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Abstract

To provide insight and to identify the occurrence of mechanistic changes in relation to variance in

solvent-type, the solvent effects on the rates of solvolysis of three substrates, 2,2,2-trichloro-1,1-

dimethylethyl chloroformate, 2,2,2-trichloroethyl chloroformate, and 1-chloroethyl chloroformate,

are analyzed using linear free energy relationships (LFERs) such as the extended Grunwald-

Winstein equation, and a similarity-based LFER model approach that is based on the solvolysis of

phenyl chloroformate. At 25.0 °C, in four common solvents, the α-chloroethyl chloroformate was

found to react considerably faster than the two β,β,β-trichloro-substituted analogs. This immense

rate enhancement can be directly related to the proximity of the electron-withdrawing α-chlorine

atom to the carbonyl carbon reaction center. In the thirteen solvents studied, 1-chloroethyl

chloroformate was found to strictly follow a carbonyl addition process, with the addition-step

being rate-determining. For the two β,β,β-trichloro-substrates, in aqueous mixtures that are very

rich in a fluoroalcohol component, there is compelling evidence for the occurrence of side-by-side

addition-elimination and ionization mechanisms, with the ionization pathway being predominant.

The presence of the two methyl groups on the α-carbon of 2,2,2-trichloro-1,1-dimethylethyl

chloroformate has additive steric and stereoelectronic implications, causing its rate of reaction to

be significantly slower than that of 2,2,2-trichloroethyl chloroformate.
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1. INTRODUCTION

Chloroformates are synthetically useful carboxylic acid esters whose chemistry [1–3]

acquiesces them to have wide ranging applications as solvents, or industrial precursors, in

myriad agricultural and pharmaceutical manufacturing processes [4–7]. Moreover the

presence of syn geometry [8,9] in their structure, induces efficient chemoselective methods

for cleaving and/or removing protecting groups [6,10–12]. For alkyl chloroformates, the

aqueous binary solvolytic displacement behavior at the electrophilic carbonyl carbon was

shown to be directly linked to both the type of alkyl group present, and to the dielectric

constant of the participating solvents [13–34]. Conclusions for the majority of such

solvolytic studies [19–24, 26–34], were obtained through detailed analyses procured when

experimental kinetic rate data were incorporated into linear free energy relationships

(LFERs), such as the extended Grunwald-Winstein (G-W) equation (equation 1) [35].

(1)

In equation 1, k and ko are the specific rates of solvolysis in a given solvent and in 80%

ethanol (the standard solvent). The sensitivity to changes in solvent nucleophilicity (NT) are

approximated by l, m represents the sensitivity to changes in the solvent ionizing power YCl,

and c is a constant (residual) term. The NT scale developed for considerations of solvent

nucleophilicity is based on the solvolyses of the S-methyldibenzothiophenium ion [36,37].

The solvent ionizing power YCl scale is based on the solvolysis of 1- or 2-adamantyl

derivatives [38–42]. Equation 1 can also be applied to substitutions at an acyl carbon [43].

Whenever there is the possibility of the presence of charge delocalization due to anchimeric

assistance resulting from 1,2-Wagner-Meerwein-type migrations or when, conjugated π-

electrons are adjacent to the developing carbocationic center, an additional hI term

[26,34,44–46] is added to the shown as equation 1, to give equation 2. In equation 2, h

represents the sensitivity of solvolyses to changes in the aromatic ring parameter I [44–46].

(2)

In a recent review chapter [34], we discuss in detail, the equations 1 and 2 analyses obtained

for several examples of alkyl, aryl, alkenyl, and alkynyl chloroformate solvolyses. All of the

considerations [34] indicated the immense usefulness of equations 1 and 2. We have

strongly suggested [26,34,43,47] that the l (1.66) and m (0.56) values (l/m ratio of 2.96)

obtained for the solvolysis of phenyl chloroformate (PhOCOCl, 1) in the 49 solvents

studied, be used as a standard indicator for chloroformate solvolysis pathways that

incorporate a rate-determining formation of the tetrahedral intermediate in a carbonyl

addition process (Scheme 1).

Substituting both oxygen atoms in 1 with sulfur, yields the dithioester phenyl

chlorodithioformate (PhSCSCl, 2). Application of equations 1 and 2 to solvolytic rate data

for 2 results in l values of 0.69 and 0.80, and m values of 0.95 and 1.02 [47,48], respectively.

