratories involved. Thus, the role of
CCN2 mRNA expression in fibrogenic pathways and its
TGF-β-dependency or -independency has been investigat-
ed successfully and extensively using CCN2 antisense
oligonucleotides or small interfering RNA (siRNA).
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In vitro use of CCN2 antisense oligonucleotides or siRNA

The use of CCN2 antisense oligonucleotides has helped to
establish the role of CCN2 in TGF-β-induced collagen
production in several cell types such as kidney mesangial
cells, normal rat kidney cells, corneal fibroblasts, and
conjuctival fibroblasts (Duncan et al. 1999; Yokoi et al.
2001, 2002; Blalock et al. 2003; Kanemoto et al. 2003;
Yamanaka et al. 2008). Similar in vitro studies have shown
reduced collagen synthesis in scleroderma fibroblasts (Xiao
et al. 2006), reduced ECM production in vascular smooth
muscle cells (Liu et al. 2007), or antagonism of TGF-β-

stimulated collagen production in dermal fibroblasts, osteo-
blasts or rat HSC (Wang et al. 2004b; Arnott et al. 2007; Li
et al. 2008) after treatment of the target cells with CCN2
siRNA. Plasmids expressing short hairpin RNA were shown
to disrupt CCN2 gene expression in cultured rat HSC and to
cause marked attenuation in the production of collagens III
and IV, laminin, and hyaluronic acid (Yuhua et al. 2008).
Finally, hammerhead ribozymes designed to cleave CCN2
mRNA blocked TGF-β-mediated proliferation of dermal
fibroblasts (Blalock et al. 2004) as well as basal or TGF-β-
stimulated collagen synthesis and entry into S phase of
human HSC (D.R.B and R. Gao, unpublished observations).
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Fig. 1 a Production of targeted liposomes. A synthetic cyclic
C*GRGDSPC* peptide was modified at its free N-terminus with
the bifunctional linker succinimidyl-S-acetylthioacetate (SATA), the
thiol group of which allowed for subsequent coupling to a maleimide
linker in a modified lipid formulation (1,2-dioleoyl-sn-Glycero-3-
Phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-
carboxamide]; 18:1 PE-MCC). Targeted liposomes were loaded with
mouse CCN2 siRNA (sense: 5’-CCGCAAGAUUGGCGUGUGCtt;
antisense: 5’-GCACACGCCAAUCUUGCGGtt; nucleotides 546-

566). b CCN2 siRNA in targeted liposomes attenuates TGF-β-
stimulated CCN2 production in mouse HSC in vitro. Day2 primary
mouse HSC were transfected for 6 hours with either 2µM CCN2
siRNA or scrambled siRNA (SsiRNA) using targeted lipsomes. On
the next day, the cells were stimulated with 20 ng/ml TGF-β for 24
hours and then analyzed for CCN2 protein or mRNA by,
respectively, flow cytometry or RT-PCR (inset) as described (Leask
et al. 2008; Lawrencia et al. 2009). CCN2 siRNA, but not SsiRNA,
was effective in blocking TGF-β-induced CCN2 mRNA and protein
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In vivo use of CCN2 antisense oligonucleotides or siRNA

Several reports have supported the efficacy of anti-CCN2
mRNA strategies in treating hepatic fibrosis in vivo. In
carbon tetrachloride (CCl4)-induced liver fibrosis in rats,

subcutaneous administration of anti-sense CCN2 oligonu-
cleotides resulted in decreased hepatic mRNA levels of
CCN2 and collagen type I mRNA levels, although the
amount of hepatic fibrosis was not actually reduced, possibly
due to high expression of tissue inhibitor of metalloprotease
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Fig. 2 Targeted CCN2 siRNA suppresses accumulation of αSMA or
collagen deposition in preventative fibrosis model. Livers were
sectioned and processed to detect αSMA (upper panel; brown stain)
or collagen deposition (lower panel; blue stain) after administration
of oil a or CCl4 for 3 weeks b-e, the latter 2 weeks of which were
given concurrent with either no therapy b, scrambled CCN2 siRNA
in targeted liposomes c, CCN2 siRNA in non-targeted liposomes d,

or CCN2 siRNA in targeted liposomes (E). CCl4 was given i.m. as
four 30μl doses (1:1 CCl4 : olive oil) per week. siRNA treatments
(0.1 mg/kg) were given 4 times a week by i.p. injection. The staining
intensity was assessed by image analysis (50 sections; 10 sections
from each of 5 mice) and is shown in the bar graph. Data shown are
indicative of the data from 3 separate experiments
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(TIMP)-1 (Uchio et al. 2004). On the other hand, intraportal
vein injection of CCN2 siRNA in CCl4-treated rats reduced
hepatic expression of CCN2, collagen Types 1, 2, 3, laminin,
TIMP-1, and TGF-β, reduced the number of activated HSC

as assessed by αSMA staining, and further reduced serum
procollagen Type 3, hepatic hydroxyproline and liver fibrosis
staging (Li et al. 2006). A very similar improvement was also
seen in N-nitrosodimethylamine-induced hepatic fibrosis in
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Fig. 3 Targeted CCN2 siRNA prevents accumulation of αSMA or
collagen deposition in curative fibrosis model Livers were sectioned
and processed to detect αSMA (upper panel; brown stain) or collagen
deposition (lower panel; blue stain) after administration of oil a or
CCl4 for 5 weeks b-e, the latter 2 weeks of which were given
concurrent with either no therapy b, scrambled CCN2 siRNA in
targeted liposomes c, CCN2 siRNA in non-targeted liposomes d, or

CCN2 siRNA in targeted liposomes e. CCl4 was given i.m. as
four 30μl doses (1:1 CCl4:olive oil) per week. siRNA treatments
(0.1 mg/kg) were given 4 times a week by i.p. injection. The staining
intensity was assessed by image analysis (50 sections; 10 sections
from each of 5 mice) and is shown in the bar graph. Data shown are
indicative of the data from 3 separate experiments
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rats for which CCN2 siRNAwas found to be effective in both
preventative and curative fibrosis models (George and
Tsutsumi 2007).

Similar outcomes have been reported in other model
systems, most notably for kidney fibrosis. For example, in a
unilateral ureteral obstruction model of renal fibrosis in the
rat, blocking the activity of CCN2 by antisense oligonu-
cleotides reduced the induction of CCN2 and, in turn, ECM
genes and their corresponding proteins (Yokoi et al. 2004).
CCN2 antisense oligonucleotides also significantly blocked
CCN2 expression and renal interstitial fibrogenesis in a
remnant kidney model of sub-totally nephrectomized mice
transgenic for TGF-β, despite sustained expression of TGF-
β (Okada et al. 2005). Other in vivo studies have shown
that CCN2 siRNA delivery to rats is an effective anti-
fibrotic therapy in renal allografts after transplantation (Luo
et al. 2008). Finally, CCN2 antisense oligonucleotides have
proven effective in reducing ECM expansion and scarring
around breast implants (Mazaheri et al. 2003).

Clearly, we have witnessed the advent of an era in which
unequivocal anti-fibrotic effects can be achieved by block-
ing CCN2 mRNA in vivo. This line of investigation is
undoubtedly in its infancy but shows great promise in that
some remarkable and reproducible therapeutic effects have
been reported despite the use of different model systems.

New data from the author’s laboratory: Targeted CCN2
mRNA silencing in vivo

Previous studies have shown that the cyclic peptide
C*GRGDSPC*, which selectively binds to collagen Type
VI receptors (CVIR) on activated HSC (Marcelino and

McDevitt 1995), can be used as a homing device to target
to HSC in fibrotic livers (Beljaars et al. 2000). This
approach has attracted attention because it provides for a
targeting strategy whereby anti-fibrotic agents can be
delivered more efficiently to the highly pro-fibrotic HSC
despite their relatively low abundance. Recently, it was
reported that delivery of interferon-α1b in liposomes coated
with a slightly modified form of the CVIR-binding peptide
was delivered highly efficiently to activated HSC in vivo
and was anti-fibrotic in a bile duct ligation model of liver
fibrosis in rats (Du et al. 2007). In concurrent experiments
performed in this laboratory, a CVIR-binding cyclic peptide
was covalently bound to the surface of modified liposomes
(Fig. 1a) and used for delivery of CCN2 siRNA in mouse
models of CCl4-induced liver fibrosis (Lawrencia and
Brigstock 2008). Prior to performing the in vivo experi-
ments, the efficacy of the targeted liposomes in reducing
CCN2 mRNA expression and protein production in primary
mouse HSC was verified by reverse-transcriptase polymer-
ase chain reaction (RT-PCR) and flow cytometry (Fig. 1b).
For in vivo studies, Balb/c mice received an i.m. injection
of CCl4 on four consecutive days each week for either
1 week (preventative model) or 3 weeks (curative model).
For the next 2 weeks, mice continued to receive CCl4 under
the same dosing regimen plus mouse CCN2 siRNA which
was delivered 4 times a week by i.p. injection, in either
targeted or non-targeted liposomes. Control mice received
either oil instead of CCl4 or a scrambled CCN2 siRNA
sequence in the targeted liposomes.