The l/m ratios (0.73 and 0.78) can be considered [26,33] as good indicators for ionization
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(SN1 type) mechanisms with significant solvation at the developing thioacylium ion. (or

acylium ion in the case of the chloroformate analog) The accompanying h value of 0.42

obtained [47,48] for 2 (using equation 2), suggests that there is a minimal charge

delocalization into the aromatic ring.

Scheme 2 depicts a simple probable ionization with the formation of an acyl cation. There is

justifiable evidence [19,23,26,27,29,34] for a concerted solvolysis-decomposition process

occurring, such that the cation involved in product formation is the alkyl cation.

Likewise, several groups [9,16,17,25,28,32] have used kinetic solvent isotope effect (KSIE)

studies to further probe the pseudo-first-order kinetic mechanisms of chloroformates and

have provided very strong evidence, that the solvolysis of these substrates does include

some general-base assistance (as indicated in Scheme 1). Our recent 2013 review chapter

[34] documented the many methodical solvolytic investigations completed (to date) for

structurally diverse alkyl, aryl, alkenyl, and alkynyl chloroformates. We showed that their

solvolytic behavior varied between concurrent bimolecular addition-elimination (A-E) and

unimolecular (SN1 type) ionization (or solvolysis-decomposition) pathways. The dominance

of one pathway over the other was shown to be very strongly dependent on type of substrate

employed, and on the solvent’s nucleophilicity and ionizing power ability [34 and references

therein].

Common marketable β,β,β-trichloroalkyl chloroformates are, 2,2,2-trichloro-1-1-

dimethylethyl chloroformate (3), and 2,2,2-trichloro-1-1-dimethylethyl chloroformate (4). A

readily available and widely used α-chloro substituted chloroformate, is 1-chloroethyl

chloroformate (5). All three compounds have substantial commercial use in peptide

synthesis containing secondary and tertiary amines [49,50], as the carbamates developed for

protection using these base-labile protection groups are easily cleaved by solvolysis [51].

Koh and Kang [28,32] followed the course of the solvolysis reactions in 3 and 4, by

measuring the change in conductivity that occurred during the reaction. They used equation

1, to analyze the kinetic rate data for 3 and 4 and obtained l values of 1.42 and 1.34, and m

values of 0.39 and 0.50 in 33 and 34 different mixed solvents respectively. Additionally,

they obtained relatively large kinetic solvent isotope effects (kMeOH/kMeOD) of 2.14 and

2.39. Based on these experimental results, Koh and Kang [28,32] proposed a bimolecular

SN2 mechanism for the two β,β,β-trichloroethyl chloroformate substrates (3 and 4). They

stipulated that the mechanism had a transition-state (TS) where the bond-making component

was more progressed, and based on their experimental kMeOH/kMeOD values, suggested that

this SN2 TS is assisted by general-base catalysis. When the report of the Koh and Kang

study of 3 appeared [28], the Wesley College undergraduate research group was

independently following the rates of its reaction using a titrimetric method of analysis [52].

2. EXPERIMENTAL METHODS

The 2,2,2-trichloro-1,1-dimethylethyl chloroformate (3, 96%, Sigma-Aldrich) and the 1-

chloroethyl chloroformate (5, 98%, Sigma-Aldrich) were used as received. Solvents were

purified as described previously [20]. For 3 and 5, a substrate concentration in the 0.003 –
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0.009 M range in a variety of solvents was employed. For 3, the 25.0 mL binary solution

mixtures were first allowed to equilibrate in a 35.0 °C constant-temperature water bath and

then, the progress of the reaction was monitored by titrating aliquots of the solution using a

lacmoid indicator. The rapid kinetic runs of 5 were followed using a conductivity cell

containing 15 mL of solvent which was first allowed to equilibrate in a 25.0 °C constant-

temperature water bath, with stirring. The specific rates and associated standard deviations,

as presented in Table 1, are obtained by averaging all of the values from, at least, duplicate

runs. Multiple regression analyses were carried out using the Excel 2007 package from the

Microsoft Corporation. The molecular structures (syn geometry) presented in Figure 1, were

drawn using the KnowItAll® Informatics System, ADME/Tox Edition, from BioRad

Laboratories, Philadelphia, PA.

3. RESULTS AND DISCUSSIONS

In Table 1, we report the pseudo first order rate coefficients obtained for 3 at 35.0 °C, and

for 5 at 25.0 °C, in 19 and 13 diverse binary aqueous organic solvents, respectively. Also

presented in Table 1, are the NT and YCl values that are needed in equation 1 to compute the

necessary bond-making (l value), bond-breaking (m value), and residual (c value)

components.

The data in Table 1 shows that the specific rates of solvolysis of 2,2,2-trichloro-1,1-

dimethylethyl chloroformate (3) gradually increases with the increase in water-content in

ethanol (EtOH), methanol (MeOH), acetone, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-

hexafluro-2-propanol (HFIP) mixtures. In the pure organic mixtures of 2,2,2-trifluoroethanol

and ethanol (T-E), the rate increases with an increase in ethanol content. These broad

observations on the solvent influences of the rate constants for 3 suggest that the solvent

nucleophilic component (sensitivity indicated by l value) plays an important role in rate-

determining step of the reaction. The experimental values of our rate determinations (for 3)

are within an acceptable 2–10% range when compared to those obtained by Koh and Kang

[28] in 60T-40E, and in the aqueous mixtures of ethanol, methanol, acetone, and TFE.

However, in ethanol, methanol, 20T-80E and 70% HFIP at 35.0 °C, our results differed from

the Koh and Kang [28] values by 15%, 18%, 33% and 61% respectively. In these four

solvents, the rate data that we report in Table 1 are the average specific rates obtained after

4–8 different independent determinations; using different batches of solvents and containing

multiple samples of varying concentrations of 3 that were purchased at different times. It is

of utmost interest that the most significant deviations have occurred in solvents where

sensitivity to general-base catalysis is the greatest. This is due to the solvents hydrogen-bond

donating ability (typically in the order of HFIP > TFE > MeOH > water > ethanol) being a

factor in the stabilizing of the developing transition-state [54].

For 1-chloroethyl chloroformate (5), the specific rate increase is much more pronounced

with increases in the solvents nucleophilic ability (NT value). In the strongly hydrogen-

bonding fluoroalcohols, we obtained rates in three aqueous TFE solutions and two TFE-

EtOH mixtures, but were unable to obtain reliable and repeatable rates in the highly ionizing

HFIP mixtures.
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In Table 2, we list the specific rates of reaction for the previously examined primary and

secondary alkyl chloroformates that follow similar mechanistic patterns in five common

solvents at 25.0 °C. Included are methyl chloroformate (MeOCOCl) [21], ethyl

chloroformate (EtOCOCl) [20], 2,2,2-trichloroethyl chloroformate (4) [32], n-propyl

chloroformate (n-PrOCOCl) [24], iso-propyl chloroformate (i-PrOCOCl) [27], iso-butyl

chloroformate (i-BuOCOCl) [30], and n-octyl chloroformate (n-OctOCOCl) [53]. Data for 3
and 5 are also shown in Table 2.

The 1-adamantyl and 2-adamantyl chloroformate (1-AdOCOCl and 2-AdOCOCl) [19,23]

favor a solvolysis-decomposition type pathway in a majority of the solvents studied, and

neopentyl chloroformate (neoPOCOCl) [29], whose mechanism parallels those listed in the

non-fluoroalcohol mixtures, was studied at 45.0°C. Concurrent addition-elimination (A-E)

and ionization mechansims were proposed for ethyl chloroformate (EtOCOCl) [20], with the

ionization (SN1-type) pathway being favored in the highly ionizing fluoroalcohol mixtures.

Additionally for the secondary chloroformate, i-PrOCOCl, a solvent-decomposition

mechanism was shown to dominate in 70 TFE [27].

In MeOH, EtOH, and 80% EtOH, there is a 10 to 1000-fold increase in the rates of reaction

with the introduction of chlorine at the α- or β-carbon of the primary alkyl chloroformate

esters. This tendency for such compelling rate increases results from the inductive effects

that are introduced due to the presence of electron-withdrawing chlorine (as substituents) on

the primary alkyl chain.

For 3, 4, and 5, in the pure and aqueous alcohols, we observe the general progression of k5

≫ k4 > k3. Such forceful advancements can only develop from the immense strength of the

inductive effect present in 5, mainly due to the proximity of the electron withdrawing α-

chloro substituent to the electrophilic reaction center. The k3 < k4 observations are due the

additive steric and stereoelectronic effects introduced by the two methyl substituents on the

α-carbon atom in 3.

In Table 3, we list the Grunwald-Winstein parameters obtained from the literature, for

PhOCOCl [43,47], and the other pertinent alkyl chloroformates that are mentioned in this

research article.