In both the preventative (Fig. 2) and curative (Fig. 3)
models, immunohistochemical staining for αSMA (a marker
of activated HSC) and trichrome staining for collagen
revealed very low levels of each molecule in control oil-
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model mice received no therapy
b, scrambled CCN2 siRNA in
targeted liposomes c, CCN2
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treated animals (Figs 2, 3, panel a) and massive amounts of
αSMA and collagen (bridging fibrosis) in response to
CCl4 (Figs 2, 3, panel b) as expected. This staining pattern
remained unaltered in the presence of targeted scrambled
CCN2 siRNA (Figs 2, 3, panel c). The CCl4-induced
levels of αSMA and collagen were diminished by non-
targeted antisense CCN2 siRNA (Figs 2, 3, panel d) but
the targeted antisense CCN2 siRNA approach was
considerably more efficacious in that αSMA and collagen
levels were reduced to background levels (Figs 2, 3, panel
e) and essentially indistinguishable from those of oil
treated animals.

As assessed by RT-PCR, the expression of key fibrotic
markers was strongly attenuated by the targeted CCN2
therapy in both fibrosis models. The data for the preventative
and curative models (Fig. 4) showed that the transcript
levels for collagen α1(I), αSMA, TGF-β, or CCN2 were
highly induced by CCl4 treatment as expected. These
expression levels remained high in the presence of targeted
scrambled CCN2 siRNA as expected and were only
modestly reduced by the non-targeted CCN2 siRNA.
However, the targeted CCN2 siRNA caused the mRNA
levels of collagen α1(I), αSMA, TGF-β or CCN2 to be
reduced to background levels and were therefore indistin-
guishable from oil-treated controls. These data were thus
consistent with the histological findings in each model
(Figs 2, 3)

On the one hand, these data show that non-targeted lipo-
somes carrying CCN2 siRNA do exhibit therapeutic efficacy
as also recently demonstrated in N-nitrosodimethylamine-
induced hepatic fibrosis in rats (George and Tsutsumi 2007),
and this presumably reflects the fact that the liver is one of
the principal organs in which liposomes tend to accumulate
after injection (Ostro and Cullis 1989). On the other hand,
the targeted liposomes were more effective than non-targeted
liposomes in either preventing or reversing fibrosis and
attenuating expression of fibrosis-related genes even in the
continued presence of the fibrotic insult. While these
findings reinforce a central role for CCN2 hepatic fibrosis,
the fact that higher levels of CVIR are produced by HSC in
fibrotic injury and were the presumptive binding site for the
targeted peptide in these studies suggest that CCN2 of HSC
origin may be particularly important in driving hepatic
fibrosis in vivo. The data additionally highlight the potential
versatility of using targeted liposomes to deliver other
therapeutic siRNAs to HSC in injured liver. Indeed, a similar
system was recently described in which vitamin A-coated
liposomes were shown to preferentially bind to HSC and to
reverse acute and chronic fibrosis and prolong survival in
rats upon delivery of siRNA to rat gp46, a collagen
chaperone that is homologous to human heat shock protein
47 (Sato et al. 2008). Targeted strategies have also been
described for other organ systems such as the kidney

(Prakash et al. 2008) but it is uncertain whether this degree
of sophistication will in fact be necessary for the successful
implementation of anti-fibrotic therapy in humans (Friedman
2008).

Conclusions

A variety of CCN2 antagonistic strategies have been
developed in numerous experimental systems that dem-
onstrate a central role for CCN2 in fibrogenesis and
which, in turn, have shown that targeting of CCN2 expression
or action is a rational therapeutic approach in fibrotic
pathologies. A diverse repertoire of techniques has been
described that are effective in blocking CCN2 but it is
important to appreciate their individual limitations and to be
mindful of alternative approaches for studying CCN2 mech-
anisms. For example, CCN2-null mice are amenable to
elegant exploration of CCN2-dependent pathways in vivo
(Ivkovic et al. 2003; Chuva de Sousa Lopes et al. 2004;
Kuiper et al. 2007, 2008; Nishida et al. 2007; Kawaki et al.
2008a, b), and the analysis of specific cell types derived from
these CCN2-deficient animals hold promise for further
definition of CCN2-dependent mechanisms in vitro, includ-
ing those related to fibrosis (Chen et al. 2004; Shi-wen et al.
2006; Kennedy et al. 2007; Kawaki et al. 2008a; Mori et al.
2008; Pala et al. 2008; Crawford et al. 2009). Nonetheless,
the ability to attenuate CCN2 production in fibrotic tissues
remains a reasonable and realistic goal. With respect to anti-
fibrotic strategies in humans, the challenges ahead will be to
establish which fibrotic pathologies, if any, are best suited to
CCN2 targeting (possibly in combination with targeting of
other fibrogenic mediators) and to determine the optimal
form(s) that this therapy should take.
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