In order to interpret detailed mechanisms of reaction for 3, 4, and 5, we have also reanalyzed

and documented the resultant multiple regression values that were obtained on using

equation 1. For use as a mechanistic criterion, we also considered the l/m ratios of the

cataloged chloroformate substrates, since it was convincingly shown [53] that n-octyl

fluoroformate, which has an l/m ratio of 2.28, proceeds by a rate-determining carbonyl-

addition (A-E) process. This assignment was supported by the observation that in a number

of common solvents the kF/kCl ratios for n-octyl fluroformate and n-octyl chloroformate was

greater than unity [53].

Our solvolysis study for 2,2,2-trichloro-1,1-dimethylethyl chloroformate (3) at 35.0 °C,

included 19 solvents that had very widely varying ranges of solvent nucleophilicity and

solvent ionizing power. Analyses (using equation 1) of the rates obtained for 3 in these
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solvents resulted in an l value of 1.17 ± 0.17, an m value of 0.29 ± 0.13, a c value of 0.03 ±

0.16, an F-test value of 67, and a multiple correlation coefficient (R) value of 0.945. These l

an m values are on the much lower side of the spectrum when compared to those tabulated in

Table 3 for the previously studied alkyl chloroformate esters. Furthermore, the m value

obtained for 3 has a P value (probability of statistical significance) of 0.03. Using literature

values [43,47] for PhOCOCl, in the same 19 solvents (and using an interpolated rate of 1.49

× 10−4s−1 for PhOCOCl in 70T-30E), we obtained, 1.62 ± 0.11, 0.54 ± 0.08, 0.24 ± 0.11,

229, and 0.983, for l, m, c, F-test, and R, respectively.

A plot of the log (k/ko)3 versus log (k/ko)PhOCOCl is shown in Figure 2. This graph has a

slope of 0.831 ± 0.058, an intercept of −0.099 ± 0.118, an F-test value of 204, and a best-fit

linear regression (r2) value of 0.961. The Figure 2 residual plot clearly shows that the 97

HFIP point deviates significantly from the best-fit line. Removal of this 97 HFIP value

results in a slope of 0.988 ± 0.002, an intercept of −0.002 ± 0.073, an improved F-test value

of 483, and an enhanced r2 value of 0.984. Such improvements strongly illustrate that for 3,

a similar PhOCOCl addition-elimination (A-E) type mechanism (Scheme 1) occurs in the

remaining 18 solvents.

On omitting the 97 HFIP rate value for 3 and reanalyzing the remaining 18 solvents (Table

1) with equation 1, we obtain an l value of 1.43 ± 0.15, an m value of 0.38 ± 0.10 (associated

P value = 0.002), a c value of 0.17 ± 0.13, F-test = 96, and R = 0.963 (reported in Table 3).

Here, 3 has an l/m ratio of 3.76. In the identical 18 solvents studied, a reanalysis (with

equation1) for PhOCOCl leads to values of 1.61 ± 0.13, 0.53 ± 0.09, and 0.23 ± 0.12, for l,

m, and c, respectively. The l/m ratio for PhOCOCl is 3.04. These robust l and m values

obtained for PhOCOCl, have an associated F-test value of 127 and R = 0.972. The larger l/m

ratio for 3 indicates that it is more susceptible (when compared to PhOCOCl) to general-

base catalysis.

A plot of log (k/ko) for 2,2,2-trichloro-1,1-dimethylethyl chloroformate (3) against 1.43 NT +

0.38 YCl is shown in Figure 3 with the deviation for the 97 HFIP point indicated. Using log

(k/ko)3 = 1.43 NT + 0.38 YCl + 0.17, we calculated an expected bimolecular carbonyl-

addition rate for 3 to be 3.35 × 10−9 in 97 HFIP. Comparing this calculated value to the

experimental value obtained for 3 in 97 HFIP (and shown in Table 1), we can definitively

conclude that in this highly ionizing mixture, the mechanism of reaction is of the SN1 type,

with 98% of reaction following the ionization pathway.

Koh and Kang [32] measured the rate constants for solvolyses of 2,2,2-trichloroethyl

chloroformate (4) in 34 pure and binary solvent mixtures at 35.0 °C. Using their data [32],

we reanalyzed the reported rates of reaction using equation 1 and obtained, l = 1.35 ± 0.07,

m = 0.51 ± 0.04, c = 0.07 ± 0.06, F-test = 175, and R = 0.958. Our l and m values match the

ones reported [32] for 4. The l/m ratio for 4 works out to be 2.65. Analyzing the literature

data for PhOCOCl [43,47] in the identical 34 solvents, we obtain, l = 1.52 ± 0.08, m = 0.52

± 0.04, c = 0.11 ± 0.07, F-test = 188, and R = 0.961 (l/m ratio = 2.92).

A plot of log (k/ko)4 versus log (k/ko)PhOCOCl is shown in Figure 4. This plot has a slope =

0.85 ± 0.04, c = 0.03 ± 0.05, F-test = 374, and r2 = 0.960. A visual inspection of the scatter
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plot (Figure 4) reveals that the 90 HFIP and 90 TFE points are markedly dispersed. The

removal of these two points increases the F-test value to 554 and the r2 value rises to 0.974.

The slope is now 0.99 ± 0.04, and c = 0.04 ± 0.04. The improved r2 value hints that the two

substrates (4 and PhOCOCl) proceed via similar mechanisms in the remaining 32 solvents.

An analysis (Table 3) using equation 1 for 4 in the remaining 32 solvents yields, l = 1.52 ±

0.08, m = 0.55 ± 0.03, c = 0.01 ± 0.06, F-test = 178, and R = 0.962. In corresponding

solvents for PhOCOCl, an analysis using equation 1, produces l = 1.47 ± 0.10, m = 0.51 ±

0.04, c = 0.10 ± 0.07, F-test = 105, and R = 0.938. The l/m ratio for 4 is 2.76 and that for

PhOCOCl is 2.88, thus illustrating that solvolyses of both 4 and PhOCOCl proceed through

very similar carbonyl-addition tetrahedral transition-state.

Using log (k/ko)4 = 1.52NT + 0.55YCl + 0.01, we calculated the expected bimolecular

carbonyl-addition (A-E) rates for 90 HFIP and 90 TFE to be 4.90 × 10−6 s−1 and 6.19 × 10−5

s−1. Comparing these calculated rates to the ones that were experimentally determined in 90

HFIP and 90 TFE [32], we project that the ionization (SN1) component for 4 in these two

solvents are, 87% and 82% respectively.

Due to a variety of experimental difficulties we could only study the solvolysis of the

monochloro substrate, 1-chloroethyl chloroformate (5), in 13 pure and aqueous binary

mixtures at 25.0 °C. A plot of log (k/ko)5 against log (k/ko)PhOCOCl is shown in Figure 5.

This plot has a slope of 1.19 ± 0.05, an intercept of −0.07 ± 0.06, an F-test value of 603, and

an r2 value of 0.991. The considerable F-test value accompanied by an excellent r2 value,

indicates that this is indeed a well-fitting regression model, and that the two substrates

(PhOCOCl and 5) have very similar transition-state character. The slightly greater than unity

slope further suggests that 5 has a slightly later transition-state (as compared to PhOCOCl).

For 5 an analysis using equation 1 of solvolyses rates in all of the thirteen solvents studied,

results in l = 1.99 ± 0.23, m = 0.62 ± 0.12, c = 0.19 ± 0.17, F-test = 49, and R = 0.953. The

l/m ratio is 3.21 for 5. In the identical thirteen solvents, an equation 1 analysis for PhOCOCl

yields, l = 1.61 ± 0.15, m = 0.47 ± 0.08, c = 0.19 ± 0.11, F-test = 90, R = 0.973, and the l/m

ratio = 3.42. A comparison of the l/m ratios for these two substrates again illustrates the

similarities in the tetrahedral addition-elimination transition-states.

4. CONCLUSION

The interplay between electronic and steric effects amongst the three chloro-substituted

chloroformates studied, is clearly evident in the rate order k5 ≫ k4 > k3 observed. The α-

chloro-substituent in 1-chloroethyl chloroformate (5) exerts very large electron-withdrawing

inductive effects and, as a result, it leads to rates of reaction that are orders of magnitude

higher. The presence of the electron-withdrawing trichloromethyl group in 2,2,2-

trichloroethyl chloroformate (4) also plays an advantageous role in accelerating the addition

step of an addition-elimination reaction, whereas the comparatively sterically encumbered

2,2,2-trichloro-1,1-dimethylethyl chloroformate (3), had the lowest rates that were

influenced by counteractive electronic and steric effects.
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Coupling theories of linear-free energy relationships (LFERs) that employ a similarity-

model approach based on the solvolysis of phenyl chloroformate (1), together with the

information derived from the extended Grunwald-Winstein (equation 1) analysis, present a

consistent picture for the solvolysis mechanisms of 3, 4, and 5.

A log (k/ko) plot of 3 against 1, reveals a large-scale divergence for the 97 HFIP point.

Neglecting this 97 HFIP data point for 3 in the Grunwald-Winstein computation, led to an

l/m ratio of 3.76, which is solidly indicative of a carbonyl-addition process that is assisted by

general-base catalysis. This also indicates that the ionization pathway is the dominant

process (98%) for 3 in 97 HFIP.

Utilizing the previously published rates, a log (k/ko) plot of 4 against 1, displayed some

disparity in the 90 HFIP and 90 TFE values. On their removal and then applying the

equation 1 to the rates in the remaining 32 solvents, we acquired an l/m ratio of 2.76 for 4,

which was found to be very close to the 2.88 value for 1 in identical solvents. This supports

our proposal that the tetrahedral carbonyl-addition transition-state 4 is analogous to that of 1.

The log (k/ko) plot of 5 against 1 was near ideal, with an r2 value of 0.991, and a slope that

was slightly greater than unity. The similar l/m ratios for 5 and 1 verified that the two

substrates had virtually indistinguishable tetrahedral transition-state structure.
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Figure 1.
Molecular structures of phenyl chloroformate (1), phenyl chlorodithioformate (2), 2,2,2-

trichloro-1,1-dimethylethyl chloroformate (3), 2,2,2-trichloroethyl chloroformate (4), and 1-

chloroethyl chloroformate (5)
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Figure 2.
The plot of log (k/ko)3 against log (k/ko)PhOCOCl
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Figure 3.
The plot of log (k/ko) for 2,2,2-trichloro-1,1-dimethylethyl chlorothioformate (3) against

1.43 NT + 0.38 YCl in nineteen pure and binary solvents. The 97 HFIP point was not

included in the correlation. It is added to the plot to show the extent of its deviation
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Figure 4.
The plot of log (k/ko)4 against log (k/ko)PhOCOCl
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Figure 5.
The plot of log (k/ko)5 against log (k/ko)PhOCOCl
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Scheme 1.
A carbonyl addition process for chloroformate esters
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Scheme 2.
A possible unimolecular solvolytic pathway for chloroformate esters
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Table 1

Specific rates of solvolysis (k) of 3 at 35.0 °C and 5 at 25.0 °C in several pure and binary solvents

respectively. Also listed are the literature values for NT and YCl

Solvent (%)a 3; 104k, s−1b 5; 104k, s−1b NT
c YCl

d

100% EtOH 6.49 ± 0.27 54.3 ± 0.8 0.37 −2.50

90% EtOH 7.24 ± 0.10 118 ± 3 0.16 −0.90

80% EtOH 8.18 ±0.11 226 ± 5 0.00 0.00

100% MeOH 14.5 ± 0.6 509 ± 2 0.17 −1.2

90% MeOH 21.5 ± 0.1 682 ± 0 −0.01 −0.20

80% MeOH 25.5 ± 0.2 953 ± 1 −0.06 0.67

70% MeOH 30.1 ± 0.7 −0.40 1.46

90% Acetone 1.27 ± 0.07 3.62 ± 0.08 −0.35 −2.39

80% Acetone 2.11 ± 0.09 18.1 ± 0.1 −0.37 −0.83

70% Acetone 2.48 ± 0.08 −0.42 0.17

97% TFE (w/w) 0.00217 ± 0.00022 −3.30 2.83

90% TFE (w/w) 0.0150 ± 0.0009 0.215 ± 0.000 −2.55 2.85

80% TFE (w/w) 1.77 ± 0.01 −2.19 2.90

70% TFE (w/w) 0.165 ± 0.009 3.09 ± 0.01 −1.98 2.96

70T-30E 0.0839 ± 0.0021 −1.34 1.24

60T-40E 0.319 ± 0.007 2.59 ± 0.00 −0.94 0.63

40T-60E 10.2 ± 0.0 −0.34 −0.48

20T-80E 1.59 ± 0.17 0.08 −1.42

97% HFIP (w/w) 0.00178 ± 0.00023 −5.26 5.17

90% HFIP (w/w) 0.00273 ± 0.00021 −3.84 4.41

70% HFIP (w/w) 0.0858 ± 0.0024 −2.94 3.83

a
Substrate concentration of ca. 0.0052 M; binary solvents on a volume-volume basis at 25.0 °C, except for TFE-H2O and HFIP-H2O solvents

which are on a weight-weight basis. T-E are TFE-ethanol mixtures.

b
With associated standard deviation.

c
Ref [36, 37].

d
Ref [38–41].
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